1
|
Wang R, Yuan JL, Liang KL, Hu JY, Fu Q, Liang FS. Ambient-Light-Promoted Stereospecific Synthesis of ( Z)-Vinyl Thioesters under Solvent- and Catalyst-Free Conditions. J Org Chem 2024; 89:9597-9608. [PMID: 38885461 DOI: 10.1021/acs.joc.4c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
An ambient-light-promoted stereospecific olefinic C(sp2)-S bond construction of thioacids and 1,1-diarylethenes has been demonstrated, affording various (Z)-vinyl thioesters in 51-85% yields under solvent- and catalyst-free conditions. Mechanistic studies indicated that the formation of thioacid-olefin complexes is responsible for generating a carbonyl thiyl radical and dioxygen in the air participates in the reaction and functions as a traceless reagent. Moreover, synthetic applications have been demonstrated by the gram scale synthesis and aggregation-induced emission property of representative compound 3i.
Collapse
Affiliation(s)
- Rui Wang
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
- College of Chemical Engineering, Tianjin University, Tianjin 300072, China
- YASUA Chemical Co., Ltd., Zhejiang 314200, China
| | - Jia-Long Yuan
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Kun-Long Liang
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Ji-Yun Hu
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Qiang Fu
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Fu-Shun Liang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| |
Collapse
|
2
|
Jiang T, Chen L, Wen S, Zhang L, Wang T, Xiong F. Synthesis of 1,1-Diarylvinylsulfides via Visible-Light-Promoted Cascade Reaction of Alkynoates with Phenyl Disulfides. J Org Chem 2024. [PMID: 38175923 DOI: 10.1021/acs.joc.3c01988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Without any additives and photocatalysts, the visible-light-promoted radical cascade reaction between alkynoates and phenyl disulfides has been developed at room temperature. Through S-S bond photolysis and homolytic cleavage, addition of a sulfur radical, aryl migration, decarboxylation, and H atom abstraction, the cascade reaction provides an efficient and practical route to trisubstituted 1,1-diarylvinylsulfides with a wide scope of substrates and good to excellent yields.
Collapse
Affiliation(s)
- Tao Jiang
- College of Chemistry and Chemical Engineering, National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Long Chen
- College of Chemistry and Chemical Engineering, National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Shimei Wen
- College of Chemistry and Chemical Engineering, National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Lei Zhang
- College of Chemistry and Chemical Engineering, National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Tao Wang
- College of Chemistry and Chemical Engineering, National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Fei Xiong
- College of Chemistry and Chemical Engineering, National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| |
Collapse
|
3
|
Liu Y, Gao W, Yuan S, Ni M, Hao T, Zeng C, Xu X, Fu Y, Peng Y, Ding Q. One-pot synthesis of 11-sulfenyl dibenzodiazepines via tandem sulfenylation/cyclization of o-isocyanodiaryl amines and diaryl disulfides. Org Biomol Chem 2023; 21:4257-4263. [PMID: 37139575 DOI: 10.1039/d3ob00220a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A one-pot sulfenylation/cyclization of o-isocyanodiaryl amines has been described for the preparation of 11-sulfenyl dibenzodiazepines. This AgI-catalyzed reaction covers an unexplored tandem process to give seven-membered N-heterocycles. This transformation shows a broad range of substrate scope, simple operation, and moderate to good yields under aerobic conditions. Diphenyl diselenide can also be produced in an acceptable yield.
Collapse
Affiliation(s)
- Yi Liu
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Wei Gao
- Jiangxi Academy of Forestry, Nanchang 330013, Jiangxi, China.
| | - Sitian Yuan
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Mengjia Ni
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Tianxin Hao
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Cuiying Zeng
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Xinyi Xu
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Yang Fu
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Yiyuan Peng
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Qiuping Ding
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| |
Collapse
|
4
|
Wan JL, Huang JM. Bromide‐catalyzed electrochemical Csp<sup>3</sup>‐H oxidation of acetonitrile: Stereoselective synthesis of heteroaryl vinyl sulfides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Synthesis of sulfur-containing polymers via metal-free cross coupling polymerization of tosylhydrazones and thiols. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Chen Z, Cao X, Chen S, Yu S, Lin Y, Lin S, Wang Z. Design, Synthesis and Application of Trisubstituted Olefinic Aggregation-Induced Emission Molecules. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Darroudi M, Ziarani GM, Ghasemi JB, Badiei A. Synthesis of Ag(I)@Fum−Pr−Pyr−Benzimidazole and Its Optical and Catalytic Activities in Click Reactions. ChemistrySelect 2021. [DOI: 10.1002/slct.202100492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Mahdieh Darroudi
- Department of Chemistry Faculty of Physic and Chemistry Alzahra University Tehran Iran, P.O. Box 1993893973
| | - Ghodsi Mohammadi Ziarani
- Department of Chemistry Faculty of Physic and Chemistry Alzahra University Tehran Iran, P.O. Box 1993893973
| | - Jahan B. Ghasemi
- School of Chemistry College of Science University of Tehran Tehran Iran
| | - Alireza Badiei
- School of Chemistry College of Science University of Tehran Tehran Iran
| |
Collapse
|
8
|
Chen Y, Zhang L, Jin Y, Lin X, Chen M. Recent Advances in Living Cationic Polymerization with Emerging Initiation/Controlling Systems. Macromol Rapid Commun 2021; 42:e2100148. [PMID: 33969566 DOI: 10.1002/marc.202100148] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/06/2021] [Indexed: 12/27/2022]
Abstract
While the conventional living cationic polymerization (LCP) provided opportunities to synthesizing well-defined polymers with predetermined molecular weights, desirable chemical structures and narrow dispersity, it is still important to continuously innovate new synthetic methods to meet the increasing requirements in advanced material engineering. Consequently, a variety of novel initiation/controlling systems have be demonstrated recently, which have enabled LCP with spatiotemporal control, broadened scopes of monomers and terminals, more user-friendly operations and reaction conditions, as well as improved thermomechanical properties for obtained polymers. In this work, recent advances in LCP is summarized with emerging initiation/controlling systems, including chemical-initiated/controlled cationic reversible addition-fragmentation chain transfer (RAFT) polymerization, photoinitiated/controlled LCP, electrochemical-controlled LCP, thionyl/selenium halide-initiated LCP, organic acid-assisted LCP, and stereoselective LCP. It is hoped that this summary will provide useful knowledge to people in related fields and stimulate new ideas to promote the development and application of LCP in both academia and industry.
Collapse
Affiliation(s)
- Yinan Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Lu Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China.,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Xinrong Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
9
|
Liu S, Wang L, Ma Z, Zeng X, Xu B. Pyridine hydrochloride-catalyzed thiolation of alkenes: divergent synthesis of allyl and vinyl sulfides. Org Chem Front 2020. [DOI: 10.1039/d0qo01052a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Divergent synthesis of allyl and vinyl sulfides by a Py-HCl catalyzed tandem thiolation–elimination reaction between N-thiosuccinimides and alkenes.
Collapse
Affiliation(s)
- Shiwen Liu
- College of Textiles and Clothing
- Institute of flexible functional materials
- Yancheng Institute of Technology
- Yancheng
- China
| | - Lili Wang
- College of Textiles and Clothing
- Institute of flexible functional materials
- Yancheng Institute of Technology
- Yancheng
- China
| | - Zhipeng Ma
- College of Textiles and Clothing
- Institute of flexible functional materials
- Yancheng Institute of Technology
- Yancheng
- China
| | - Xiaojun Zeng
- College of Chemistry
- Nanchang University
- Nanchang
- China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textiles
- Ministry of Education
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| |
Collapse
|