1
|
Hu B, Xi X, Xiao F, Bai X, Gong Y, Li Y, Qiao X, Tang C, Huang J. Significantly enhanced specific activity of Bacillus subtilis (2,3)-butanediol dehydrogenase through computer-aided refinement of its substrate-binding pocket. Int J Biol Macromol 2024; 281:136443. [PMID: 39389503 DOI: 10.1016/j.ijbiomac.2024.136443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
(2,3)-Butanediol dehydrogenases (BDHs) are widely utilized for the stereoselective interconversion between α-hydroxy ketones and vicinal diols to produce various functional building blocks. In this study, to enhance the specific activity towards (R)-phenyl-1,2-ethanediol (1a) for 2-hydroxyacetophenone (1b), the substrate-binding pocket of a Bacillus subtilis BDH (BsBDHA) was refined through site-directed mutagenesis. Based on molecular docking simulations, 14 residues were identified and subjected to alanine scanning mutagenesis. After screening, two residues, His42 and Gly292, were singled out for partial site-saturation mutagenesis. The results revealed that BsBDHAH42A and BsBDHAG292A displayed high activities of 3.21 and 1.97 U/mg, respectively. Employing combinatorial mutagenesis, a superior mutant, BsBDHAI49L/V266L/G292A, was developed, exhibiting significantly enhanced specific activity and catalytic efficiency towards (R)-1a, achieving 14.81 U/mg and 4.47 mM-1 s-1, respectively, which were 27.4- and 55.9-fold higher than those of BsBDHA. Further substrate spectrum analysis revealed that the superior mutant displayed increased specific activities for (R)-2a-6a by 1.4- to 10.3-fold. The integration of BsBDHAI49L/V266L/G292A into a three-enzymatic cascade for the synthesis of 1b effectively elevated the yield from 58.1 to 82.4%. Molecular mechanism analysis indicated that the mutation-induced changes in intermolecular forces resulted in a higher frequency of reactive conformations for (R)-1a in BsBDHAI49L/V266L/G292A compared to BsBDHA.
Collapse
Affiliation(s)
- Bochun Hu
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Xiaoqi Xi
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China; Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Fugang Xiao
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Xiaomeng Bai
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Yuanyuan Gong
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Yifan Li
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Xueqin Qiao
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Cunduo Tang
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China.
| | - Jihong Huang
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China.
| |
Collapse
|
2
|
Dobiašová H, Jurkaš V, Kabátová F, Horvat M, Rudroff F, Vranková K, Both P, Winkler M. Carboligation towards production of hydroxypentanones. J Biotechnol 2024; 393:161-169. [PMID: 39122015 DOI: 10.1016/j.jbiotec.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
2-Hydroxy-3-pentanone and 3-hydroxy-2-pentanone are flavor molecules present in various foods, such as cheese, wine, durian, and honey, where they impart buttery, hay-like, and caramel-sweet aromas. However, their utilization as flavoring agents is constrained by a lack of developed synthesis methods. In this study, we present their synthesis from simple starting compounds available in natural quality, catalyzed by previously characterized ThDP-dependent carboligases. Additionally, we demonstrate that newly discovered homologues of pyruvate dehydrogenase from E. coli (EcPDH E1), namely LaPDH from Leclercia adecarboxylata, CnPDH from Cupriavidus necator, and TcPDH from Tanacetum cinerariifolium, exhibit promising potential for α-hydroxy pentanone synthesis in form of whole-cell biocatalysts. Enzyme stability at varying pH levels, kinetic parameters, and reaction intensification were investigated. CnPDH, for example, exhibits superior stability across different pH levels compared to EcPDH E1. Both α-hydroxy pentanones can be produced with CnPDH in satisfactory yields (74% and 59%, respectively).
Collapse
Affiliation(s)
- Hana Dobiašová
- Institute of Chemical and Environmental Engineering, Slovak University of Technology Radlinského 9, Bratislava 812 37, Slovakia; Axxence Slovakia s.r.o, Mickiewiczova 9, Bratislava 811 07, Slovakia
| | - Valentina Jurkaš
- Austrian Center of Industrial Biotechnology, Krenngasse 37, Graz 8010, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
| | | | - Melissa Horvat
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, Vienna 1060, Austria
| | | | - Peter Both
- Axxence Slovakia s.r.o, Mickiewiczova 9, Bratislava 811 07, Slovakia.
| | - Margit Winkler
- Austrian Center of Industrial Biotechnology, Krenngasse 37, Graz 8010, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz 8010, Austria.
