1
|
Meddeb A, Thebti A, Elleuch H, Ayari S, Bouslama L, Ouzari HI. Regioselective Oxidation of Tetrahydronaphthalenes to α-Tetralone Derivatives Using DDQ as Oxidizing Agent: Synthesis and Evaluation of Antibacterial and Antifungal Activities. ACS OMEGA 2024; 9:39344-39352. [PMID: 39346887 PMCID: PMC11425643 DOI: 10.1021/acsomega.4c02130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
An easy and efficient approach for the synthesis of highly regioselective functionalized dihydronaphthalen-1(2H)-one family of α-tetralones from functionalized tetralone precursors which derived from Morita-Baylis-Hillman (MBH) adducts as starting substrates has been developed. The target dihydronaphthalen-1(2H)-ones are obtained through the oxidation of tetrahydronaphthalenes (THN) using DDQ as the oxidizing agent, conducted in aqueous acetic acid at reflux conditions. The yields obtained ranged from 90 to 98%. The resulting dihydronaphthalen-1(2H)-ones were evaluated for their in vitro antibacterial activity against nine Gram-positive and six Gram-negative strains. Additionally, their antifungal properties were assessed against three fungal pathogens by using the microdilution method and Biolog Phenotype Microarrays technology. Remarkably, the synthesized dihydronaphthalen-1(2H)-ones exhibited good antibacterial activity when compared to reference drugs such as vancomycin and ampicillin. Similarly, their antifungal activity is comparable to the effectiveness of the reference drugs cycloheximide and fluconazole.
Collapse
Affiliation(s)
- Ahmed Meddeb
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Structural Organic Chemistry and Macromolecular LR99ES14, University Campus, 2092 Tunis, Tunisia
| | - Amal Thebti
- Laboratory of Microorganisms and Active Biomolecules, LR03ES03, Department of Biology, Facultyof Sciences of Tunis, University of Tunis-El Manar, 2092 Tunis, Tunisia
| | - Haitham Elleuch
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Structural Organic Chemistry and Macromolecular LR99ES14, University Campus, 2092 Tunis, Tunisia
| | - Sami Ayari
- Laboratory of Microorganisms and Active Biomolecules, LR03ES03, Department of Biology, Facultyof Sciences of Tunis, University of Tunis-El Manar, 2092 Tunis, Tunisia
| | - Lamjed Bouslama
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Hadda-Imene Ouzari
- Laboratory of Microorganisms and Active Biomolecules, LR03ES03, Department of Biology, Facultyof Sciences of Tunis, University of Tunis-El Manar, 2092 Tunis, Tunisia
| |
Collapse
|
2
|
Paul S, Baruah A, More AA. Divergent Reactivity of Iminyl Radicals in Four Interrupted Pathways for the Synthesis of Cyclic/Acyclic Ketones and N-Heterocycles from Vinyl Azides and Phenylacetic Acids. J Org Chem 2024; 89:13128-13136. [PMID: 39259739 DOI: 10.1021/acs.joc.4c01243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Herein, we report the Ag-catalyzed substrate-controlled interrupted radical pathways of the iminyl radical. The benzylic groups played a crucial role in pathway selection involving a series of dimerization and hydrolysis, a 1,5-H shift followed by cascade radical cyclization, and direct N-(sp2)/aromatization reactions that provide access to diverse cyclic/acyclic ketones, quinolines, and phenanthridine derivatives. Contrary to previous reports, mechanistic investigations with high-resolution mass spectrometry analysis uncovered the involvement of rare azine, oxime, and β-functionalized vinyl azide intermediates.
Collapse
Affiliation(s)
- Swagota Paul
- Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology, Jorhat 785006 Assam, India
| | - Ashitosh Baruah
- Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology, Jorhat 785006 Assam, India
| | - Atul A More
- Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology, Jorhat 785006 Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Wang W, Yu L. Synthesis of Indenones via Persulfate Promoted Radical Alkylation/Cyclization of Biaryl Ynones with 1,4-Dihydropyridines. Molecules 2024; 29:458. [PMID: 38257370 PMCID: PMC10818456 DOI: 10.3390/molecules29020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The oxidative radical cascade cyclization of alkynes has emerged as a versatile strategy for the efficient construction of diverse structural units and complex molecules in organic chemistry. This work reports an alkyl radical initiated 5-exo-trig cyclization of biaryl ynones with 1,4-dihydropyridines to selectively synthesize indenones.
