1
|
Škoch K, Buziková M, Hnyk D, Litecká M, Kloda M, Kirakci K, Lang K. Preparation, Structure, Reactivity, Lewis Acidic and Fluorescence Properties of Arylpyridine Based Boron C,N-Chelates Featuring Weakly Coordinating Anions. Chemistry 2024; 30:e202403263. [PMID: 39373024 DOI: 10.1002/chem.202403263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Herein, we present the preparation of a series of electronically and/or sterically distinct borenium-type species based on a simple 2-arylpyridine scaffold. Corresponding arylpyridine was firstly subjected to electrophilic borylation (BBr3/i-Pr2NEt) and formed BBr2 chelate was reduced with LiAlH4 to yield arylpyridine boron dihydride. Elimination of one hydride led to Lewis acidic borenium-like products. Four methods of hydride elimination were evaluated and influence of counterions on reactivity, Lewis acidic and luminescent properties was assessed both experimentally and computationally. Arylpyridine chelates featuring weakly coordinating counterions exhibit fluorescent properties upon UV irradiation. Several general trends were inferred to modulate emission wavelength and fluorescence quantum yield. Based on our observations, we have devised and prepared borenium-type fluorophores with yellow-green fluorescence and quantum yields up to 93 %.
Collapse
Affiliation(s)
- Karel Škoch
- Institute of Inorganic Chemistry of Czech Academy of Sciences, Husinec-Řež 1001, 250 68, Czech Republic, Řež
| | - Michaela Buziková
- Institute of Inorganic Chemistry of Czech Academy of Sciences, Husinec-Řež 1001, 250 68, Czech Republic, Řež
| | - Drahomír Hnyk
- Institute of Inorganic Chemistry of Czech Academy of Sciences, Husinec-Řež 1001, 250 68, Czech Republic, Řež
| | - Miroslava Litecká
- Institute of Inorganic Chemistry of Czech Academy of Sciences, Husinec-Řež 1001, 250 68, Czech Republic, Řež
| | - Matouš Kloda
- Institute of Inorganic Chemistry of Czech Academy of Sciences, Husinec-Řež 1001, 250 68, Czech Republic, Řež
| | - Kaplan Kirakci
- Institute of Inorganic Chemistry of Czech Academy of Sciences, Husinec-Řež 1001, 250 68, Czech Republic, Řež
| | - Kamil Lang
- Institute of Inorganic Chemistry of Czech Academy of Sciences, Husinec-Řež 1001, 250 68, Czech Republic, Řež
| |
Collapse
|
2
|
Schepper J, Orthaber A, Pammer F. Tetrazole-Functionalized Organoboranes Exhibiting Dynamic Intramolecular N→B-Coordination and Cyanide-Selective Anion Binding. Chemistry 2024; 30:e202401466. [PMID: 38708576 DOI: 10.1002/chem.202401466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Starting from two different cyano-functionalized organoboranes, we demonstrate that 1,3-dipolar [3+2] azide-nitrile cycloaddition can serve to generate libraries of alkyl-tetrazole-functionalized compounds capable of intramolecular N→B-Lewis adduct formation. Due to the relatively low basicity of tetrazoles, structures can be generated that exhibit weak and labile N→B-coordination. The reaction furnishes 1- and 2-alkylated regio-isomers that exhibit different effective Lewis-acidities at the boron centers, and vary in their optical absorption and fluorescence properties. Indeed, we identified derivatives capable of selectively binding cyanide over fluoride, as confirmed by 11B NMR. This finding demonstrates the potentialities of this synthetic strategy to systematically fine-tune the properties of lead structures that are of interest as chemical sensors.
