1
|
Hoang Huy VP, Nguyen TMH, Bark CW. Recent Advances of Doped SnO 2 as Electron Transport Layer for High-Performance Perovskite Solar Cells. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6170. [PMID: 37763449 PMCID: PMC10532999 DOI: 10.3390/ma16186170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Perovskite solar cells (PSCs) have garnered considerable attention over the past decade owing to their low cost and proven high power conversion efficiency of over 25%. In the planar heterojunction PSC structure, tin oxide was utilized as a substitute material for the TiO2 electron transport layer (ETL) owing to its similar physical properties and high mobility, which is suitable for electron mining. Nevertheless, the defects and morphology significantly changed the performance of SnO2 according to the different deposition techniques, resulting in the poor performance of PSCs. In this review, we provide a comprehensive insight into the factors that specifically influence the ETL in PSC. The properties of the SnO2 materials are briefly introduced. In particular, the general operating principles, as well as the suitability level of doping in SnO2, are elucidated along with the details of the obtained results. Subsequently, the potential for doping is evaluated from the obtained results to achieve better results in PSCs. This review aims to provide a systematic and comprehensive understanding of the effects of different types of doping on the performance of ETL SnO2 and potentially instigate further development of PSCs with an extension to SnO2-based PSCs.
Collapse
Affiliation(s)
| | | | - Chung Wung Bark
- Department of Electrical Engineering, Gachon University, Seongnam 13120, Gyeonggi, Republic of Korea; (V.P.H.H.); (T.M.H.N.)
| |
Collapse
|
2
|
Chen J, Lv J, Liu X, Lin J, Chen X. A study on theoretical models for investigating time-resolved photoluminescence in halide perovskites. Phys Chem Chem Phys 2023; 25:7574-7588. [PMID: 36883300 DOI: 10.1039/d2cp05723a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Time-resolved photoluminescence (TRPL) is an effective experimental technique to study charge carrier dynamic processes in halide perovskites on different time scales. In the past decade, several models have been proposed and employed to study the TRPL curves in halide perovskites, but there is still a lack of systematic summarization and comparative discussion. Here, we reviewed the widely employed exponential models to fit the TRPL curves, and focused on the physical meaning of the extracted carrier lifetimes, as well as the existing debates on the definition of the average lifetime. Emphasis was placed on the importance of the diffusion process in the carrier dynamics, especially for the halide perovskite thin films having transport layers. The solving of the diffusion equation, using both analytical and numerical methods, was then introduced to fit the TRPL curves. Furthermore, the newly proposed global fit and direct measurement of radiative decay rates were discussed.
Collapse
Affiliation(s)
- Jing Chen
- Department of Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Jing Lv
- Department of Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Xiaolin Liu
- Department of Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Jia Lin
- Department of Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Xianfeng Chen
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of Light Manipulation and Applications, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
3
|
Liu D, Zhang W, Ren Z, Li X. Yb-doped SnO 2 electron transfer layer assisting the fabrication of high-efficiency and stable perovskite solar cells in air. RSC Adv 2022; 12:14631-14638. [PMID: 35702204 PMCID: PMC9108972 DOI: 10.1039/d2ra01297a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/22/2022] [Indexed: 11/23/2022] Open
Abstract
To date, most preparation processes of polycrystalline perovskite films still have to be performed in a glovebox filled with inert gas, limiting the application due to their high cost and complexity. In this work, we exploit a facile processing technique for the preparation of perovskite solar cells (PSCs) under ambient conditions by the Yb3+ doping effect for SnO2 electron transfer layer. This remarkable and facile interface doping strategy promotes all-air processed planar PSCs, giving enhanced power conversion efficiency (PCE) from 15.69% to 17.31% with a decreasing hysteresis effect. Moreover, the heating and illumination stability of modified devices by virtue of defect suppression located at electron transfer layer (ETL)/perovskite interface has been effectively improved, retaining over 85% of its initial PCE after 7 h heating at 100 °C in ambient condition and 85% of its initial PCE under 7 h continuous light illumination without any encapsulation. Therefore, it is believed that this Yb-doping strategy for SnO2 ETL can provide a novel way of promoting the efficiency and stability of devices prepared in the air.
Collapse
Affiliation(s)
- Dixin Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology 150001 Harbin China
| | - Wenyuan Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology 150001 Harbin China
| | - Ziqiu Ren
- Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450052 P. R. China
| | - Xin Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology 150001 Harbin China
| |
Collapse
|
4
|
Tin Oxide Modified Titanium Dioxide as Electron Transport Layer in Formamidinium-Rich Perovskite Solar Cells. ENERGIES 2021. [DOI: 10.3390/en14237870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The design of electron transport layers (ETLs) with good optoelectronic properties is one of the keys to the improvement of the power conversion efficiencies (PCEs) and stability of perovskite solar cells (PSCs). Titanium dioxide (TiO2), one of the most widely used ETL in PSCs, is characterized by low electrical conductivity that increases the series resistance of PSCs, thus limiting their PCEs. In this work, we incorporated tin oxide (SnO2) into titanium dioxide (TiO2) and studied the evolution of its microstructural and optoelectronic properties with SnO2 loading. The thin films were then integrated as ETLs in a regular planar Formamidinium (FA)-rich mixed lead halide PSCs so as to assess the overall effect of SnO2 incorporation on their charge transport and Photovoltaic (PV) characteristics. Analysis of the fabricated PSCs devices revealed that the best performing devices; based on the ETL modified with 0.2 proportion of SnO2; had an average PCE of 17.35 ± 1.39%, which was about 7.16% higher than those with pristine TiO2 as ETL. The improvement in the PCE of the PSC devices with 0.2 SnO2 content in the ETL was attributed to the improved electron extraction and transport ability as revealed by the Time Resolved Photoluminescence (TRPL) and Electrochemical Impedance Spectroscopy (EIS) studies.
Collapse
|
5
|
Recent progress in electron transport bilayer for efficient and low-cost perovskite solar cells: a review. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-05064-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Guo Y, Yuan S, Zhu D, Yu M, Wang HY, Lin J, Wang Y, Qin Y, Zhang JP, Ai XC. Influence of the MACl additive on grain boundaries, trap-state properties, and charge dynamics in perovskite solar cells. Phys Chem Chem Phys 2021; 23:6162-6170. [PMID: 33687033 DOI: 10.1039/d0cp06575g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Grain boundary trap passivation in perovskite films has become one of the most effective strategies for suppressing the charge recombination and enhancing the photovoltaic performance of perovskite solar cells, whereas the relevant trap-state properties and the charge carrier dynamics need to be further clarified. In this work, the CH3NH3Cl (MACl) additive is introduced into the MAI:PbI2 precursor solution to obtain perovskite films comprising various grain sizes with distinct grain boundaries and trap-state properties. The influence of grain boundary traps passivated with the MACl additive on trap-state properties and charge carrier transport/recombination dynamics is systematically studied with time-resolved spectroscopic and transient photoelectric characterization. Specifically, the MACl amount determines the content of the PbI2 residual in the final perovskite, leading to photoluminescence quenching induced by charge transfer. The trap-state distribution result reveals that the deep-level traps at the grain boundaries as the main sources of charge recombination centers are dramatically passivated. Low-temperature photoluminescence spectroscopy distinguishes and compares the trap-state emission related to different perovskite phases. Transient photoelectric measurements including photovoltage decay and charge extraction further demonstrate that the boundary trap passivation can effectively promote charge transport and inhibit charge recombination in devices treated with the optimized MACl amount. As a result, the corresponding device possesses superior photovoltaic parameters to the control device. This work proposes a systematic understanding of the grain boundary trap passivation strategy and provides a new insight into the development of high-performance perovskite solar cells.
Collapse
Affiliation(s)
- Yanru Guo
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Shuai Yuan
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Dongping Zhu
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Man Yu
- School of Materials Engineering, Xi'an Aeronautical University, Xi'an 710077, China
| | - Hao-Yi Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Jun Lin
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Yi Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Yujun Qin
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Jian-Ping Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Xi-Cheng Ai
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| |
Collapse
|