1
|
Maleki Sedgi F, Mohammad Hosseiniazar M, Alizadeh M. The effects of replacing ghee with rapeseed oil on liver steatosis and enzymes, lipid profile, insulin resistance and anthropometric measurements in patients with non-alcoholic fatty liver disease: a randomised controlled clinical trial. Br J Nutr 2024; 131:1985-1996. [PMID: 38501177 DOI: 10.1017/s0007114524000564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), which is a prevalent hepatic condition worldwide, is expected to develop into the leading reason for end-stage fatty liver in the forthcoming decades. Incorporating rapeseed oil into a balanced diet may be beneficial in improving NAFLD. The goal of this trial was to evaluate the impact of substituting ghee with rapeseed oil on primary outcomes such as fatty liver and liver enzymes, as well as on secondary outcomes including glycaemic variables, lipid profile and anthropometric measurements in individuals with NAFLD. Over 12 weeks, 110 patients (seventy men and forty women; BMI (mean) 28·2 (sd 1·6 kg/m2); mean age 42 (sd 9·6) years), who daily consumed ghee, were assigned to the intervention or control group through random allocation. The intervention group was advised to substitute ghee with rapeseed oil in the same amount. The control group continued the consumption of ghee and was instructed to adhere to a healthy diet. Results showed a significant reduction in the steatosis in the intervention group in comparison with the control group (P < 0·001). However, a significant change in the levels of alanine aminotransferase (–14·4 μg/l), γ-glutamyl transferase (–1·8 μg/l), TAG (–39·7 mg/dl), total cholesterol (–17·2 mg/dl), LDL (–7·5 mg/dl), fasting blood glucose (–7·5 mg/dl), insulin (–3·05 mU/l), Homeostatic Model Assessment for Insulin Resistance (–0·9), Quantitative Insulin-Sensitivity Check Index (+0·01), weight (–4·3 kg), BMI (–0·04 kg/m2), waist (–5·6 cm) and waist:height ratio (–0·04) was seen in the intervention group. The consumption of rapeseed oil instead of ghee caused improvements in liver steatosis and enzymes, glycaemic variables and anthropometric measurements among individuals with NAFLD.
Collapse
Affiliation(s)
- Fatemeh Maleki Sedgi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Nutrition, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Mohammad Alizadeh
- Department of Nutrition, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Food and Beverages Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
2
|
Axentii M, Codină GG. Exploring the Nutritional Potential and Functionality of Hemp and Rapeseed Proteins: A Review on Unveiling Anti-Nutritional Factors, Bioactive Compounds, and Functional Attributes. PLANTS (BASEL, SWITZERLAND) 2024; 13:1195. [PMID: 38732410 PMCID: PMC11085551 DOI: 10.3390/plants13091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Plant-based proteins, like those derived from hemp and rapeseed can contribute significantly to a balanced diet and meet human daily nutritional requirements by providing essential nutrients such as protein, fiber, vitamins, minerals, and antioxidants. According to numerous recent research papers, the consumption of plant-based proteins has been associated with numerous health benefits, including a reduced risk of chronic diseases such as heart disease, diabetes, and certain cancers. Plant-based diets are often lower in saturated fat and cholesterol and higher in fiber and phytonutrients, which can support overall health and well-being. Present research investigates the nutritional attributes, functional properties, and potential food applications of hemp and rapeseed protein for a potential use in new food-product development, with a certain focus on identifying anti-nutritional factors and bioactive compounds. Through comprehensive analysis, anti-nutritional factors and bioactive compounds were elucidated, shedding light on their impact on protein quality and digestibility. The study also delves into the functional properties of hemp and rapeseed protein, unveiling their versatility in various food applications. Insights from this research contribute to a deeper understanding of the nutritional value and functional potential of hemp and rapeseed protein, paving the way for their further utilization in innovative food products with enhanced nutritional value and notable health benefits.