Collapse
Affiliation(s)
- Jonas Schepper
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Andreas Orthaber
- Department of Chemistry - Ångström laboratories, Uppsala University, BOX 523, 75120, Uppsala, Sweden
| | - Frank Pammer
- Helmholtz Institute Ulm, Karlsruhe Institute for Technology, Helmholtzstrasse 11, 89081, Ulm, Germany
| |
Collapse
|
3
|
Alahmadi AF, Zuo J, Jäkle F. B-N Lewis pair-fused dipyridylfluorene copolymers incorporating electron-deficient benzothiadiazole comonomers. Polym J 2022. [DOI: 10.1038/s41428-022-00723-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Liu K, Jiang Z, Lalancette RA, Tang X, Jäkle F. Near-Infrared-Absorbing B-N Lewis Pair-Functionalized Anthracenes: Electronic Structure Tuning, Conformational Isomerism, and Applications in Photothermal Cancer Therapy. J Am Chem Soc 2022; 144:18908-18917. [PMID: 36194812 DOI: 10.1021/jacs.2c06538] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
B-N-fused dianthracenylpyrazine derivatives are synthesized to generate new low gap chromophores. Photophysical and electrochemical, crystal packing, and theoretical studies have been performed. Two energetically similar conformers are identified by density functional theory calculations, showing that the core unit adopts a curved saddle-like shape (x-isomer) or a zig-zag conformation (z-isomer). In the solid state, the z-isomer is prevalent according to an X-ray crystal structure of a C6F5-substituted derivative (4-Pf), but variable-temperature nuclear magnetic resonance studies suggest a dynamic behavior in solution. B-N fusion results in a large decrease of the HOMO-LUMO gap and dramatically lowers the LUMO energy compared to the all-carbon analogues. 4-Pf in particular shows significant absorbance at greater than 700 nm while being almost transparent throughout the visible region. After encapsulation in the biodegradable polymer DSPE-mPEG2000, 4-Pf nanoparticles (4-Pf-NPs) exhibit good water solubility, high photostability, and an excellent photothermal conversion efficiency of ∼41.8%. 4-Pf-NPs are evaluated both in vitro and in vivo as photothermal therapeutic agents. These results uncover B-N Lewis pair functionalization of PAHs as a promising strategy toward new NIR-absorbing materials for photothermal applications.
Collapse
Affiliation(s)
- Kanglei Liu
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, New Jersey 07102, United States.,Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102400, P. R. China
| | - Zhenqi Jiang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102400, P. R. China.,School of Medical Technology, Beijing Institute of Technology, Beijing 102400, P. R. China
| | - Roger A Lalancette
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing 102400, P. R. China
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
5
|
Murali AC, Nayak P, Venkatasubbaiah K. Recent advances in the synthesis of luminescent tetra-coordinated boron compounds. Dalton Trans 2022; 51:5751-5771. [PMID: 35343524 DOI: 10.1039/d2dt00160h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tetra-coordinated boron compounds offer a plethora of luminescent materials. Different chelation around the boron center (O,O-, N,C-, N,O-, and N,N-) has been explored to tune the electronic and photophysical properties of tetra-coordinated boron compounds. A number of fascinating molecules with interesting properties such as aggregation induced emission, mechanochromism and tunable emission by changing the solvent polarity were realised. Owing to their rich and unique properties, some of the molecules have shown applications in making optoelectronic devices, probes and so on. This perspective provides an overview of the recent developments of tetra-coordinated boron compounds and their potential applications.
Collapse
Affiliation(s)
- Anna Chandrasekar Murali
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India.
| | - Prakash Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India.
| | - Krishnan Venkatasubbaiah
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India.
| |
Collapse
|
6
|
Cui J, Men J, Liu B. The cocrystal 2-(dimethylammonio)-5-nitrobenzoate – 2-(dimethylamino)-5-nitrobenzoic acid, C 9H 10N 2O 4. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C9H10N2O4, triclinic,
P
1
‾
$P\overline{1}$
(no. 2), a = 9.722(2) Å, b = 10.805(2) Å, c = 10.947(2) Å, α = 67.938(4)°, β = 66.250(4)°, γ = 72.978(4)°, V = 961.8(3) Å3, Z = 4, R
gt
(F) = 0.0421, wR
ref
(F
2) = 0.1339, T = 173 K.
