1
|
Thiruvengadam M, Kim JT, Kim WR, Kim JY, Jung BS, Choi HJ, Chi HY, Govindasamy R, Kim SH. Safeguarding Public Health: Advanced Detection of Food Adulteration Using Nanoparticle-Based Sensors. Crit Rev Anal Chem 2024:1-21. [PMID: 39269682 DOI: 10.1080/10408347.2024.2399202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Food adulteration, whether intentional or accidental, poses a significant public health risk. Traditional detection methods often lack the precision required to detect subtle adulterants that can be harmful. Although chromatographic and spectrometric techniques are effective, their high cost and complexity have limited their widespread use. To explore and validate the application of nanoparticle-based sensors for enhancing the detection of food adulteration, focusing on their specificity, sensitivity, and practical utility in the development of resilient food safety systems. This study integrates forensic principles with advanced nanomaterials to create a robust detection framework. Techniques include the development of nanoparticle-based assays designed to improve the detection specificity and sensitivity. In addition, sensor-based technologies, including electronic noses and tongues, have been assessed for their capacity to mimic and enhance human sensory detection, offering objective and reliable results. The use of nanomaterials, including functionalized nanoparticles, has significantly improved the detection of trace amounts of adulterants. Nanoparticle-based sensors demonstrate superior performance in terms of speed, sensitivity, and selectivity compared with traditional methods. Moreover, the integration of these sensors into food safety protocols shows promise for real-time and onsite detection of adulteration. Nanoparticle-based sensors represent a cutting-edge approach for detecting food adulteration, and offer enhanced sensitivity, specificity, and scalability. By integrating forensic principles and nanotechnology, this framework advances the development of more resilient food-safety systems. Future research should focus on optimizing these technologies for widespread application and adapting them to address emerging adulteration threats.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Jung-Tae Kim
- Planning and Coordination Division, National Institute of Crop Science, Rural Development Administration (RDA), Jellabuk-do, Republic of Korea
| | - Won-Ryeol Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Ji-Ye Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Bum-Su Jung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Hee-Jin Choi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Hee-Youn Chi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Deng YR, Li YF, Yang H, Fan YR, Huang Y. Synthesis, DNA binding of bis-naphthyl ferrocene derivatives and the application as new electroactive indicators for DNA biosensor. J Inorg Biochem 2024; 257:112615. [PMID: 38772187 DOI: 10.1016/j.jinorgbio.2024.112615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
A series of bis-naphthyl ferrocene derivatives were synthesized and characterized. Based on the results obtained from UV-visible absorption titration and ethidium bromide (EB) displacement experiments, it was observed that the synthesized compounds exhibited a strong binding ability to dsDNA. In comparison to the viscosity curve of EB, the tested compounds demonstrated a bisintercalation binding mode when interacting with CT-DNA. Differential pulse voltammetry (DPV) was employed to assess the binding specificity of these indicators towards ssDNA and dsDNA. All tested indicators displayed more pronounced signal differences before and after hybridization between probe nucleic acids and target nucleic acids compared to Methylene Blue (MB). Among the evaluated compounds, compound 3j containing an ether chain showed superior performance as an indicator, making it suitable for constructing DNA-based biosensors. Under optimized conditions including probe ssDNA concentration and indicator concentration, this biosensor exhibited good sensitivity, reproducibility, stability, and selectivity. The limit of detection was calculated as 4.53 × 10-11 mol/L. Furthermore, when utilizing 3j as the indicator in serum samples, the biosensor achieved satisfactory recovery rates for detecting the BRCA1 gene.
Collapse
Affiliation(s)
- Ya-Ru Deng
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China
| | - Ya-Fei Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China
| | - Hao Yang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China
| | - Yan-Ru Fan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China.
| | - Yu Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China.
| |
Collapse
|
3
|
Hao J, Wang Z, Li Y, Deng Y, Fan Y, Huang Y. A novel signal amplification strategy for label-free electrochemical DNA sensor based on the interaction between α-cyclodextrin and ferrocenyl indicator. Bioelectrochemistry 2023; 151:108373. [PMID: 36702078 DOI: 10.1016/j.bioelechem.2023.108373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
The synthesized ferrocene appended naphthalimide derivative (FND) exhibited great binding ability toward dsDNA, while its usage as the electrochemical hybridization indicator was restricted by the poor water solubility. Herein, a simple and effective signal amplification strategy for FND based label-free DNA biosensors was developed based on the interaction between FND and cyclodextrin. α-Cyclodextrin (α-CD), β-cyclodextrin (β-CD) and γ-cyclodextrin (γ-CD) were helpful to amplify the signal of the DNA biosensor, while the signal amplification effect of α-CD was better than that of β-CD and γ-CD. Under the optimum conditions, there was a 3-fold increase in the sensitivity of the DNA biosensor after the addition of α-CD. The interaction between FND and α-/β-/γ-CD was investigated by differential pulse voltammetry and fluorescence experiment. Experimental results showed that α-CD not only minimized the impact on the electrochemical activity of FND but also improved the dispersity of FND in aqueous solution. That was why the proposed biosensor showed higher sensitivity in the presence of α-CD. This strategy was universal for other ferrocenyl indicators with similar structures as used in this work.
Collapse
Affiliation(s)
- Jie Hao
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Engineering and Technology Research Center of Characteristic Chinese Medicine Modernization, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Zhenbo Wang
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Engineering and Technology Research Center of Characteristic Chinese Medicine Modernization, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yafei Li
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Engineering and Technology Research Center of Characteristic Chinese Medicine Modernization, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yaru Deng
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Engineering and Technology Research Center of Characteristic Chinese Medicine Modernization, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yanru Fan
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Engineering and Technology Research Center of Characteristic Chinese Medicine Modernization, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China.
| | - Yu Huang
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Engineering and Technology Research Center of Characteristic Chinese Medicine Modernization, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China.
| |
Collapse
|
4
|
Jilani NAK, Zakariah EI, Ariffin EY, Sapari S, Nokarajoo D, Yamin B, Hasbullah SA. Highly sensitive pork meat detection using copper(ii) tetraaza complex by electrochemical biosensor. RSC Adv 2023; 13:2104-2114. [PMID: 36712615 PMCID: PMC9832347 DOI: 10.1039/d2ra05701h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Three copper(ii) tetraaza complexes [Cu(ii)LBr]Br (1a), [Cu(ii)L(CIO4)](CIO4) (2a) and [Cu(ii)L](CIO4)2 (2b), where L = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-7,14-diene were prepared and confirmed by FTIR, 1HNMR and 13CNMR. The binding interaction of complex (1a, 2a, 2b) with calf thymus DNA (CT-DNA) was investigated using UV-vis absorption, luminescence titrations, viscosity measurements and molecular docking. The findings suggested that complex 1a, 2a and 2b bind to DNA by electrostatic interaction, and the strengths of the interaction were arranged according to 2b > 1a > 2a. The differences in binding strengths were certainly caused by the complexes' dissimilar charges and counter anions. Complex 2b, with the biggest binding strength towards the DNA, was further applied in developing the porcine sensor. The developed sensor exhibits a broad linear dynamic range, low detection limit, good selectivity, and reproducibility. Analysis of real samples showed that the biosensor had excellent selectivity towards the pork meat compared to chicken and beef meat.
Collapse
Affiliation(s)
- Noraisyah Abdul Kadir Jilani
- Department of Chemical Sciences. Faculty Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi Selangor Darul Ehsan Malaysia
| | - Emma Izzati Zakariah
- Department of Chemical Sciences. Faculty Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi Selangor Darul Ehsan Malaysia
| | - Eda Yuhana Ariffin
- Department of Chemical Sciences. Faculty Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi Selangor Darul Ehsan Malaysia
| | - Suhaila Sapari
- Department of Chemical Sciences. Faculty Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi Selangor Darul Ehsan Malaysia
| | - Devika Nokarajoo
- Department of Chemical Sciences. Faculty Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi Selangor Darul Ehsan Malaysia
| | - Bohari Yamin
- Department of Chemical Sciences. Faculty Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi Selangor Darul Ehsan Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences. Faculty Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi Selangor Darul Ehsan Malaysia
| |
Collapse
|
5
|
Hashem A, Hossain MAM, Marlinda AR, Mamun MA, Simarani K, Johan MR. Rapid and sensitive detection of box turtles using an electrochemical DNA biosensor based on a gold/graphene nanocomposite. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1458-1472. [PMID: 36570614 PMCID: PMC9749552 DOI: 10.3762/bjnano.13.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
The Southeast Asian box turtle, Cuora amboinensis, is an ecologically important endangered species which needs an onsite monitoring device to protect it from extinction. An electrochemical DNA biosensor was developed to detect the C. amboinensis mitochondrial cytochrome b gene based on an in silico designed probe using bioinformatics tools, and it was also validated in wet-lab experiments. As a detection platform, a screen-printed carbon electrode (SPCE) enhanced with a nanocomposite containing gold nanoparticles and graphene was used. The morphology of the nanoparticles was analysed by field-emission scanning electron microscopy and structural characteristics were analysed by using energy-dispersive X-ray, UV-vis, and Fourier-transform infrared spectroscopy. The electrochemical characteristics of the modified electrodes were studied by cyclic voltammetry, differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy. The thiol-modified synthetic DNA probe was immobilised on modified SPCEs to facilitate hybridisation with the reverse complementary DNA. The turtle DNA was distinguished based on hybridisation-induced electrochemical change in the presence of methylene blue compared to their mismatches, noncomplementary, and nontarget species DNA measured by DPV. The developed biosensor exhibited a selective response towards reverse complementary DNAs and was able to discriminate turtles from other species. The modified electrode displayed good linearity for reverse complementary DNAs in the range of 1 × 10-11-5 × 10-6 M with a limit of detection of 0.85 × 10-12 M. This indicates that the proposed biosensor has the potential to be applied for the detection of real turtle species.
Collapse
Affiliation(s)
- Abu Hashem
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Microbial Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - M A Motalib Hossain
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ab Rahman Marlinda
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mohammad Al Mamun
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Chemistry, Jagannath University, Dhaka-1100, Bangladesh
| | - Khanom Simarani
- Department of Microbiology, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Hashem A, Marlinda AR, Hossain MAM, Al Mamun M, Shalauddin M, Simarani K, Johan MR. A Unique Oligonucleotide Probe Hybrid on Graphene Decorated Gold Nanoparticles Modified Screen-Printed Carbon Electrode for Pork Meat Adulteration. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00779-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Soliman SS, El-Haddad AE, Sedik GA, Elghobashy MR, Zaazaa HE, Saad AS. Experimentally designed chemometric models for the assay of toxic adulterants in turmeric powder. RSC Adv 2022; 12:9087-9094. [PMID: 35424884 PMCID: PMC8985183 DOI: 10.1039/d2ra00697a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Turmeric is an indispensable culinary spice in different cultures and a principal component in traditional remedies. Toxic metanil yellow (MY), acid orange 7 (AO) and lead chromate (LCM) are deliberately added to adulterate turmeric powder. This work compares the ability of multivariate chemometric models with those of artificial intelligent networks to enhance the selectivity of spectral data for the rapid assay of these three adulterants in turmeric powder. Using a custom experimental design, we provide a data-driven optimization for the sensitive parameters of the partial least squares model (PLS), artificial neural network (ANN) and genetic algorithm (GA). The optimized models are validated using sets of genuine turmeric samples from five different geographical regions spiked with standard adulterant concentrations. The optimized GA-PLS and GA-ANN models reduce the root mean square error of prediction by 18.4%, 31.1% and 55.3% and 25.0%, 69.9% and 88.4% for MY, AO and LCM, respectively.
Collapse
Affiliation(s)
- Shymaa S Soliman
- Analytical Chemistry Department, Faculty of Pharmacy, October 6 University PO Box 12858 6 October City Giza Egypt
| | - Alaadin E El-Haddad
- Pharmacognosy Department, Faculty of Pharmacy, October 6 University PO Box 12858 6 October City Giza Egypt
| | - Ghada A Sedik
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University El-Kasr El-Aini Street Cairo 11562 Egypt
| | - Mohamed R Elghobashy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University El-Kasr El-Aini Street Cairo 11562 Egypt
- Analytical Chemistry Department, Faculty of Pharmacy, October 6 University PO Box 12858 6 October City Giza Egypt
| | - Hala E Zaazaa
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University El-Kasr El-Aini Street Cairo 11562 Egypt
| | - Ahmed S Saad
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University El-Kasr El-Aini Street Cairo 11562 Egypt
- Medicinal Chemistry Department, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST) New Borg El-Arab City Alexandria 21934 Egypt
| |
Collapse
|
8
|
Abdul Rashid JI, Yusof NA, Abdullah J, Shomiad Shueb RH. Strategies for the preparation of non-amplified and amplified genomic dengue gene samples for electrochemical DNA biosensing applications. RSC Adv 2021; 12:1-10. [PMID: 35424522 PMCID: PMC8978653 DOI: 10.1039/d1ra06753b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022] Open
Abstract
The application of electrochemical DNA biosensors in real genomic sample detection is challenging due to the existence of complex structures and low genomic concentrations, resulting in inconsistent and low current signals. This work highlights strategies for the treatment of non-amplified and amplified genomic dengue virus gene samples based on real samples before they can be used directly in our DNA electrochemical sensing system, using methylene blue (MB) as a redox indicator. The main steps in this study for preparing non-amplified cDNA were cDNA conversion, heat denaturation, and sonication. To prepare amplified cDNA dengue virus genomic samples using an RT-PCR approach, we optimized a few parameters, such as the annealing temperature, sonication time, and reverse to forward (R/F) primer concentration ratio. We discovered that the generated methylene blue (MB) signals during the electrochemical sensing of non-amplified and amplified samples differ due to the different MB binding affinities based on the sequence length and base composition. The findings show that our developed electrochemical DNA biosensor successfully discriminates MB current signals in the presence and absence of the target genomic dengue virus, indicating that both samples were successfully treated. This work also provides interesting information about the critical factors in the preparation of genomic gene samples for developing miniaturized PCR-based electrochemical sensing applications in the future. We also discuss the limitations and provide suggestions related to using redox-indicator-based electrochemical biosensors to detect real genomic nucleic acid genes.
Collapse
Affiliation(s)
- Jahwarhar Izuan Abdul Rashid
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia Sungai Besi Camp 57000 Kuala Lumpur Malaysia
| | - Nor Azah Yusof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia Serdang Selangor 43400 Malaysia
| | - Jaafar Abdullah
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia Serdang Selangor 43400 Malaysia
| | - Rafidah Hanim Shomiad Shueb
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia 16150 Kubang Kerian Kelantan Malaysia
| |
Collapse
|
9
|
Ariffin EY, Zakariah EI, