1
|
Morozkov GV, Troickiy AA, Averin AD, Mitrofanov AY, Abel AS, Beletskaya IP. Visible Light Photoredox Catalysis in the Synthesis of Phosphonate-Substituted 1,10-Phenanthrolines. Molecules 2024; 29:5558. [PMID: 39683719 DOI: 10.3390/molecules29235558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Photoredox-catalyzed phosphonylation of bromo-substituted 1,10-phenanthrolines under visible light irradiation was studied. The reaction was shown to proceed under mild conditions with Eosin Y as a photocatalyst in DMSO under blue light irradiation. It is transition-metal-free and affords the target phosphonate-substituted 1,10-phenanthrolines in moderate yields (26-51%) in 22 to 40 h. The rate and selectivity of the reaction depend largely on the position of the bromine atom, as well as on the nature and position of other substituents in the 1,10-phenanthroline core.
Collapse
Affiliation(s)
- Gleb V Morozkov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Artem A Troickiy
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alexei D Averin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, Moscow 119071, Russia
| | - Alexander Yu Mitrofanov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Anton S Abel
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Irina P Beletskaya
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, Moscow 119071, Russia
| |
Collapse
|
2
|
Luo YX, Huang J, Wu G, Tang XY, Qu JP. Visible-light-mediated deoxygenative transformation of 1,2-dicarbonyl compounds through energy transfer process. Nat Commun 2024; 15:9240. [PMID: 39455565 PMCID: PMC11511947 DOI: 10.1038/s41467-024-53635-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Through the energy transfer process, mild transformations can be achieved that are often difficult to realize under thermodynamic conditions. Herein, a visible-light-driven deoxygenative coupling of 1,2-dicarbonyl compounds for C-O, C-S, and C-N bonds construction is developed via triplet state 1,2-dicarbonyls, affording a wide range of α-functionalized ketones/esters under transition-metal and external photocatalyst free conditions. The usefulness of this method is demonstrated by gram-scale synthesis, late-stage functionalization of various carboxylic acid drugs, and the synthesis of natural products and drug molecules.
Collapse
Affiliation(s)
- Yun-Xuan Luo
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, People's Republic of China
| | - Jie Huang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, People's Republic of China
| | - Guojiao Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, People's Republic of China
| | - Xiang-Ying Tang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, People's Republic of China.
| | - Jin-Ping Qu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, People's Republic of China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
3
|
Dong L, Shu T, Yang D, Chen M. Deoxygenation of allyl arylsulfones to allyl arylthioethers via a "cut-sew" strategy: phosphines as bifunctional reagents. Chem Commun (Camb) 2024; 60:11996-11999. [PMID: 39354804 DOI: 10.1039/d4cc04199b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Herein, we disclosed a protocol for the deoxygenation of allyl arylsulfones to access the corresponding thioethers under photoredox conditions by a "cut-sew" strategy. The key to the success of the deoxygenation process is using triarylphosphines not only as the terminal reductants, but also as the reaction initiators. Deeper understanding of this deoxygenation process enabled the intermolecular deoxygenative allylation.
Collapse
Affiliation(s)
- Liuxin Dong
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Tao Shu
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Di Yang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Min Chen
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
4
|
Xie ZZ, Huang C, Gao J, Deng KY, Ye YQ, Xiang HY, Chen K, Yang H. Photoredox-Catalyzed Phosphine-Mediated Successive Deoxygenation of Sulfonyl Oxime Salts Enables Anti-Markovnikov Hydrothiolation of Alkenes. Org Lett 2024; 26:8100-8105. [PMID: 39287105 DOI: 10.1021/acs.orglett.4c02997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Stable and easy-to-handle sodium salts of sulfonyl oximes were first identified to proceed via visible-light-driven phophine-mediated successive deoxygenation to realize the anti-Markovnikov hydrothiolation of alkenes, which could serve as an odorless sulfur source. Mechanistic studies revealed that the key thiyl radical intermediate could be generated in situ from the sulfonyl oxime anion via a phosphine-mediated fragmentation and a sequential deoxygenation process. Notably, a wide range of alkenes, including acrylamides, acrylates, vinyl ketones, vinyl sulfones, and acrylonitriles, are competent substrates for this protocol, which is highly beneficial for the construction of structurally diversified organosulfur compounds.
Collapse
Affiliation(s)
- Zhen-Zhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Cong Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Ke-Yi Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yong-Qing Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Xiangjiang Laboratory, Changsha 410205, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Xiangjiang Laboratory, Changsha 410205, P. R. China
| |
Collapse
|
5
|
Guo HM, Wang JJ, Xiong Y, Wu X. Visible-Light-Driven Multicomponent Reactions for the Versatile Synthesis of Thioamides by Radical Thiocarbamoylation. Angew Chem Int Ed Engl 2024; 63:e202409605. [PMID: 38975961 DOI: 10.1002/anie.202409605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/09/2024]
Abstract
Thioamides are widely used structures in pharmaceuticals and agrochemicals, as well as important synthons for the construction of sulfur-containing heterocycles. This report presents a series of visible-light-driven multicomponent reactions of amines, carbon disulfide, and olefins for the mild and versatile synthesis of linear thioamides and cyclic thiolactams. The use of inexpensive and readily available carbon disulfide as the thiocarbonyl source in a radical pathway enables the facile assembly of structurally diverse amine moieties with non-nucleophilic carbon-based reaction partners. Radical thiocarbamoylative cyclization provides a practical protocol that complements traditional approaches to thiolactams relying on deoxythionation. Mechanistic studies reveal that direct photoexcitation of in situ formed dithiocarbamate anions as well as versatile photoinduced electron transfer with diverse electron acceptors are key to the reactions.
Collapse
Affiliation(s)
- Hong-Mei Guo
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jia-Jin Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yanjiao Xiong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xuesong Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
6
|
Malakhova EV, Kostromitin VS, Cheboksarov DY, Levin VV, Dilman AD. Sodium Hypophosphite as a Halogen Atom Transfer (XAT) Agent under Photocatalytic Conditions. J Org Chem 2024; 89:12812-12821. [PMID: 39120448 DOI: 10.1021/acs.joc.4c01412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The ability of sodium hypophosphite to generate the phosphorus-centered radical, which can activate the carbon-halogen bond via the halogen atom transfer (XAT) is described. The hydroalkylation of nonactivated alkenes with methyl bromoacetate was performed using sodium hypophosphite as reducing agent under photocatalytic conditions. The key phosphorus centered radical is formed from the hypophosphite anion by hydrogen atom abstraction.
Collapse
Affiliation(s)
- Ekaterina V Malakhova
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
- Higher Chemical College, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Miusskaya sq. 9, Russian Federation
| | - Vladislav S Kostromitin
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
- Lomonosov Moscow State University, Department of Chemistry, 119991 Moscow, Leninskie Gory 1-3, Russian Federation
| | - Demian Y Cheboksarov
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
- Lomonosov Moscow State University, Department of Chemistry, 119991 Moscow, Leninskie Gory 1-3, Russian Federation
| | - Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| |
Collapse
|
7
|
Liu D, Patureau FW. Visible-Light-Induced Photocatalytic Deoxygenative Benzylation of Quinoxalin-2-(1 H)-ones with Carboxylic Acid Anhydrides. Org Lett 2024; 26:6841-6846. [PMID: 39110606 DOI: 10.1021/acs.orglett.4c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
A visible-light-induced photocatalytic deoxygenative benzylation of quinoxalin-2-(1H)-ones is herein described. This novel approach provides a mild, simple, and practical route to 3-benzylquinoxalin-2(1H)-ones from ubiquitous and safe carboxylic acid anhydrides. A wide range of substrates with different substituents were well-tolerated and efficiently transformed to various functionalized 3-benzylquinoxalin-2(1H)-ones with great potential for valuable applications in drug discovery. Mechanistic investigations suggest H2O as a proton source, while hydroxyl-containing quinoxalin-2(1H)-ones may be key intermediates of the photocatalytic deoxygenative process.
Collapse
Affiliation(s)
- Dan Liu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
8
|
Alvey GR, Stepanova EV, Shatskiy A, Lantz J, Willemsen R, Munoz A, Dinér P, Kärkäs MD. Asymmetric synthesis of unnatural α-amino acids through photoredox-mediated C-O bond activation of aliphatic alcohols. Chem Sci 2024; 15:7316-7323. [PMID: 38756799 PMCID: PMC11095513 DOI: 10.1039/d4sc00403e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024] Open
Abstract
Unnatural α-amino acids constitute a fundamental class of biologically relevant compounds. However, despite the interest in these motifs, synthetic strategies have traditionally employed polar retrosynthetic disconnections. These methods typically entail the use of stoichiometric amounts of toxic and highly sensitive reagents, thereby limiting the substrate scope and practicality for scale up. In this work, an efficient protocol for the asymmetric synthesis of unnatural α-amino acids is realized through photoredox-mediated C-O bond activation in oxalate esters of aliphatic alcohols as radical precursors. The developed system uses a chiral glyoxylate-derived N-sulfinyl imine as the radical acceptor and allows facile access to a range of functionalized unnatural α-amino acids through an atom-economical redox-neutral process with CO2 as the only stoichiometric byproduct.
Collapse
Affiliation(s)
- Gregory R Alvey
- Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Elena V Stepanova
- Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
- Chemical Technology, Materials Sciences, Metallurgy, Tomsk Polytechnic University Lenin Avenue 30 634050 Tomsk Russia
| | - Andrey Shatskiy
- Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Josefin Lantz
- Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Rachel Willemsen
- Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Alix Munoz
- Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Peter Dinér
- Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Markus D Kärkäs
- Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| |
Collapse
|
9
|
Xu W, Fan C, Hu X, Xu T. Deoxygenative Transformation of Alcohols via Phosphoranyl Radical from Exogenous Radical Addition. Angew Chem Int Ed Engl 2024; 63:e202401575. [PMID: 38357753 DOI: 10.1002/anie.202401575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/16/2024]
Abstract
A general approach to the direct deoxygenative transformation of primary, secondary, and tertiary alcohols has been developed. It undergoes through phosphoranyl radical intermediates generated by the addition of exogenous iodine radical to trivalent alkoxylphosphanes. Since these alkoxylphosphanes are readily in situ obtained from alcohols and commercially available, inexpensive chlorodiphenylphosphine, a diverse range of alcohols with various functional groups can be utilized to proceed deoxygenative cross-couplings with alkenes or aryl iodides. The selective transformation of polyhydroxy substrates and the rapid synthesis of complex organic molecules are also demonstrated with this method.
Collapse
Affiliation(s)
- Wenhao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustain-ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, P. R. China
| | - Chao Fan
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Tao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustain-ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, P. R. China
| |
Collapse
|
10
|
Xiong Y, Zhang Q, Zhang J, Wu X. Visible-Light-Driven Deoxygenative Heteroarylation of Alcohols with Heteroaryl Sulfones. J Org Chem 2024; 89:3629-3634. [PMID: 38364202 DOI: 10.1021/acs.joc.3c02733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The visible-light-promoted deoxygenative radical heteroarylation of alcohols was achieved in the absence of any external photosensitizers. The processes occur through the generation of xanthate salts from alcohols, followed by SET and fragmentation, delivering alkyl radicals to react with heteroaryl sulfones. This method is amenable for a wide range of alcohols with good functional group tolerance, providing a practical strategy for the alkylation of benzo-heteroaromatics. Mechanism studies indicate that direct visible-light excitation of xanthate anions and subsequent SET initiate the reactions.
Collapse
Affiliation(s)
- Yanjiao Xiong
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Qi Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Jun Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Xuesong Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
11
|
Li Q, Chen J, Luo Y, Xia Y. Photoredox-Catalyzed Hydroacylation of Azobenzenes with Carboxylic Acids. Org Lett 2024; 26:1517-1521. [PMID: 38346172 DOI: 10.1021/acs.orglett.4c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Acyl hydrazides are widely found in bioactive compounds and have important applications as versatile synthetic intermediates. In the current report, a photoredox-catalyzed hydroacylation of azobenzenes was disclosed with carboxylic acids as the acylation reagent, affording a variety of N,N'-disubstituted hydrazides. The process possesses the advantages of mild reaction conditions, broad substrate scope, and high efficiency. Preliminary mechanistic investigation indicated that the addition of an acyl radical to the azo compound should be involved.
Collapse
Affiliation(s)
- Qiao Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jianhui Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yanshu Luo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
12
|
Jha DK, Acharya S, Sakkani N, Chapa S, Guerra A, Zhao JCG. Visible Light-Assisted Ring-Opening of Cyclic Ethers with Carboxylic Acids Mediated by Triphenylphosphine and N-Halosuccinimides. Org Lett 2024; 26:172-177. [PMID: 38165662 DOI: 10.1021/acs.orglett.3c03805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The ring-opening of cyclic ethers (epoxide, oxetane, THF, and THP) by carboxylic acids was achieved by using N-iodosuccinimide (NIS) or N-bromosuccinimide (NBS) and triphenylphosphine under blue light. The corresponding ω-haloalkyl carboxylates were obtained under mild reaction conditions. The reaction is believed to work through a halogen bond complex between NIS (or NBS) and triphenylphosphine, which, upon irradiation with blue light, produces the key phosphine radical cation intermediate that initiates the ring-opening reactions.
Collapse
Affiliation(s)
- Dhiraj K Jha
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Sandhya Acharya
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Nagaraju Sakkani
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Samantha Chapa
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Andrew Guerra
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - John C-G Zhao
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| |
Collapse
|
13
|
Yang J, Wang C, Huang B, Zhou H, Li J, Liu X. Photoredox Catalytic Phosphine-Mediated Deoxygenative Hydroacylation of Azobenzenes with Carboxylic Acids. Org Lett 2024. [PMID: 38194307 DOI: 10.1021/acs.orglett.3c03875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The convenient and precise preparation of N,N'-diarylhydrazides, especially from readily available raw materials, remains highly challenging. Here, a photoredox catalytic phosphine-mediated deoxygenative hydroacylation of azobenzenes with abundant and readily available carboxylic acids has been developed. With Ir[dF(CF3)ppy]2(dtbbpy)PF6 as the photocatalyst, the reactions proceeded smoothly in the presence of PPh3 under visible light irradiation, delivering various N,N'-diarylhydrazides in up to 92% yields. Mechanistic studies revealed that the reaction proceeds via photoredox catalysis and phosphoranyl-radical-mediated C-O bond cleavage of carboxylic acids.
Collapse
Affiliation(s)
- Jingya Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Cunhui Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Bao Huang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hongyan Zhou
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangjiang Li
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaojun Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
14
|
Xie ZZ, Liao ZH, Zheng Y, Yuan CP, Guan JP, Li MZ, Deng KY, Xiang HY, Chen K, Yang H. Photoredox-Catalyzed Selective α-Scission of PR 3-OH Radicals to Access Hydroalkylation of Alkenes. Org Lett 2023; 25:9014-9019. [PMID: 38063439 DOI: 10.1021/acs.orglett.3c03632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Photoinduced generation of phosphoranyl radicals offers a versatile strategy to access a variety of synthetically valuable radicals. A long-standing challenge remains in the regulation of phosphoranyl radical to undergo α-scission pathway, although the β-scission mode has been intensively studied. We herein developed an unprecedented protocol for selective α-scission of the P(OH)R3 radical intermediate under photocatalytic conditions. This efficient P-C bond cleavage via α-scission of the P(OH)R3 radicals has been successfully utilized in the alkylation/fluoroalkylation of alkenes.
Collapse
Affiliation(s)
- Zhen-Zhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zi-Hao Liao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yu Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Chu-Ping Yuan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jian-Ping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Ming-Zhi Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Ke-Yi Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
15
|
Xiong Y, Wu X. Deoxygenative coupling of alcohols with aromatic nitriles enabled by direct visible light excitation. Org Biomol Chem 2023; 21:9316-9320. [PMID: 37982141 DOI: 10.1039/d3ob01676e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
A general and practical protocol is presented for visible-light-driven deoxygenative coupling of alcohols with aromatic nitriles in the absence of external photocatalysts. Utilizing a hydroxyl activation strategy with carbon disulfide, this C(sp3)-C(sp2) constructing platform accommodates a broad scope of alcohols and aryl nitriles to deliver various alkyl-substituted arenes. Mechanism studies show that a single electron transfer event between a photoexcited aryl nitrile and a xanthate anion is key to the transformation.
Collapse
Affiliation(s)
- Yanjiao Xiong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Xuesong Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
16
|
Su J, Chen A, Zhang G, Jiang Z, Zhao J. Photocatalytic Phosphine-Mediated Thioesterification of Carboxylic Acids with Disulfides. Org Lett 2023; 25:8033-8037. [PMID: 37889086 DOI: 10.1021/acs.orglett.3c03249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Herein, a practical and effective synthesis of thioesters from readily available carboxylic acids and odorless disulfides was developed under photocatalytic conditions. This approach involves phosphoranyl radical-mediated fragmentation to generate acyl radicals and allows for incorporation of both S atoms of the disulfides into the desired products. In addition to batch reactions, a continuous-flow reactor was employed, enabling rapid thioester synthesis on a gram scale. Preliminary experimental mechanistic studies and the rapid synthesis of dalcetrapib are also demonstrated.
Collapse
Affiliation(s)
- Junqi Su
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Aobo Chen
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Guofeng Zhang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Ziyu Jiang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Jiannan Zhao
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| |
Collapse
|
17
|
Yang Y, Ma J, Zhang J, Cai H, Xu W. Umpolung trifluoromethylthiolation of alcohols. Org Biomol Chem 2023; 21:8663-8666. [PMID: 37881895 DOI: 10.1039/d3ob01535a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Herein we develop a metal-free umpolung dehydroxytrifluoromethylthiolation of alcohols with commercially available PPh3 and N-trifluoromethylthiophthalimide within 30 minutes. This protocol shows excellent functional group tolerance and high regioselectivity. The dehydroxytrifluoromethylthiolation of a series of natural products and drugs further demonstrates its practicality. Preliminary mechanistic studies suggest that PPh3 is responsible for deoxygenation and the key trifluoromethylthiophosphonium ion may be hydrolyzed by H2O in solvent.
Collapse
Affiliation(s)
- Ye Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Jiemin Ma
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Jiaxiang Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Wentao Xu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
18
|
Zhou Y, Zhao L, Hu M, Duan XH, Liu L. Visible-Light Photoredox-Catalyzed Divergent 1,2-Diacylation and Hydroacylation of Alkenes with Carboxylic Acid Anhydride. Org Lett 2023. [PMID: 37413688 DOI: 10.1021/acs.orglett.3c01787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
A photoredox-catalyzed divergent 1,2-dicarbonylation and hydroacylation of alkenes with acid anhydride is presented. This approach offers a mild and efficient entry to 1,4-dicarbonyl compounds bearing all-carbon quaternary centers, exhibiting a broad substrate scope and high functional group compatibility. Hydrocarbonylaltion of alkenes can also be realized by simply introducing a proton source to the reaction system. Mechanism investigations support a radical addition/radical-polar crossover cascade.
Collapse
Affiliation(s)
- Youkang Zhou
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lirong Zhao
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyou Hu
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
19
|
Zhao G, Lim S, Musaev DG, Ngai MY. Expanding Reaction Profile of Allyl Carboxylates via 1,2-Radical Migration (RaM): Visible-Light-Induced Phosphine-Catalyzed 1,3-Carbobromination of Allyl Carboxylates. J Am Chem Soc 2023; 145:10.1021/jacs.2c11867. [PMID: 37017987 PMCID: PMC11694480 DOI: 10.1021/jacs.2c11867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Allyl carboxylates are useful synthetic intermediates in a variety of organic transformations, including catalytic nucleophilic/electrophilic allylic substitution reactions and 1,2-difunctionalization reactions. However, the catalytic 1,3-difunctionalization of allyl carboxylates remains elusive. Herein, we report the first photoinduced, phosphine-catalyzed 1,3-carbobromination of allyl carboxylates, affording a range of valuable substituted isopropyl carboxylates (sIPC). The transformation has broad functional group tolerance, is amenable to the late-stage modification of complex molecules and gram-scale synthesis, and expands the reaction profiles of allyl carboxylates and phosphine catalysis. Preliminary experimental and computational studies suggest a non-chain-radical mechanism involving the formation of an electron donor-acceptor complex, 1,2-radical migration (RaM), and Br-atom transfer processes. We anticipate that the 1,2-RaM reactivity of allyl carboxylates and the phosphine-catalyzed radical reaction will both serve as a platform for the development of new transformations in organic synthesis.
Collapse
Affiliation(s)
- Gaoyuan Zhao
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794, United States
| | - Sanghyun Lim
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794, United States
| | - Djamaladdin G Musaev
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Yu Ngai
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794, United States
- Institute of Chemical Biology and Drug Discovery, State University of New York, Stony Brook, New York 11794, United States
| |
Collapse
|
20
|
Stewart S, Maloney R, Sun Y. Triphenylphosphine oxide promoting visible-light-driven C-C coupling via desulfurization. Chem Commun (Camb) 2023; 59:3546-3549. [PMID: 36892408 DOI: 10.1039/d3cc00001j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Triphenylphosphine oxide (TPPO) and triphenylphosphine (TPP) can form a complex in solution, promoting visible light absorption to trigger electron transfer within the complex and generate radicals. Subsequent radical reactions with thiols enable desulfurization to produce carbon radicals that react with aryl alkenes to yield new C-C bonds. Since ambient oxygen can easily oxidize TPP to TPPO, the reported method requires no explicit addition of a photocatalyst. This work highlights the promise of using TPPO as a catalytic photo-redox mediator in organic synthesis.
Collapse
Affiliation(s)
- Shea Stewart
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, USA.
| | - Robert Maloney
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, USA.
| | - Yugang Sun
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, USA.
| |
Collapse
|
21
|
Cheng F, Li D, Li J, Tang Y, Wu Y, Xu S. Synthesis of Phosphinic Amides from Chlorophosphines and Hydroxyl Amines via P(III) to P(V) Rearrangement. Org Lett 2023; 25:2555-2559. [PMID: 36876752 DOI: 10.1021/acs.orglett.3c00229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Phosphoranyl radicals are essential mediators to bring about new radicals but often produce a stoichiometric amount of phosphine oxide/sulfide waste. Herein, we devised a phosphorus-containing species as a radical precursor, but without the generation of phosphorus waste. Accordingly, a catalyst-free synthesis of phosphinic amides from hydroxyl amines and chlorophosphines via P(III) to P(V) rearrangement is described. Mechanistically, it may involve the initial formation of a R2N-O-PR2 species that undergoes homolysis of N-O bonds and subsequent radical recombination.
Collapse
Affiliation(s)
- Fang Cheng
- School of Chemistry, and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Dongqiu Li
- School of Chemistry, and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Jing Li
- School of Chemistry, and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Yuhai Tang
- School of Chemistry, and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Yong Wu
- School of Chemistry, and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Silong Xu
- School of Chemistry, and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| |
Collapse
|
22
|
Wei HZ, Shi M, Wei Y. Visible-light-induced reactions of methylenecyclopropanes (MCPs). Chem Commun (Camb) 2023; 59:2726-2738. [PMID: 36752186 DOI: 10.1039/d2cc06957a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Diverse, visible-light-induced transformations of methylenecyclopropanes (MCPs) have been reported in recent years, attracting significant attention from synthetic chemists. As readily accessible strained molecules, MCPs have sufficient reactivity to selectively generate different target products, through reactions with various radical species upon visible-light irradiation under regulated reaction conditions. These transformations can be classified into three subcategories of reaction pathway, forming ring-opened products, cyclopropane derivatives, and alkynes. These products include pharmaceutical intermediates and polycyclic/heterocyclic compounds that are challenging to obtain using traditional methods. This review summarizes the recent advancements in this field.
Collapse
Affiliation(s)
- Hao-Zhao Wei
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China. .,Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| |
Collapse
|
23
|
Tan CY, Kim M, Park I, Kim Y, Hong S. Site-Selective Pyridine C-H Alkylation with Alcohols and Thiols via Single-Electron Transfer of Frustrated Lewis Pairs. Angew Chem Int Ed Engl 2022; 61:e202213857. [PMID: 36314414 DOI: 10.1002/anie.202213857] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 11/07/2022]
Abstract
A unified strategy for the deoxygenative or desulfurative pyridylation of various alcohols and thiols has been developed through a single-electron transfer (SET) process of frustrated Lewis pairs (FLPs) derived from pyridinium salts and PtBu3 . Mechanistic studies revealed that N-amidopyridinium salts serve as effective Lewis acids for the formation of FLPs with PtBu3 , and the generated phosphine radical cation ionically couples with the in situ generated xanthate, eventually affording the alkyl radical through facile β-scission under photocatalyst-free conditions. The reaction efficiency was further accelerated by visible-light irradiation. This method is conceptually appealing by using encounter complexes in FLP chemistry to promote SET, which provides a previously unrecognized opportunity for the selective heteroarylation of a diverse range of alcohols and thiols with various functional groups, even in complex settings under mild reaction conditions.
Collapse
Affiliation(s)
- Chang-Yin Tan
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Myojeong Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Inyoung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Yuhyun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
24
|
Zhang Y, Han Y, Zhu S, Qing F, Xue X, Chu L. Light‐Induced Divergent Cyanation of Alkynes Enabled by Phosphorus Radicals. Angew Chem Int Ed Engl 2022; 61:e202210838. [DOI: 10.1002/anie.202210838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Yanyan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials Donghua University College of Chemistry Chemical Engineering and Biotechnology Shanghai 201620 China
| | - Yunhong Han
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials Donghua University College of Chemistry Chemical Engineering and Biotechnology Shanghai 201620 China
| | - Feng‐Ling Qing
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xiao‐Song Xue
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 P. R. China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials Donghua University College of Chemistry Chemical Engineering and Biotechnology Shanghai 201620 China
| |
Collapse
|
25
|
Ding Y, Yu S, Ren M, Lu J, Fu Q, Zhang Z, Wang Q, Bai J, Hao N, Yang L, Wei S, Yi D, Wei J. Redox-neutral and metal-free synthesis of 3-(arylmethyl)chroman-4-ones via visible-light-driven alkene acylarylation. Front Chem 2022; 10:1059792. [PMID: 36385990 PMCID: PMC9660241 DOI: 10.3389/fchem.2022.1059792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2023] Open
Abstract
A metal- and aldehyde-free visible-light-driven photoredox-neutral alkene acylarylation with readily available cyanoarenes is described. A variety of 3-(arylmethyl)chroman-4-ones (i.e., homoisoflavonoids) and analogs are efficiently synthesized with good functional group tolerance. This mild protocol relies on a phosphoranyl radical-mediated acyl radical-initiated cyclization and selective radical-radical coupling sequence, and is also further highlighted by subsequent derivatization to chromone and 2H-chromene as well as its application in the three-component alkene acylarylation.
Collapse
Affiliation(s)
- Yan Ding
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shengjiao Yu
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Man Ren
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Ji Lu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qiang Fu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhijie Zhang
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qin Wang
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jun Bai
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Na Hao
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Lin Yang
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Siping Wei
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Dong Yi
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jun Wei
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
26
|
Pan Z, Chen B, Fang J, Liu T, Fang J, Ma Y. Photocatalytic C-H Activation and Amination of Arenes with Nonactivated N-Hydroxyphthalimides Involving Phosphine-Mediated N-O Bond Scission. J Org Chem 2022; 87:14588-14595. [PMID: 36255235 DOI: 10.1021/acs.joc.2c01975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we reported a metal-free photoredox/phosphine-catalyzed C-H amination of arenes. This allows for concise synthesis of highly functionalized N-arylphthalimides from readily available N-hydroxyphthalimides directly, without the preparation of activated N-hydroxyphthalimide intermediates. Mechanistic studies reveal that the radical is produced via phosphine-mediated N-O bond scission.
Collapse
Affiliation(s)
- Zhentao Pan
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Taizhou 318000, Zhejiang, China
| | - Bo Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Taizhou 318000, Zhejiang, China
| | - Jingxi Fang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Taizhou 318000, Zhejiang, China
| | - Tong Liu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Taizhou 318000, Zhejiang, China
| | - Jiayao Fang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Taizhou 318000, Zhejiang, China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Taizhou 318000, Zhejiang, China
| |
Collapse
|
27
|
Wang Z, Zhao X, Wang H, Li X, Xu Z, Ramadoss V, Tian L, Wang Y. Dehydroxylative Arylation of Alcohols via Paired Electrolysis. Org Lett 2022; 24:7476-7481. [PMID: 36190448 DOI: 10.1021/acs.orglett.2c03136] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonactivated alcohols along with arene compounds are used in electrochemical dehydroxylative arylation for constructing C(sp3)-C(sp2) bonds. The PIII reagent undergoes single-electron anodic oxidation to form its radical cation, which reacts with the alcohol to produce an alkoxytriphenylphosphine radical. Through spontaneous β-scission of the phosphoranyl radical, the C-O bond is cleaved to form an alkyl radical species, which couples with the radical anion generated by cathodic reduction of the electron-poor arene to afford the dehydroxylative arylated product.
Collapse
Affiliation(s)
- Zhihui Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoqian Zhao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hongyu Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiuyun Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhimin Xu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Velayudham Ramadoss
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lifang Tian
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yahui Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
28
|
Sun K, Xu Z, Ramadoss V, Tian L, Wang Y. Electrochemical deoxygenative reduction of ketones. Chem Commun (Camb) 2022; 58:11155-11158. [PMID: 36106949 DOI: 10.1039/d2cc04548f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemical reduction via paired electrolysis has been used to achieve deoxygenative reduction of ketones. As a result of the complexing of ketones with the triphenylphosphine radical cation generated by anodic oxidation, the reduction of carbonyl groups occurs readily. Through spontaneous β-scission of phosphoranyl radicals, C-O bonds are cleaved to form benzylic radical intermediates. These radical species are either able to abstract hydrogen from MeCN or undergo reduction at the cathode to give carbanions, upon workup forming reductive hydrogenation of ketones.
Collapse
Affiliation(s)
- Kunhui Sun
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Zhimin Xu
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Velayudham Ramadoss
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Lifang Tian
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Yahui Wang
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
29
|
Zou T, He Y, Liu R, Zhang Y, Wei S, Lu J, Wang J, Wang L, Fu Q, Yi D. Photoredox-neutral ring-opening pyridylation of cyclic oximes via phosphoranyl radical-mediated N-O/C-C bond cleavages and sequential radical-radical coupling. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Han W, Su J, Mo JN, Zhao J. Photoredox Catalytic Phosphine-Mediated Deoxygenation of Hydroxylamines Enables the Construction of N-Acyliminophosphoranes. Org Lett 2022; 24:6247-6251. [PMID: 35998322 DOI: 10.1021/acs.orglett.2c02226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The chemistry of phosphoranyl radicals has received increasing attention in recent years. Here, we report the generation of amidyl radicals through photocatalytic deoxygenation of hydroxylamines with triphenylphosphine. This methodology offers a novel and convenient route to a diverse range of N-acyliminophosphoranes in moderate to good yields under visible-light photoredox conditions. Fluorescence quenching experiments suggest that the excited-state of the organic photocatalyst (4CzIPN) was oxidatively quenched by a Cu(II) salt.
Collapse
Affiliation(s)
- Wencheng Han
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Junqi Su
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jia-Nan Mo
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jiannan Zhao
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
31
|
Xia GD, He YY, Zhang J, Liu ZK, Gao Y, Hu XQ. Deoxygenative gem-difluorovinylation of aliphatic alcohols. Chem Commun (Camb) 2022; 58:6733-6736. [PMID: 35604320 DOI: 10.1039/d2cc01918c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An unprecedented deoxygenative gem-difluorovinylation of aliphatic alcohols using α-trifluoromethyl alkenes is achieved under photocatalytic conditions. Inexpensive Ph3P acts as an efficient O-atom transfer reagent to facilitate the deoxygenation of alcohols for the generation of reactive alkyl radical species. Remarkable features of this reaction include mild conditions, simple operation and broad scope. The synthetic utility of this reaction was validated by the success of two-step one-pot reactions, scale-up synthesis and chemoselective monodeoxygenation of diols.
Collapse
Affiliation(s)
- Guang-Da Xia
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| | - Yuan-Yuan He
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| | - Jing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| | - Zi-Kui Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
32
|
Abstract
A protocol for the coupling of potassium xanthogenates with α-(trifluoromethyl)styrenes in the presence of triethyl phosphite is reported. The reaction is carried out under blue light irradiation in the presence of organic photocatalyst 3DPAFIPN. The reaction proceeds via formation of alkyl radicals from readily available xanthogenate salts via oxidative desulfurization and cleavage of the carbon–oxygen bond assisted by triethyl phosphite.
Collapse
|
33
|
Chinn AJ, Sedillo K, Doyle AG. Phosphine/Photoredox Catalyzed Anti-Markovnikov Hydroamination of Olefins with Primary Sulfonamides via α-Scission from Phosphoranyl Radicals. J Am Chem Soc 2021; 143:18331-18338. [PMID: 34672192 DOI: 10.1021/jacs.1c09484] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
New strategies to access radicals from common feedstock chemicals hold the potential to broadly impact synthetic chemistry. We report a dual phosphine and photoredox catalytic system that enables direct formation of sulfonamidyl radicals from primary sulfonamides. Mechanistic investigations support that the N-centered radical is generated via α-scission of the P-N bond of a phosphoranyl radical intermediate, formed by sulfonamide nucleophilic addition to a phosphine radical cation. As compared to the recently well-explored β-scission chemistry of phosphoranyl radicals, this strategy is applicable to activation of N-based nucleophiles and is catalytic in phosphine. We highlight application of this activation strategy to an intermolecular anti-Markovnikov hydroamination of unactivated olefins with primary sulfonamides. A range of structurally diverse secondary sulfonamides can be prepared in good to excellent yields under mild conditions.
Collapse
Affiliation(s)
- Alex J Chinn
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Kassandra Sedillo
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Abigail G Doyle
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
34
|
Selective deoxygenative alkylation of alcohols via photocatalytic domino radical fragmentations. Nat Commun 2021; 12:5365. [PMID: 34508098 PMCID: PMC8433232 DOI: 10.1038/s41467-021-25702-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022] Open
Abstract
The delivery of alkyl radicals through photocatalytic deoxygenation of primary alcohols under mild conditions is a so far unmet challenge. In this report, we present a one-pot strategy for deoxygenative Giese reaction of alcohols with electron-deficient alkenes, by using xanthate salts as alcohol-activating groups for radical generation under visible-light photoredox conditions in the presence of triphenylphosphine. The convenient generation of xanthate salts and high reactivity of sequential C–S/C–O bond homolytic cleavage enable efficient deoxygenation of primary, secondary and tertiary alcohols with diverse functionality and structure to generate the corresponding alkyl radicals, including methyl radical. Moreover, chemoselective radical monodeoxygenation of diols is achieved via selective formation of xanthate salts. The generation of alkyl radicals through deoxygenation of abundant alcohols via photoredox catalysis is of interest. In this study, the authors report a one-pot strategy for visible-light-promoted photoredox coupling of alcohols with electron-deficient alkenes, assisted by carbon disulfide and triphenylphosphine.
Collapse
|
35
|
Supranovich VI, Levin VV, Kokorekin VA, Dilman AD. Generation of Alkyl Radicals from Thiols via Zinc Thiolates: Application for the Synthesis of
gem
‐Difluorostyrenes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Vitalij V. Levin
- N. D. Zelinsky Institute of Organic Chemistry 119991 Moscow Leninsky prosp. 47 Russian Federation
| | - Vladimir A. Kokorekin
- N. D. Zelinsky Institute of Organic Chemistry 119991 Moscow Leninsky prosp. 47 Russian Federation
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry 119991 Moscow Leninsky prosp. 47 Russian Federation
| |
Collapse
|
36
|
Meng H, Sun K, Xu Z, Tian L, Wang Y. P(III)‐Assisted Electrochemical Access to Ureas via in situ Generation of Isocyanates from Hydroxamic Acids. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Haiwen Meng
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| | - Kunhui Sun
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| | - Zhimin Xu
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| | - Lifang Tian
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| | - Yahui Wang
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| |
Collapse
|
37
|
DFT investigation of the triphenylphosphine-assisted electrochemical dehydroxylative transformations. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Levin VV, Dilman AD. Alkene homologation via visible light promoted hydrophosphination using triphenylphosphonium triflate. Chem Commun (Camb) 2021; 57:749-752. [PMID: 33346287 DOI: 10.1039/d0cc07025d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hydrophosphination reaction of alkenes with triphenylphosphonium triflate under photocatalytic conditions is described. The reaction is promoted by naphthalene-fused N-acylbenzimidazole and is believed to proceed through intermediate formation of a phosphinyl radical cation. The resulting phosphonium salts are directly involved in the Wittig reaction leading to homologated alkenes.
Collapse
Affiliation(s)
- Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Leninsky prosp. 47, Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Leninsky prosp. 47, Russian Federation
| |
Collapse
|
39
|
Hu XQ, Hou YX, Liu ZK, Gao Y. Ruthenium-catalysed C–H/C–N bond activation: facile access to isoindolinones. Org Chem Front 2021. [DOI: 10.1039/d0qo01406k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A facile ruthenium-catalysed C–H/C–N bond activation and the subsequent annulation of readily available benzoic acids with in situ generated formaldimines are developed for the efficient synthesis of a wide range of biologically important isoindolinones.
Collapse
Affiliation(s)
- Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Ye-Xing Hou
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Zi-Kui Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Yang Gao
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| |
Collapse
|
40
|
Wei HZ, Wei Y, Shi M. Intramolecular difunctionalization of methylenecyclopropanes tethered with carboxylic acid by visible-light photoredox catalysis. Org Chem Front 2021. [DOI: 10.1039/d1qo00564b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have developed a visible-light photoredox catalyzed intramolecular difunctionalization of MCPs to access spiro[cyclopropane-1,2-indan]one from easily prepared methylenecyclopropanes tethered with carboxylic acid.
Collapse
Affiliation(s)
- Hao-Zhao Wei
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
41
|
Zhang J, Hou YX, Tang YL, Xu JH, Liu ZK, Gao Y, Hu XQ. Transition-metal-free decarboxylative ipso amination of aryl carboxylic acids. Org Chem Front 2021. [DOI: 10.1039/d1qo00442e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An unprecedented DMAP-catalysed decarboxylative amination of carboxylic acids has been achieved under metal free conditions, enabling the convenient synthesis of structurally diverse aryl and alkyl amines.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Ye-Xing Hou
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Yan-Liu Tang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Ji-Hang Xu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Zi-Kui Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Yang Gao
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| |
Collapse
|
42
|
Zhong S, Deng GJ, Dai Z, Huang H. Visible-light-induced 4CzIPN/LiBr system: a tireless electron shuttle to enable reductive deoxygenation of N-heteroaryl carbonyls. Org Chem Front 2021. [DOI: 10.1039/d1qo00634g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A mild visible-light-induced photoredox system was found to be a tireless electron shuttle to enable reductive deoxygenation of N-heteroaryl carbonyls.
Collapse
Affiliation(s)
- Shuai Zhong
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Zhiqi Dai
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| |
Collapse
|
43
|
Zhang Z, Ye JH, Ju T, Liao LL, Huang H, Gui YY, Zhou WJ, Yu DG. Visible-Light-Driven Catalytic Reductive Carboxylation with CO2. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03127] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Tao Ju
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - He Huang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yong-Yuan Gui
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Wen-Jun Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641100, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|