Collapse
Affiliation(s)
- Jianqiang Cui
- Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi Institute of International Trade & Commerce , Xianyang , Shaanxi , China
| | - Jing Men
- Xi’an Wan Long Pharmaceutical Co, Ltd. , Xi’an , Shaanxi , China
| | - Bin Liu
- Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi Institute of International Trade & Commerce , Xianyang , Shaanxi , China
| |
Collapse
|
7
|
Vanga M, Sahoo A, Lalancette RA, Jäkle F. Linear Extension of Anthracene via B←N Lewis Pair Formation: Effects on Optoelectronic Properties and Singlet O
2
Sensitization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mukundam Vanga
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Ashutosh Sahoo
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Roger A. Lalancette
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Frieder Jäkle
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
8
|
Vanga M, Sahoo A, Lalancette RA, Jäkle F. Linear Extension of Anthracene via B←N Lewis Pair Formation: Effects on Optoelectronic Properties and Singlet O 2 Sensitization. Angew Chem Int Ed Engl 2021; 61:e202113075. [PMID: 34847268 DOI: 10.1002/anie.202113075] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Indexed: 11/12/2022]
Abstract
The functionalization of polycyclic aromatic hydrocarbons (PAHs) via B←N Lewis pair formation offers an opportunity to judiciously fine-tune the structural features and optoelectronic properties, to suit the demands of applications in organic electronic devices, bioimaging, and as sensitizers for singlet oxygen generation. We demonstrate that the N-directed electrophilic borylation of 2,6-di(pyrid-2-yl)anthracene offers access to linearly extended acene derivatives Py-BR (R=Et, Ph, C6 F5 ). In comparison to indeno-fused 9,10-diphenylanthracene, the formal "BN for CC" replacement in Py-BR selectively lowers the LUMO, resulting in a much reduced HOMO-LUMO gap. An even more extended conjugated system with seven six-membered rings in a row (Qu-BEt) is obtained by borylation of 2,6-di(quinolin-8-yl)anthracene. Fluorinated Py-BPf shows particularly advantageous properties, including relatively lower-lying HOMO and LUMO levels, strong yellow-green fluorescence, and effective singlet oxygen sensitization, while resisting self-sensitized conversion to its endoperoxide.
Collapse
Affiliation(s)
- Mukundam Vanga
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| | - Ashutosh Sahoo
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| | - Roger A Lalancette
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| |
Collapse
|
9
|
Schepper JDW, Orthaber A, Pammer F. Preparation of Structurally and Electronically Diverse N → B-Ladder Boranes by [2 + 2 + 2] Cycloaddition. J Org Chem 2021; 86:14767-14776. [PMID: 34613723 DOI: 10.1021/acs.joc.1c01402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the synthesis of a series of eight N → B-ladder boranes through cobalt-mediated cyclotrimerization of (2-cyanophenyl)-dimesitylborane with different dialkynes. The resulting tetracoordinate boranes show variable electrochemical and optical properties depending on the substitution pattern in the backbone of the coordinating pyridine-derivatives. While boranes containing alkyl-substituted pyridines show lower electron affinities than the known parent compound, boranes featuring π-extended pyridine derivatives show higher electron affinities in the range of acceptor substituted triarylboranes. All derivatives show larger Stokes shifts (8790-6920 cm-1) compared to the N → B-ladder borane coordinated by an unsubstituted pyridine.
Collapse
Affiliation(s)
- Jonas D W Schepper
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Andreas Orthaber
- Department of Chemistry, Ångström Laboratories, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Frank Pammer
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.,Helmholtz-Institut Ulm, Helmholtzstrasse 11, D-89081 Ulm, Germany
| |
Collapse
|
10
|
Full J, Panchal SP, Götz J, Krause A, Nowak‐Król A. Modular Synthesis of Organoboron Helically Chiral Compounds: Cutouts from Extended Helices. Angew Chem Int Ed Engl 2021; 60:4350-4357. [PMID: 33244880 PMCID: PMC7898935 DOI: 10.1002/anie.202014138] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/25/2020] [Indexed: 11/12/2022]
Abstract
Two types of helically chiral compounds bearing one and two boron atoms were synthesized by a modular approach. Formation of the helical scaffolds was executed by the introduction of boron to flexible biaryl and triaryl derived from small achiral building blocks. All-ortho-fused azabora[7]helicenes feature exceptional configurational stability, blue or green fluorescence with quantum yields (Φfl ) of 18-24 % in solution, green or yellow solid-state emission (Φfl up to 23 %), and strong chiroptical response with large dissymmetry factors of up to 1.12×10-2 . Azabora[9]helicenes consisting of angularly and linearly fused rings are blue emitters exhibiting Φfl of up to 47 % in CH2 Cl2 and 25 % in the solid state. As revealed by the DFT calculations, their P-M interconversion pathway is more complex than that of H1. Single-crystal X-ray analysis shows clear differences in the packing arrangement of methyl and phenyl derivatives. These molecules are proposed as primary structures of extended helices.
Collapse
Affiliation(s)
- Julian Full
- Institut für Anorganische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Santosh P. Panchal
- Institut für Anorganische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Julian Götz
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Ana‐Maria Krause
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Agnieszka Nowak‐Król
- Institut für Anorganische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
11
|
Full J, Panchal SP, Götz J, Krause A, Nowak‐Król A. Modulare Synthese helikal‐chiraler Organobor‐Verbindungen: Ausschnitte verlängerter Helices. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014138] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Julian Full
- Institut für Anorganische Chemie Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für Organische Chemie and Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Santosh P. Panchal
- Institut für Anorganische Chemie Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für Organische Chemie and Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Julian Götz
- Institut für Organische Chemie and Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Ana‐Maria Krause
- Institut für Organische Chemie and Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Agnieszka Nowak‐Król
- Institut für Anorganische Chemie Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für Organische Chemie and Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
12
|
Nakazato T, Shinokubo H, Miyake Y. Complexation of 2,7-diazapyrene with boron for structural and electronic tuning. Chem Commun (Camb) 2021; 57:327-330. [DOI: 10.1039/d0cc07804b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Complexation of tetra(hydroxyphenyl)-2,7-diazapyrene with boron provided the boron complexes as anti- and syn-isomers. The structural difference induces self-association behaviour of the syn-isomer and isomerisation of the anti-isomer in the solution and solid states.
Collapse
Affiliation(s)
- Takumi Nakazato
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Yoshihiro Miyake
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| |
Collapse
|
13
|
Haque A, Al-Balushi RA, Raithby PR, Khan MS. Recent Advances in π-Conjugated N^C-Chelate Organoboron Materials. Molecules 2020; 25:E2645. [PMID: 32517244 PMCID: PMC7321365 DOI: 10.3390/molecules25112645] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022] Open
Abstract
Boron-containing π-conjugated materials are archetypical candidates for a variety of molecular scale applications. The incorporation of boron into the π-conjugated frameworks significantly modifies the nature of the parent π-conjugated systems. Several novel boron-bridged π-conjugated materials with intriguing structural, photo-physical and electrochemical properties have been reported over the last few years. In this paper, we review the properties and multi-dimensional applications of the boron-bridged fused-ring π-conjugated systems. We critically highlight the properties of π-conjugated N^C-chelate organoboron materials. This is followed by a discussion on the potential applications of the new materials in opto-electronics (O-E) and other areas. Finally, attempts will be made to predict the future direction/outlook for this class of materials.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia
| | - Rayya A. Al-Balushi
- Department of Basic Sciences, College of Applied and Health Sciences, A’Sharqiyah University, P.O. Box 42, Ibra 400, Sultanate of Oman;
| | - Paul R. Raithby
- Department of Chemistry, University of Bath, Claverton Down BA2 7AY, UK
| | - Muhammad S. Khan
- Department of Chemistry, Sultan Qaboos University, P.O. Box 36, Al-Khod 123, Sultanate of Oman
| |
Collapse
|