Collapse
Affiliation(s)
- Wanwan Wang
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, Taizhou University, Taizhou 225300, China;
| | | |
Collapse
|
4
|
Liu K, Li F, Wang J, Zhang Z, Du F, Su H, Wang Y, Yuan Q, Li F, Wang T. Silver-catalyzed cyclization of α-imino-oxy acids to fused tetralone derivatives. Org Biomol Chem 2023; 21:2700-2704. [PMID: 36912118 DOI: 10.1039/d2ob02329f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
A silver-catalyzed intramolecular radical relay cyclization of α-imino-oxy acids under mild conditions has been described. This reaction offers facile access to a diverse range of fused tetralone derivatives with exquisite stereoselectivity in moderate to good yields (40-98%). Experimental studies show that the reaction undergoes a decarboxylation and acetone fragmentation/1,5-hydrogen atom transfer (HAT)/cyclization process.
Collapse
Affiliation(s)
- Kai Liu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
| | - Feng Li
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China. .,College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Jingjing Wang
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China. .,College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Zhaowei Zhang
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Fengge Du
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Hanxiao Su
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Yonghong Wang
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Qingqing Yuan
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Fei Li
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
| | - Teng Wang
- School of Chemistry, Beihang University, Beijing, 100191, China.
| |
Collapse
|
5
|
Photoinduced cyclization of aryl ynones with 4-alkyl-DHPs for the divergent synthesis of indenones, thioflavones and spiro[5.5]trienones. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
6
|
Tang B, Liu Y, Lian Y, Liu H. Radical annulation using a radical reagent as a two-carbon unit. Org Biomol Chem 2022; 20:9272-9281. [PMID: 36383141 DOI: 10.1039/d2ob01833k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Radical annulation has emerged as one of the most efficient and straightforward methods for synthesizing cyclic/polycyclic compounds as the core structures can be constructed through a single procedure comprising multiple bond-forming steps. Particularly, radical annulation using a radical reagent as a cyclization partner and two-carbon unit greatly expands the diversity of cyclic skeletons and the functionality of radical reagents. We herein have highlighted the representative processes reported in the past decade for radical annulation using a radical reagent as a two-carbon unit, including [2 + 2 + 2], [3 + 2], [4 + 2], and [5 + 2] modes, with an emphasis on their reaction mechanisms. These studies not only pave the way toward annulation but also provide insight into the exploration of a new reaction mode for radical chemistry.
Collapse
Affiliation(s)
- Boxiao Tang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University, Huaihua 418000, China.
| | - Yilin Liu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University, Huaihua 418000, China.
| | - Yan Lian
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University, Huaihua 418000, China.
| | - Hongxin Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
7
|
Tu S, Qi Z, Li W, Zhang S, Zhang Z, Wei J, Yang L, Wei S, Du X, Yi D. Chemodivergent photocatalytic access to 1-pyrrolines and 1-tetralones involving switchable C(sp3)–H functionalization. Front Chem 2022; 10:1058596. [PMID: 36385998 PMCID: PMC9641198 DOI: 10.3389/fchem.2022.1058596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
A chemodivergent photocatalytic approach to 1-pyrrolines and 1-tetralones from alkyl bromides and vinyl azides has been developed through chemoselectively controllable intermolecular [3 + 2] and [4 + 2] cyclization. This photoredox-neutral two-component protocol involves intermolecular radical addition and switchable distal C(sp3)–H functionalization enabled by iminyl radical-mediated 1,5-hydrogen atom transfer. Meanwhile, chemoselectivity between C(sp3)–N bond formation and C(sp3)–C(sp2) bond formation is precisely switched by photocatalysts (Ru(bpy)3(PF6)2 vs. fac-Ir(ppy)3) and additives (base vs. acid).