Collapse
|
3
|
Chu S, Shen F, Liu W, Zhang J, Wang X, Jiang M, Bai G. Sinapine targeting PLCβ3 EF hands disrupts Gαq-PLCβ3 interaction and ameliorates cardiovascular diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155200. [PMID: 38387273 DOI: 10.1016/j.phymed.2023.155200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND The renin-angiotensin-aldosterone system (RAAS) over-activation is highly involved in cardiovascular diseases (CVDs), with the Gαq-PLCβ3 axis acting as a core node of RAAS. PLCβ3 is a potential target of CVDs, and the lack of inhibitors has limited its drug development. PURPOSE Sinapine (SP) is a potential leading compound for treating CVDs. Thus, we aimed to elucidate the regulation of SP towards the Gαq-PLCβ3 axis and its molecular mechanism. STUDY DESIGN Aldosteronism and hypertension animal models were employed to investigate SP's inhibitory effect on the abnormal activation of the RAAS through the Gαq-PLCβ3 axis. We used chemical biology methods to identify potential targets and elucidate the underlying molecular mechanisms. METHODS The effects of SP on aldosteronism and hypertension were evaluated using an established animal model in our laboratory. Target identification and underlying molecular mechanism research were performed using activity-based protein profiling with a bio-orthogonal click chemistry reaction and other biochemical methods. RESULTS SP alleviated aldosteronism and hypertension in animal models by targeting PLCβ3. The underlying mechanism for blocking the Gαq-PLCβ3 interaction involves targeting the EF hands through the Asn-260 amino acid residue. SP regulated the Gαq-PLCβ3 axis more precisely than the Gαq-GEFT or Gαq-PKCζ axis in the cardiovascular system. CONCLUSION SP alleviated RAAS over-activation via Gαq-PLCβ3 interaction blockade by targeting the PLCβ3 EF hands domain, which provided a novel PLC inhibitor for treating CVDs. Unlike selective Gαq inhibitors, SP reduced the risk of side effects compared to Gαq inhibitors in treating CVDs.
Collapse
Affiliation(s)
- Simeng Chu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Fukui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Wenjuan Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Jin Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Xiaoying Wang
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China.
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
| |
Collapse
|
4
|
Wang Q, Wang X. The Effects of a Low Linoleic Acid/α-Linolenic Acid Ratio on Lipid Metabolism and Endogenous Fatty Acid Distribution in Obese Mice. Int J Mol Sci 2023; 24:12117. [PMID: 37569494 PMCID: PMC10419107 DOI: 10.3390/ijms241512117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
A reduced risk of obesity and metabolic syndrome has been observed in individuals with a low intake ratio of linoleic acid/α-linolenic acid (LA/ALA). However, the influence of a low ratio of LA/ALA intake on lipid metabolism and endogenous fatty acid distribution in obese patients remains elusive. In this investigation, 8-week-old C57BL/6J mice were randomly assigned to four groups: low-fat diet (LFD) as a control, high-fat diet (HFD), high-fat diet with a low LA/ALA ratio (HFD+H3L6), and high-fat diet with a high LA/ALA ratio (HFD+L3H6) for 16 weeks. Our results show that the HFD+H3L6 diet significantly decreased the liver index of HFD mice by 3.51%, as well as the levels of triacylglycerols (TGs) and low-density lipoprotein cholesterol (LDL-C) by 15.67% and 10.02%, respectively. Moreover, the HFD+H3L6 diet reduced the pro-inflammatory cytokines interleukin-6 (IL-6) level and aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio and elevated the level of superoxide dismutase (SOD) in the liver. The HFD+H3L6 diet also resulted in the downregulation of fatty acid synthetase (FAS) and sterol regulatory element binding proteins-1c (SREBP-1c) expression and the upregulation of peroxisome proliferator-activated receptor-α (PPAR-α) and acyl-CoA oxidase 1 (ACOX1) gene expression in the liver. The low LA/ALA ratio diet led to a notable increase in the levels of ALA and its downstream derivative docosahexaenoic acid (DHA) in the erythrocyte, liver, perienteric fat, epididymal fat, perirenal fat, spleen, brain, heart, and gastrocnemius, with a strong positive correlation. Conversely, the accumulation of LA in abdominal fat was more prominent, and a high LA/ALA ratio diet exacerbated the deposition effect of LA. In conclusion, the low LA/ALA ratio not only regulated endogenous fatty acid levels but also upregulated PPAR-α and ACOX1 and downregulated SREBP-1c and FAS gene expression levels, thus maintaining lipid homeostasis. Optimizing dietary fat intake is important in studying lipid nutrition. These research findings emphasize the significance of understanding and optimizing dietary fat intake.
