1
|
Singh P, Akhtar A, Admane N, Grover A. The antiviral drug Ribavirin effectively modulates the amyloid transformation of α-Synuclein protein. Comput Biol Chem 2024; 112:108155. [PMID: 39084146 DOI: 10.1016/j.compbiolchem.2024.108155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
α-Synuclein (α-syn) is an intrinsically disordered protein, linked genetically and neuropathologically to Parkinson's disease where this protein aggregates within the brain. Hence, identifying compounds capable of impeding α-syn aggregation puts forward a promising approach for the development of disease-modifying therapies. Herein, we investigated the efficacy of Ribavirin, an FDA-approved compound, in curtailing α-syn amyloid transformation, employing an array of bioinformatic tools and systematic analysis using biophysical techniques. Ribavirin shows a dose dependent anti-aggregation propensity where it effectively subdued the formation of mature fibrillar aggregates of α-syn, where even at the lowest concentration there was a 69 % reduction in the ThT maxima. Ribavirin averts the formation of mature fibrillar aggregates by interacting with the NAC domain of α-syn. Ribavirin redirects the amyloid transformation of α-syn by emanating aggregates of lower order with reduced cross β-sheet signature and revokes the formation of on-pathway amyloids. Collectively, our study puts forward the novel potency of Ribavirin as a promising molecule for therapeutic intervention in Parkinson's disease.
Collapse
Affiliation(s)
- Payal Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Almas Akhtar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nikita Admane
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
2
|
Nabi F, Ahmad O, Khan A, Hassan MN, Hisamuddin M, Malik S, Chaari A, Khan RH. Natural compound plumbagin based inhibition of hIAPP revealed by Markov state models based on MD data along with experimental validations. Proteins 2024; 92:1070-1084. [PMID: 38497314 DOI: 10.1002/prot.26682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024]
Abstract
Human islet amyloid polypeptide (amylin or hIAPP) is a 37 residue hormone co-secreted with insulin from β cells of the pancreas. In patients suffering from type-2 diabetes, amylin self-assembles into amyloid fibrils, ultimately leading to the death of the pancreatic cells. However, a research gap exists in preventing and treating such amyloidosis. Plumbagin, a natural compound, has previously been demonstrated to have inhibitory potential against insulin amyloidosis. Our investigation unveils collapsible regions within hIAPP that, upon collapse, facilitates hydrophobic and pi-pi interactions, ultimately leading to aggregation. Intriguingly plumbagin exhibits the ability to bind these specific collapsible regions, thereby impeding the aforementioned interactions that would otherwise drive hIAPP aggregation. We have used atomistic molecular dynamics approach to determine secondary structural changes. MSM shows metastable states forming native like hIAPP structure in presence of PGN. Our in silico results concur with in vitro results. The ThT assay revealed a striking 50% decrease in fluorescence intensity at a 1:1 ratio of hIAPP to Plumbagin. This finding suggests a significant inhibition of amyloid fibril formation by plumbagin, as ThT fluorescence directly correlates with the presence of these fibrils. Further TEM images revealed disappearance of hIAPP fibrils in plumbagin pre-treated hIAPP samples. Also, we have shown that plumbagin disrupts the intermolecular hydrogen bonding in hIAPP fibrils leading to an increase in the average beta strand spacing, thereby causing disaggregation of pre-formed fibrils demonstrating overall disruption of the aggregation machinery of hIAPP. Our work is the first to report a detailed atomistic simulation of 22 μs for hIAPP. Overall, our studies put plumbagin as a potential candidate for both preventive and therapeutic candidate for hIAPP amyloidosis.
Collapse
Affiliation(s)
- Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Owais Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Adeeba Khan
- Zakir Hussain College of Engineering and Technology, Aligarh Muslim University, Aligarh, India
| | - Md Nadir Hassan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Malik Hisamuddin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Ali Chaari
- Premedical Division, Weill Cornell Medicine Qatar, Qatar Foundation, Doha, Qatar
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
3
|
Arar S, Haque MA, Bhatt N, Zhao Y, Kayed R. Effect of Natural Osmolytes on Recombinant Tau Monomer: Propensity of Oligomerization and Aggregation. ACS Chem Neurosci 2024; 15:1366-1377. [PMID: 38503425 PMCID: PMC10995947 DOI: 10.1021/acschemneuro.3c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
The pathological misfolding and aggregation of the microtubule associated protein tau (MAPT), a full length Tau2N4R with 441aa, is considered the principal disease relevant constituent in tauopathies including Alzheimer's disease (AD) with an imbalanced ratio in 3R/4R isoforms. The exact cellular fluid composition, properties, and changes that coincide with tau misfolding, seed formation, and propagation events remain obscure. The proteostasis network, along with the associated osmolytes, is responsible for maintaining the presence of tau in its native structure or dealing with misfolding. In this study, for the first time, the roles of natural brain osmolytes are being investigated for their potential effects on regulating the conformational stability of the tau monomer (tauM) and its propensity to aggregate or disaggregate. Herein, the effects of physiological osmolytes myo-inositol, taurine, trimethyl amine oxide (TMAO), betaine, sorbitol, glycerophosphocholine (GPC), and citrulline on tau's aggregation state were investigated. The overall results indicate the ability of sorbitol and GPC to maintain the monomeric form and prevent aggregation of tau, whereas myo-inositol, taurine, TMAO, betaine, and citrulline promote tau aggregation to different degrees, as revealed by protein morphology in atomic force microscopy images. Biochemical and biophysical methods also revealed that tau proteins adopt different conformations under the influence of these osmolytes. TauM in the presence of all osmolytes expressed no toxicity when tested by a lactate dehydrogenase assay. Investigating the conformational stability of tau in the presence of osmolytes may provide a better understanding of the complex nature of tau aggregation in AD and the protective and/or chaotropic nature of osmolytes.
Collapse
Affiliation(s)
- Sharif Arar
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department
of Chemistry, School of Science, The University
of Jordan, Amman 11942, Jordan
| | - Md Anzarul Haque
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Nemil Bhatt
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Yingxin Zhao
- Department
of Internal Medicine, University of Texas
Medical Branch, Galveston, Texas 77555, United States
- Institute
for Translational Sciences, University of
Texas Medical Branch, Galveston, Texas 77555, United States
| | - Rakez Kayed
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
4
|
Sharma H, Dar TA, Wijayasinghe YS, Sahoo D, Poddar NK. Nano-Osmolyte Conjugation: Tailoring the Osmolyte-Protein Interactions at the Nanoscale. ACS OMEGA 2023; 8:47367-47379. [PMID: 38144115 PMCID: PMC10733987 DOI: 10.1021/acsomega.3c07248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/26/2023]
Abstract
Osmolytes are small organic compounds accumulated at higher concentrations in the cell under various stress conditions like high temperature, high salt, high pressure, etc. Osmolytes mainly include four major classes of compounds including sugars, polyols, methylamines, and amino acids and their derivatives. In addition to their ability to maintain protein stability and folding, these osmolytes, also termed as chemical chaperones, can prevent protein misfolding and aggregation. Although being efficient protein folders and stabilizers, these osmolytes exhibit certain unavoidable limitations such as nearly molar concentrations of osmolytes being required for their effect, which is quite difficult to achieve inside a cell or in the extracellular matrix due to nonspecificity and limited permeability of the blood-brain barrier system and reduced bioavailability. These limitations can be overcome to a certain extent by using smart delivery platforms for the targeted delivery of osmolytes to the site of action. In this context, osmolyte-functionalized nanoparticles, termed nano-osmolytes, enhance the protein stabilization and chaperone efficiency of osmolytes up to 105 times in certain cases. For example, sugars, polyols, and amino acid functionalized based nano-osmolytes have shown tremendous potential in preventing protein aggregation. The enhanced potential of nano-osmolytes can be attributed to their high specificity at low concentrations, high tunability, amphiphilicity, multivalent complex formation, and efficient drug delivery system. Keeping in view the promising potential of nano-osmolytes conjugation in tailoring the osmolyte-protein interactions, as compared to their molecular forms, the present review summarizes the recent advancements of the nano-osmolytes that enhance the protein stability/folding efficiency and ability to act as artificial chaperones with increased potential to prevent protein misfolding disorders. Some of the potential nano-osmolyte aggregation inhibitors have been highlighted for large-scale screening with future applications in aggregation disorders. The synthesis of nano-osmolytes by numerous approaches and future perspectives are also highlighted.
Collapse
Affiliation(s)
- Hemlata Sharma
- Department
of Biosciences, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi
Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan 303007, India
| | - Tanveer Ali Dar
- Department
of Clinical Biochemistry, University of
Kashmir, Srinagar 190006, Jammu and Kashmir India
| | | | - Dibakar Sahoo
- School
of Physics, Sambalpur University, Jyoti Vihar, Burla 768019, Odisha, India
| | - Nitesh Kumar Poddar
- Department
of Biosciences, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi
Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan 303007, India
| |
Collapse
|
5
|
Khan A, Nayeem SM. Stability of the Aβ42 Peptide in Mixed Solutions of Denaturants and Proline. J Phys Chem B 2023; 127:1572-1585. [PMID: 36786778 DOI: 10.1021/acs.jpcb.2c08505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Amyloid β-peptide (Aβ) is responsible for the neuronal damage and death of a patient with Alzheimer's disease (AD). Aβ42 oligomeric forms are dominant neurotoxins and are related to neurodegeneration. Their different forms are related to various pathological conditions in the brain. We investigated Aβ42 peptides in different environments of proline, urea, and GdmCl solutions (in pure and mixed binary forms) through atomistic molecular dynamics simulations. Preferential exclusion from the protein surface and facile formation of a large number of weak molecular interactions are the driving forces for the osmolyte's action. We have focused on these interactions between peptide monomers and pure/mixed osmolytes and denaturants. Urea, as usual, denatures the peptide strongly compared to the GdmCl by accumulation around the peptide. GdmCl shows lesser build-up around protein in contrast to urea but is involved in destabilizing the salt bridge formation of Asp23 and Lys28. Proline as an osmolyte protects the peptide from aggregation when mixed with urea and GdmCl solutions. In mixed solutions of two denaturants and osmolyte plus denaturant, the peptide shows enhanced stability as compared to pure denaturant urea solution. The enhanced stability of peptides in proline may be attributed to its exclusion from the peptide surface and favoring salt bridge formation.
Collapse
Affiliation(s)
- Ashma Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Shahid M Nayeem
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India
| |
Collapse
|
6
|
Chatterjee S, Salimi A, Lee JY. Unraveling the Histidine Tautomerism Effect on the Initial Stages of Prion Misfolding: New Insights from a Computational Perspective. ACS Chem Neurosci 2021; 12:3203-3213. [PMID: 34382391 DOI: 10.1021/acschemneuro.1c00376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The aggregation and structural conversion of normal prion peptide (PrPC) into the pathogenic scrapie form (PrPSc), which can act as a seed to enhance prion amyloid fiber formation, is believed to be a crucial event in prionopathies. Previous research suggests that the prion monomer may play an important role in oligomer generation during disease pathogenesis. In the present study, extensive replica-exchange molecular dynamics (REMD) simulations were conducted to explore the conformational characteristics of the huPrP (125-160) monomer under the histidine tautomerism effect. Investigating the structural characteristics and fibrilization process is challenging because two histidine tautomers [Nε2-H (ε) and Nδ1-H (δ)] can occur in the open neutral state. Molecular dynamics (MD) simulation outcomes have shown that the toxic εδ and δδ isomer (containing several and broader local minima) had the highest α-helix structures, with contents of 21.11% and 21.01%, respectively, and may have a strong influence on the organizational behavior of a monomeric prion. The amino acids aspartate 20 (D20)-asparagine 29 (N29) and isoleucine 15 (I15)-histidine 16 (H16), D20-arginine 27 (R27) as well as N29 formed α-helix with the highest probabilities in the δδ and εδ isomer, accordingly. On the basis of our findings, we propose the histidine tautomerization hypothesis as a new prion accumulation mechanism, which may exist to induce the formation of prion accumulates. Overall, our tautomerism hypothesis constitutes a promising perspective for enhancing understanding of prion disease pathobiology and may help in the design of a good inhibitor.
Collapse
Affiliation(s)
| | - Abbas Salimi
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
7
|
Trimethylamine N-oxide alters structure-function integrity of β-casein: Structural disorder co-regulates the aggregation propensity and chaperone activity. Int J Biol Macromol 2021; 182:921-930. [PMID: 33872615 DOI: 10.1016/j.ijbiomac.2021.04.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 11/23/2022]
Abstract
Intrinsically disordered proteins (IDPs), involved in the regulation and function of various cellular processes like transcription, translation, cell cycle etc., exist as ensembles of rapidly interconverting structures with functional plasticity. Among numerous cellular regulatory mechanisms involved in structural and functional regulation of IDPs, osmolytes are emerging as promising regulatory agents due to their ability to affect the structure-function integrity of IDPs. The present study investigated the effect of methylamine osmolytes on β-casein, an IDP essential for maintaining the overall stability of casein complex in milk. It was observed that trimethylamine N-oxide induces a compact structural state in β-casein with slightly decreased chaperone activity and insignificant aggregation propensity. However, the other two osmolytes from this group, i.e., sarcosine and betaine, had no significant effect on the overall structure and chaperone activity of the IDP. The present study hints towards the possible evolutionary selection of higher structural disorder in β-casein, compared to α-casein, for stability of the casein complex and prevention of amyloidosis in the mammary gland.
Collapse
|
8
|
Kumari A, Shrivastava N, Mishra M, Somvanshi P, Grover A. Inhibitory mechanism of an antifungal drug, caspofungin against amyloid β peptide aggregation: Repurposing via neuroinformatics and an experimental approach. Mol Cell Neurosci 2021; 112:103612. [PMID: 33722677 DOI: 10.1016/j.mcn.2021.103612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/01/2022] Open
Abstract
The multifactorial neurological condition called Alzheimer's disease (AD) primarily affects elderly individuals. Despite the calamitous consequences of AD, curative strategies for a regimen to apply remain inadequate as several factors contribute to AD etiology. Drug repurposing is an advance strategy prior to drug discovery as various effective drugs perform through alteration of multiple targets, and the present "poly-pharmacology" can be a curative approach to complex disorders. AD's multifactorial behavior actively encourages the hypothesis for a drug design approach focused on drug repurposing. In this study, we discovered that an antifungal drug, Caspofungin (CAS) is a potent Aβ aggregation inhibitor that displays significantly reduced toxicity associated with AD. Drug reprofiling and REMD simulations demonstrated that CAS interacts with the β-sheet section, known as Aβ amyloid fibrils hotspot. CAS leads to destabilization of β-sheet and, conclusively, in its devaluation. Later, in vitro experiments were acquired in which the fibrillar volume was reduced for CAS-treated Aβ peptide. For the first time ever, this study has determined an antifungal agent as the Aβ amyloid aggregation's potent inhibitor. Several efficient sequence-reliant potent inhibitors can be developed in future against the amyloid aggregation for different amyloid peptide by the processing and conformational optimization of CAS.
Collapse
Affiliation(s)
- Anchala Kumari
- Department of Biotechnology, Teri School of Advanced Studies, New Delhi 110070, India; School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nidhi Shrivastava
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mohit Mishra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pallavi Somvanshi
- Department of Biotechnology, Teri School of Advanced Studies, New Delhi 110070, India.
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
9
|
Identification of new BACE1 inhibitors for treating Alzheimer's disease. J Mol Model 2021; 27:58. [PMID: 33517514 DOI: 10.1007/s00894-021-04679-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a type of brain disorder, wherein a person experiences gradual memory loss, state of confusion, hallucination, agitation, and personality change. AD is marked by the presence of extracellular amyloid plaques and intracellular neurofibrillary tangles (NFTs) and synaptic losses. Increased cases of AD in recent times created a dire need to discover or identify chemical compounds that can cease the development of AD. This study focuses on finding potential drug molecule(s) active against β-secretase, also known as β-site amyloid precursor protein cleaving enzyme 1 (BACE1). Clustering analysis followed by phylogenetic studies on microarray datasets retrieved from GEO browser showed that BACE1 gene has genetic relatedness with the RCAN1 gene. A ligand library comprising 60 natural compounds retrieved from literature and 25 synthetic compounds collected from DrugBank were screened. Further, 350 analogues of potential parent compounds were added to the library for the docking purposes. Molecular docking studies identified 11-oxotigogenin as the best ligand molecule. The compound showed the binding affinity of - 11.1 Kcal/mole and forms three hydrogen bonds with Trp124, Ile174, and Arg176. The protein-ligand complex was subjected to 25 ns molecular dynamics simulation and the potential energy of the complex was found to be - 1.24579e+06 Kcal/mole. In this study, 11-oxotigogenin has shown promising results against BACE1, which is a leading cause of AD, hence warrants for in vitro and in vivo validation of the same. In addition, in silico identification of 11-oxotigogenin as a potential anti-AD compound paves the way for designing of chemical scaffolds to discover more potent BACE1 inhibitors.Graphical abstract.
Collapse
|