| |
Collapse
|
3
|
Hu BC, Li MR, Li YY, Yuan XS, Hu YY, Xiao FG. Engineering a BsBDHA substrate-binding pocket entrance for the improvement in catalytic performance toward (R)-phenyl-1,2-ethanediol based on the computer-aided design. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Haeger G, Wirges J, Tanzmann N, Oyen S, Jolmes T, Jaeger KE, Schörken U, Bongaerts J, Siegert P. Chaperone assisted recombinant expression of a mycobacterial aminoacylase in Vibrio natriegens and Escherichia coli capable of N-lauroyl-L-amino acid synthesis. Microb Cell Fact 2023; 22:77. [PMID: 37085846 PMCID: PMC10122368 DOI: 10.1186/s12934-023-02079-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Aminoacylases are highly promising enzymes for the green synthesis of acyl-amino acids, potentially replacing the environmentally harmful Schotten-Baumann reaction. Long-chain acyl-amino acids can serve as strong surfactants and emulsifiers, with application in cosmetic industries. Heterologous expression of these enzymes, however, is often hampered, limiting their use in industrial processes. RESULTS We identified a novel mycobacterial aminoacylase gene from Mycolicibacterium smegmatis MKD 8, cloned and expressed it in Escherichia coli and Vibrio natriegens using the T7 overexpression system. The recombinant enzyme was prone to aggregate as inclusion bodies, and while V. natriegens Vmax™ could produce soluble aminoacylase upon induction with isopropyl β-d-1-thiogalactopyranoside (IPTG), E. coli BL21 (DE3) needed autoinduction with lactose to produce soluble recombinant protein. We successfully conducted a chaperone co-expression study in both organisms to further enhance aminoacylase production and found that overexpression of chaperones GroEL/S enhanced aminoacylase activity in the cell-free extract 1.8-fold in V. natriegens and E. coli. Eventually, E. coli ArcticExpress™ (DE3), which co-expresses cold-adapted chaperonins Cpn60/10 from Oleispira antarctica, cultivated at 12 °C, rendered the most suitable expression system for this aminoacylase and exhibited twice the aminoacylase activity in the cell-free extract compared to E. coli BL21 (DE3) with GroEL/S co-expression at 20 °C. The purified aminoacylase was characterized based on hydrolytic activities, being most stable and active at pH 7.0, with a maximum activity at 70 °C, and stability at 40 °C and pH 7.0 for 5 days. The aminoacylase strongly prefers short-chain acyl-amino acids with smaller, hydrophobic amino acid residues. Several long-chain amino acids were fairly accepted in hydrolysis as well, especially N-lauroyl-L-methionine. To initially evaluate the relevance of this aminoacylase for the synthesis of N-acyl-amino acids, we demonstrated that lauroyl-methionine can be synthesized from lauric acid and methionine in an aqueous system. CONCLUSION Our results suggest that the recombinant enzyme is well suited for synthesis reactions and will thus be further investigated.
Collapse
Affiliation(s)
- Gerrit Haeger
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428, Jülich, Germany
| | - Jessika Wirges
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428, Jülich, Germany
| | - Nicole Tanzmann
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428, Jülich, Germany
| | - Sven Oyen
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428, Jülich, Germany
| | | | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 52425, Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | | | - Johannes Bongaerts
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428, Jülich, Germany
| | - Petra Siegert
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428, Jülich, Germany.
| |
Collapse
|
5
|
Detection of Acetoin and Diacetyl by a Tobacco Mosaic Virus-Assisted Field-Effect Biosensor. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Acetoin and diacetyl have a major impact on the flavor of alcoholic beverages such as wine or beer. Therefore, their measurement is important during the fermentation process. Until now, gas chromatographic techniques have typically been applied; however, these require expensive laboratory equipment and trained staff, and do not allow for online monitoring. In this work, a capacitive electrolyte–insulator–semiconductor sensor modified with tobacco mosaic virus (TMV) particles as enzyme nanocarriers for the detection of acetoin and diacetyl is presented. The enzyme acetoin reductase from Alkalihalobacillus clausii DSM 8716T is immobilized via biotin–streptavidin affinity, binding to the surface of the TMV particles. The TMV-assisted biosensor is electrochemically characterized by means of leakage–current, capacitance–voltage, and constant capacitance measurements. In this paper, the novel biosensor is studied regarding its sensitivity and long-term stability in buffer solution. Moreover, the TMV-assisted capacitive field-effect sensor is applied for the detection of diacetyl for the first time. The measurement of acetoin and diacetyl with the same sensor setup is demonstrated. Finally, the successive detection of acetoin and diacetyl in buffer and in diluted beer is studied by tuning the sensitivity of the biosensor using the pH value of the measurement solution.
Collapse
|
6
|
Stark F, Loderer C, Petchey M, Grogan G, Ansorge-Schumacher M. Advanced Insights into Catalytic and Structural Features of the Zinc-Dependent Alcohol Dehydrogenase from Thauera aromatica. Chembiochem 2022; 23:e202200149. [PMID: 35557486 PMCID: PMC9400901 DOI: 10.1002/cbic.202200149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/12/2022] [Indexed: 11/10/2022]
Abstract
The asymmetric reduction of ketones to chiral hydroxyl compounds by alcohol dehydrogenases (ADHs) is an established strategy for the provision of valuable precursors for fine chemicals and pharmaceutics. However, most ADHs favor linear aliphatic and aromatic carbonyl compounds, and suitable biocatalysts with preference for cyclic ketones and diketones are still scarce. Among the few candidates, the alcohol dehydrogenase from Thauera aromatica (ThaADH) stands out with a high activity for the reduction of the cyclic α‐diketone 1,2‐cyclohexanedione to the corresponding α‐hydroxy ketone. This study elucidates catalytic and structural features of the enzyme. ThaADH showed a remarkable thermal and pH stability as well as stability in the presence of polar solvents. A thorough description of the substrate scope combined with the resolution and description of the crystal structure, demonstrated a strong preference of ThaADH for cyclic α‐substituted cyclohexanones, and indicated structural determinants responsible for the unique substrate acceptance.
Collapse
Affiliation(s)
- Frances Stark
- TU Dresden: Technische Universitat Dresden, Molecular Biotechnology, GERMANY
| | - Christoph Loderer
- TU Dresden: Technische Universitat Dresden, Molecular Biotechnology, GERMANY
| | | | | | | |
Collapse
|
7
|
Halling PJ. Kinetics of enzyme-catalysed desymmetrisation of prochiral substrates: product enantiomeric excess is not always constant. Beilstein J Org Chem 2021; 17:873-884. [PMID: 33968260 PMCID: PMC8077619 DOI: 10.3762/bjoc.17.73] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 11/28/2022] Open
Abstract
The kinetics of enzymatic desymmetrisation were analysed for the most common kinetic mechanisms: ternary complex ordered (prochiral ketone reduction); ping-pong second (ketone amination, diol esterification, desymmetrisation in the second half reaction); ping-pong first (diol ester hydrolysis) and ping-pong both (prochiral diacids). For plausible values of enzyme kinetic parameters, the product enantiomeric excess (ee) can decline substantially as the reaction proceeds to high conversion. For example, an ee of 0.95 at the start of the reaction can decline to less than 0.5 at 95% of equilibrium conversion, but for different enzyme properties it will remain almost unchanged. For most mechanisms a single function of multiple enzyme rate constants (which can be termed ee decline parameter, eeDP) accounts for the major effect on the tendency for the ee to decline. For some mechanisms, the concentrations or ratios of the starting materials have an important influence on the fall in ee. For the application of enzymatic desymmetrisation it is important to study if and how the product ee declines at high conversion.
Collapse
Affiliation(s)
- Peter J Halling
- WestCHEM, Dept Pure & Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland, UK
| |
Collapse
|
8
|
Giovannini PP, Müller M, Presini F, Baraldi S, Ragno D, Di Carmine G, Jacoby C, Bernacchia G, Bortolini O. A One‐Pot Two‐Step Enzymatic Pathway for the Synthesis of Enantiomerically Enriched Vicinal Diols. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Pier Paolo Giovannini
- Dipartimento di Scienze Chimiche e Farmaceutiche Università degli studi di Ferrara Via Luigi Borsari 46 44121 Ferrara Italy
| | - Michel Müller
- Institute of Pharmaceutical Sciences Albert-Ludwigs-Universität Freiburg Albertstrasse 25 79104 Freiburg Germany
| | - Francesco Presini
- Dipartimento di Scienze Chimiche e Farmaceutiche Università degli studi di Ferrara Via Luigi Borsari 46 44121 Ferrara Italy
| | - Serena Baraldi
- Dipartimento di Scienze Chimiche e Farmaceutiche Università degli studi di Ferrara Via Luigi Borsari 46 44121 Ferrara Italy
| | - Daniele Ragno
- Dipartimento di Scienze Chimiche e Farmaceutiche Università degli studi di Ferrara Via Luigi Borsari 46 44121 Ferrara Italy
| | - Graziano Di Carmine
- Dipartimento di Scienze Chimiche e Farmaceutiche Università degli studi di Ferrara Via Luigi Borsari 46 44121 Ferrara Italy
| | - Christian Jacoby
- Microbiology Faculty of Biology Albert-Ludwigs-Universität Freiburg Schänzlestr. 1 79104 Freiburg Germany
| | - Giovanni Bernacchia
- Dipartimento di Scienze della Vita e Biotecnologie Università degli studi di Ferrara Via Luigi Borsari 46 44121 Ferrara Italy
| | - Olga Bortolini
- Dipartimento di Scienze Chimiche e Farmaceutiche Università degli studi di Ferrara Via Luigi Borsari 46 44121 Ferrara Italy
| |
Collapse
|
9
|
Rabuffetti M, Cannazza P, Contente ML, Pinto A, Romano D, Hoyos P, Alcantara AR, Eberini I, Laurenzi T, Gourlay L, Di Pisa F, Molinari F. Structural insights into the desymmetrization of bulky 1,2-dicarbonyls through enzymatic monoreduction. Bioorg Chem 2021; 108:104644. [PMID: 33486371 DOI: 10.1016/j.bioorg.2021.104644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/08/2023]
Abstract
Benzil reductases are dehydrogenases preferentially active on aromatic 1,2-diketones, but the reasons for this peculiar substrate recognition have not yet been clarified. The benzil reductase (KRED1-Pglu) from the non-conventional yeast Pichia glucozyma showed excellent activity and stereoselectivity in the monoreduction of space-demanding aromatic 1,2-dicarbonyls, making this enzyme attractive as biocatalyst in organic chemistry. Structural insights into the stereoselective monoreduction of 1,2-diketones catalyzed by KRED1-Pglu were investigated starting from its 1.77 Å resolution crystal structure, followed by QM and classical calculations; this study allowed for the identification and characterization of the KRED1-Pglu reactive site. Once identified the recognition elements involved in the stereoselective desymmetrization of bulky 1,2-dicarbonyls mediated by KRED1-Pglu, a mechanism was proposed together with an in silico prediction of substrates reactivity.
Collapse
Affiliation(s)
- Marco Rabuffetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Pietro Cannazza
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Martina Letizia Contente
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Diego Romano
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Pilar Hoyos
- Department of Chemistry in Pharmaceutical Sciences (QUICIFARM), Pharmacy Faculty, Complutense University, Plaza de Ramon y Cajal, s/n, 28040 Madrid, Spain
| | - Andres R Alcantara
- Department of Chemistry in Pharmaceutical Sciences (QUICIFARM), Pharmacy Faculty, Complutense University, Plaza de Ramon y Cajal, s/n, 28040 Madrid, Spain
| | - Ivano Eberini
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Tommaso Laurenzi
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Louise Gourlay
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Flavio Di Pisa
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Francesco Molinari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Mangiagalli 25, 20133 Milan, Italy.
| |
Collapse
|
10
|
Muschallik L, Kipp CR, Recker I, Bongaerts J, Pohl M, Gellissen M, Schöning MJ, Selmer T, Siegert P. Synthesis of α-hydroxy ketones and vicinal diols with the Bacillus licheniformis DSM 13 T butane-2,3-diol dehydrogenase. J Biotechnol 2020; 324:61-70. [PMID: 32976868 DOI: 10.1016/j.jbiotec.2020.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022]
Abstract
The enantioselective synthesis of α-hydroxy ketones and vicinal diols is an intriguing field because of the broad applicability of these molecules. Although, butandiol dehydrogenases are known to play a key role in the production of 2,3-butandiol, their potential as biocatalysts is still not well studied. Here, we investigate the biocatalytic properties of the meso-butanediol dehydrogenase from Bacillus licheniformis DSM 13T (BlBDH). The encoding gene was cloned with an N-terminal StrepII-tag and recombinantly overexpressed in E. coli. BlBDH is highly active towards several non-physiological diketones and α-hydroxyketones with varying aliphatic chain lengths or even containing phenyl moieties. By adjusting the reaction parameters in biotransformations the formation of either the α-hydroxyketone intermediate or the diol can be controlled.
Collapse
Affiliation(s)
- Lukas Muschallik
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428, Jülich, Germany
| | - Carina Ronja Kipp
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428, Jülich, Germany
| | - Inga Recker
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428, Jülich, Germany
| | - Johannes Bongaerts
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428, Jülich, Germany
| | - Martina Pohl
- IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Melanie Gellissen
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428, Jülich, Germany
| | - Michael J Schöning
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428, Jülich, Germany
| | - Thorsten Selmer
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428, Jülich, Germany
| | - Petra Siegert
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428, Jülich, Germany.
| |
Collapse
|