Collapse
Affiliation(s)
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Li Y, Xu YJ, Tan CP, Liu Y. Sinapine improves LPS-induced oxidative stress in hepatocytes by down-regulating MCJ protein expression. Life Sci 2022; 306:120828. [PMID: 35872005 DOI: 10.1016/j.lfs.2022.120828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/09/2022] [Accepted: 07/17/2022] [Indexed: 11/25/2022]
Abstract
Oxidative stress is an important part of the development of NAFLD, and hepatic injury can be prevented by inhibiting oxidative stress. In this study, we investigated the potential role of sinapine in protecting the liver. LPS was selected to establish the oxidative stress model of THLE-2 cells, and the treatment concentrations of LPS (5 μg/mL) and sinapine (5 μM, 20 μM, and 80 μM) were determined by toxicity experiments. The MDA of the sinapine (80 μM) pretreatment group was 1.09 ± 0.13 nmol/mg prot which was reduced by 27.67 % compared with the LPS group. Furthermore, SOD and GSH-Px levels were significantly increased by 40.61 % and 49.60 %, respectively. And the ROS levels of 20 and 80 μM sinapine were reduced by 31.47 % and 40.31 %, respectively (p < 0.01) compared with the model group. The mitochondrial membrane potential had similar results. It was also found that sinapine can significantly down-regulate the level of MCJ protein (p < 0.01), which is related to oxidative stress. Our results indicate that sinapine can maintain liver health by down-regulating the expression of MCJ protein to inhibit oxidative stress, which provides a theoretical basis for the use of sinapine as an inhibitor of MCJ.
Collapse
Affiliation(s)
- Youdong Li
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China; College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, People's Republic of China
| | - Yong-Jiang Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China; State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China; State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Liput KP, Lepczyński A, Nawrocka A, Poławska E, Ogłuszka M, Jończy A, Grzybek W, Liput M, Szostak A, Urbański P, Roszczyk A, Pareek CS, Pierzchała M. Effects of Three-Month Administration of High-Saturated Fat Diet and High-Polyunsaturated Fat Diets with Different Linoleic Acid (LA, C18:2n-6) to α-Linolenic Acid (ALA, C18:3n-3) Ratio on the Mouse Liver Proteome. Nutrients 2021; 13:1678. [PMID: 34063343 PMCID: PMC8156955 DOI: 10.3390/nu13051678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
The aim of the study was to evaluate the effect of different types of high-fat diets (HFDs) on the proteomic profile of mouse liver. The analysis included four dietary groups of mice fed a standard diet (STD group), a high-fat diet rich in SFAs (SFA group), and high-fat diets dominated by PUFAs with linoleic acid (LA, C18:2n-6) to α-linolenic acid (ALA, C18:3n-3) ratios of 14:1 (14:1 group) and 5:1 (5:1 group). After three months of diets, liver proteins were resolved by two-dimensional gel electrophoresis (2DE) using 17 cm non-linear 3-10 pH gradient strips. Protein spots with different expression were identified by MALDI-TOF/TOF. The expression of 13 liver proteins was changed in the SFA group compared to the STD group (↓: ALB, APOA1, IVD, MAT1A, OAT and PHB; ↑: ALDH1L1, UniProtKB-Q91V76, GALK1, GPD1, HMGCS2, KHK and TKFC). Eleven proteins with altered expression were recorded in the 14:1 group compared to the SFA group (↓: ARG1, FTL1, GPD1, HGD, HMGCS2 and MAT1A; ↑: APOA1, CA3, GLO1, HDHD3 and IVD). The expression of 11 proteins was altered in the 5:1 group compared to the SFA group (↓: ATP5F1B, FTL1, GALK1, HGD, HSPA9, HSPD1, PC and TKFC; ↑: ACAT2, CA3 and GSTP1). High-PUFA diets significantly affected the expression of proteins involved in, e.g., carbohydrate metabolism, and had varying effects on plasma total cholesterol and glucose levels. The outcomes of this study revealed crucial liver proteins affected by different high-fat diets.
Collapse
Affiliation(s)
- Kamila P. Liput
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Adam Lepczyński
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, K. Janickiego 32 Str., 71-270 Szczecin, Poland;
| | - Agata Nawrocka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Ewa Poławska
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Magdalena Ogłuszka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Aneta Jończy
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Weronika Grzybek
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Michał Liput
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute of the Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Agnieszka Szostak
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Paweł Urbański
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Agnieszka Roszczyk
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Chandra S. Pareek
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland;
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Mariusz Pierzchała
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| |
Collapse
|
7
|
Costa LR, de Castro CA, Marine DA, Fabrizzi F, Furino VDO, Malavazi I, Anibal FDF, Duarte ACGDO. High-Intensity Interval Training Does Not Change Vaspin and Omentin and Does Not Reduce Visceral Adipose Tissue in Obese Rats. Front Physiol 2021; 12:564862. [PMID: 33716759 PMCID: PMC7952996 DOI: 10.3389/fphys.2021.564862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/27/2021] [Indexed: 12/23/2022] Open
Abstract
This study aimed to determine the expression of omentin and vaspin, inflammatory markers, body composition, and lipid profile in diet-induced obese rats and high-intensity interval training (HIIT). Forty Wistar rats were divided into four groups: untrained normal diet, trained normal diet (T-ND), untrained high-fat diet (Unt-HFD), and trained high-fat diet (T-HFD). For the animals of the Unt-HFD and T-HFD groups, a high-fat diet was offered for 4 weeks. After that, all the animals in the T-ND and T-HFD groups were submitted to HITT, three times per week, for 10 weeks (2 weeks of adaptation and 8 weeks of HIIT). Muscle (gastrocnemius), liver, epididymal adipose tissue, retroperitoneal adipose tissue, visceral adipose tissue (VAT), and serum were collected to analyze TNF-α, IL-6, PCR, IL-8, IL-10, IL-4, vaspin, and omentin. A body composition analysis was performed before adaptation to HIIT protocol and after the last exercise session using dual-energy X-ray absorptiometry. Omentin and vaspin in the VAT were quantified using Western blotting. The results showed that, when fed a high-fat diet, the animals obtained significant gains in body fat and elevated serum concentrations of vaspin and blood triglycerides. The HIIT was able to minimize body fat gain but did not reduce visceral fat despite the increase in maximum exercise capacity. Moreover, there was a reduction in the serum levels of adiponectin, IL-6, and IL-10. Finally, we concluded that, although the training protocol was able to slow down the weight gain of the animals, there was no reduction in visceral fat or an improvement in the inflammatory profile, including no changes in omentin and vaspin.
Collapse
Affiliation(s)
- Leandro Ribeiro Costa
- Department of Physical Education and Human Motricity – DEFMH, Biological and Health Sciences Center – CCBS, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Cynthia Aparecida de Castro
- Department of Morphology and Pathology – Biological and Health Sciences Center – CCBS, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Diego Adorna Marine
- Department of Physical Education and Human Motricity – DEFMH, Biological and Health Sciences Center – CCBS, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Fernando Fabrizzi
- Faculty of Philosophy, Sciences and Letters of Penápolis-Brazil, Penápolis, Brazil
| | - Vanessa de Oliveira Furino
- Department of Physical Education and Human Motricity – DEFMH, Biological and Health Sciences Center – CCBS, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Iran Malavazi
- Department of Genetics and Evolution – Biological and Health Sciences Center – CCBS, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Fernanda de Freitas Anibal
- Department of Morphology and Pathology – Biological and Health Sciences Center – CCBS, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| | - Ana Cláudia Garcia de Oliveira Duarte
- Department of Physical Education and Human Motricity – DEFMH, Biological and Health Sciences Center – CCBS, Federal University of São Carlos – UFSCar, São Carlos, Brazil
| |
Collapse
|