Collapse
Affiliation(s)
- Shijing Tu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhongyu Qi
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Weicai Li
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shiqi Zhang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, China
- *Correspondence: Shiqi Zhang, ; Xi Du, ; Dong Yi,
| | - Zhijie Zhang
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jun Wei
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Lin Yang
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Siping Wei
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xi Du
- Department of Chemistry, School of Basic Medical Science, Southwest Medical University, Luzhou, China
- *Correspondence: Shiqi Zhang, ; Xi Du, ; Dong Yi,
| | - Dong Yi
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
- *Correspondence: Shiqi Zhang, ; Xi Du, ; Dong Yi,
| |
Collapse
|
8
|
Fang Z, Zhang Y, Zhang Z, Song Q, Wu Y, Liu Z, Ning Y. Synthesis of gem-Disulfonyl Enamines via an Iminyl-Radical-Mediated Formal 1,3-HAT/Radical Coupling Cascade. Org Lett 2022; 24:6374-6379. [PMID: 36018352 DOI: 10.1021/acs.orglett.2c02277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We herein report the first example of an iminyl-radical-mediated formal 1,3-HAT/radical coupling cascade of vinyl azides leading to the synthesis of tetrasubstituted gem-disulfonyl enamines. It is possible to employ a variety of vinyl azides and sulfinate salt coupling elements without sacrificing effectiveness and scalability. The combination of experimental studies and DFT calculations showed that this reaction proceeds via a radical addition/formal 1,3-HAT/radical coupling mechanism.
Collapse
Affiliation(s)
- Zhongxue Fang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| | - Yujie Zhang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| | - Zhansong Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Qingming Song
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Yong Wu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Zhaohong Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| |
Collapse
|
9
|
Zhang Y, Liao Y, Liu P, Ran Y, Liu X. Radical borylation of vinyl azides with NHC-boranes: divergent synthesis of α-boryl ketones and borylated triazoles. Org Biomol Chem 2022; 20:3550-3557. [PMID: 35411904 DOI: 10.1039/d2ob00076h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A divergent radical borylation of vinyl azides with N-heterocyclic carbene (NHC) boranes in the presence of tBuSH is described. The protocol enables the divergent synthesis of α-boryl ketones and borylated triazoles with excellent functional group tolerance and a broad substrate scope. Remarkably, this work shows that vinyl azides can serve as unprecedented five-atom synthons for the construction of 1,2,3-triazoles without N2 extrusion.
Collapse
Affiliation(s)
- Yifei Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| | - Yangzhen Liao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| | - Peijun Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China. .,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yu Ran
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| | - Xiaozu Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China. .,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
10
|
Chen P, Fan JH, Yu WQ, Xiong BQ, Liu Y, Tang KW, Xie J. Alkylation/Ipso-cyclization of Active Alkynes Leading to 3-Alkylated Aza- and Oxa-spiro[4,5]-trienones. J Org Chem 2022; 87:5643-5659. [PMID: 35416658 DOI: 10.1021/acs.joc.1c03118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A method for the preparation of 3-alkylated spiro[4.5]trienones via alkylation/ipso-cyclization of activated alkynes with 4-alkyl-DHPs under transition-metal-free conditions is proposed. This alkylation successively undergoes the generation of alkyl radicals, addition of alkyl radicals to the alkynes, and intramolecular ipso-cyclization. The mechanism studies suggest that the alkylation/ipso-cyclization involves a radical process. This ipso-cyclization procedure shows a series of advantages, such as accessibility, mild conditions, high efficiency, greater safety, and an environmentally friendly method.
Collapse
Affiliation(s)
- Pu Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Wen-Qin Yu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jun Xie
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
11
|
Zhang Y, Luo M, Zhang Y, Cheng K, Li Y, Qi C, Shen R, Wang H. CuCl 2·2H 2O/TBHP mediated synthesis of β-enaminones via coupling reaction of vinyl azides with aldehydes. Org Biomol Chem 2022; 20:1952-1957. [PMID: 35170603 DOI: 10.1039/d1ob02479e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile and efficient oxidative functionalization of vinyl azides with aldehydes furnishing a diverse array of β-acylated enaminones was developed. The cross coupling was accomplished in the presence of CuCl2·2H2O/TBHP and produced the desired β-acylated enaminones in a (Z)-stereo-selective and atom-economic manner, which make this protocol particularly attractive. In the transformation, the new C-C and C-N bonds were formed via a one-pot strategy including the process of radical addition and recombination.
Collapse
Affiliation(s)
- Yaohong Zhang
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China.
| | - Mengqiang Luo
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China. .,School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China
| | - Yichan Zhang
- Department of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, P. R. China
| | - Kai Cheng
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China.
| | - Yong Li
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China.
| | - Chenze Qi
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China.
| | - Runpu Shen
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China
| | - Hai Wang
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China.
| |
Collapse
|
12
|
Yao Z, Zhang X, Luo Z, Pan Y, Zhao H, Li B, Xu L, Shi Q, Fan Q. Na
2
S
2
O
8
‐Mediated Tandem One‐Pot Construction of 3,3‐Disubsituted 3,4‐Dihydroquinoxalin‐2(1
H
)‐ones with 4‐Alkyl‐1,4‐dihydropyridines as Alkyl Radical Sources. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhen Yao
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Xin Zhang
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Zhenli Luo
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Yixiao Pan
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Haoqiang Zhao
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Bohan Li
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Lijin Xu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Qian Shi
- College of Chemistry & Materials Engineering Wenzhou University Wenzhou 325035 P. R. China
| | - Qing‐Hua Fan
- Institute of Chemistry Chinese Academy of Sciences
- University of Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
13
|
Yu WQ, Fan JH, Chen P, Xiong B, Xie J, Tang K, Liu Y. Transition-Metal-Free Alkylation Strategy: A Facile Access of Alkylated Oxindoles via Alkyl Transfer. Org Biomol Chem 2022; 20:1958-1968. [DOI: 10.1039/d2ob00019a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient transition-metal-free alkylation/cyclization of activated alkenes using Hantzsch ester derivatives as effective alkyl reagents was described. A wide variety of valuable oxindoles were constructed in a single step with...
Collapse
|
14
|
Jiao MJ, Hu Q, Hu XQ, Xu PF. Visible-Light-Promoted Multistep Tandem Reaction of Vinyl Azides toward the Formation of 1-Tetralones. J Org Chem 2021; 86:17156-17163. [PMID: 34794309 DOI: 10.1021/acs.joc.1c02261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A visible-light-driven multistep tandem reaction between vinyl azides and alkyl bromides has been developed leading to the formation of tetralone skeletons under mild conditions, which can be easily scaled up to the gram scale. Various 1-tetralone derivatives are synthesized and transformed into desired products in good to high yields.
Collapse
Affiliation(s)
- Meng-Jie Jiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Qiang Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiu-Qin Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
15
|
Liu XJ, Zhou SY, Xiao Y, Sun Q, Lu X, Li Y, Li JH. Photocatalytic Decarboxylative [3 + 2] and [4 + 2] Annulation of Enynals and γ,σ-Unsaturated N-(Acyloxy)phthalimides by NaI/PPh 3 Catalysis. Org Lett 2021; 23:7839-7844. [PMID: 34581593 DOI: 10.1021/acs.orglett.1c02858] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A practical and eco-friendly strategy for the radical-mediated decarboxylative [3 + 2] and [4 + 2] annulation of enynals and γ,σ-unsaturated N-(acyloxy)phthalimides through the photoactivation of an electron donor-acceptor (EDA) complex has been developed. A wide range of primary, secondary, and tertiary alkyl N-hydroxyphthalimide (NHP) esters can be used as suitable substrates for the synthesis of fused ketones without any transition-metal catalysts or oxidants. This protocol features a broad substrate scope, excellent selectivity, and clean reaction conditions.
Collapse
Affiliation(s)
- Xiao-Jie Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutant Control and Resource Recycling, Nanchang Hangkong University, Nanchang 330063, China.,State Key Laboratory of Physical Chemistry of Solid Surface and Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sheng-Yun Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutant Control and Resource Recycling, Nanchang Hangkong University, Nanchang 330063, China.,State Key Laboratory of Physical Chemistry of Solid Surface and Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuting Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutant Control and Resource Recycling, Nanchang Hangkong University, Nanchang 330063, China.,State Key Laboratory of Physical Chemistry of Solid Surface and Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutant Control and Resource Recycling, Nanchang Hangkong University, Nanchang 330063, China.,State Key Laboratory of Physical Chemistry of Solid Surface and Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Lu
- Key Laboratory of Jiangxi Province for Persistent Pollutant Control and Resource Recycling, Nanchang Hangkong University, Nanchang 330063, China.,State Key Laboratory of Physical Chemistry of Solid Surface and Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutant Control and Resource Recycling, Nanchang Hangkong University, Nanchang 330063, China.,State Key Laboratory of Physical Chemistry of Solid Surface and Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutant Control and Resource Recycling, Nanchang Hangkong University, Nanchang 330063, China.,State Key Laboratory of Physical Chemistry of Solid Surface and Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
16
|
Mulina OM, Doronin MM, O. Terent'ev A. Mn(OAc)
3
‐Mediated Sulfonylation of Vinyl Azides Resulting in
N
‐Unsubstituted Enaminosulfones. ChemistrySelect 2021. [DOI: 10.1002/slct.202102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Olga M. Mulina
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Mikhail M. Doronin
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Alexander O. Terent'ev
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky Prospect 119991 Moscow Russian Federation
| |
Collapse
|
17
|
Qi Z, Zhang Z, Yang L, Zhang D, Lu J, Wei J, Wei S, Fu Q, Du X, Yi D. Nitrogen‐Radical‐Triggered Trifunctionalizing
ipso
‐Spirocyclization of Unactivated Alkenes with Vinyl Azides: A Modular Access to Spiroaminal Frameworks. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhongyu Qi
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou 646000 People's Republic of China
| | - Zhijie Zhang
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou 646000 People's Republic of China
| | - Li Yang
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou 646000 People's Republic of China
| | - Di Zhang
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou 646000 People's Republic of China
| | - Ji Lu
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou 646000 People's Republic of China
| | - Jun Wei
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou 646000 People's Republic of China
| | - Siping Wei
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou 646000 People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province Luzhou 646000 People's Republic of China
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Guangxi Normal University) Guilin 541004 People's Republic of China
| | - Qiang Fu
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou 646000 People's Republic of China
| | - Xi Du
- Department of Chemistry, School of Basic Medical Science Southwest Medical University Luzhou 646000 People's Republic of China
| | - Dong Yi
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou 646000 People's Republic of China
- Department of Pharmacy, Affiliated Hospital Southwest Medical University Luzhou 646000 People's Republic of China
| |
Collapse
|
18
|
Luo M, Ren X, Shen R, Qi C, Zhang Y, Wang H. K
2
S
2
O
8
‐Mediated Oxysulfonylation of Vinyl Azides with Sodium Sulfinates to Access β‐Keto Sulfones in Water. ChemistrySelect 2021. [DOI: 10.1002/slct.202100139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Mengqiang Luo
- School of Chemistry and Chemical Engineering Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing 312000 Zhejiang P. R. China
| | - Xiaorong Ren
- School of Chemistry and Chemical Engineering Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing 312000 Zhejiang P. R. China
| | - Runpu Shen
- School of Chemistry and Chemical Engineering Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing 312000 Zhejiang P. R. China
| | - Chenze Qi
- School of Chemistry and Chemical Engineering Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing 312000 Zhejiang P. R. China
| | - Yaohong Zhang
- School of Chemistry and Chemical Engineering Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing 312000 Zhejiang P. R. China
| | - Hai Wang
- School of life science Shaoxing University Shaoxing 312000 Zhejiang P. R. China
| |
Collapse
|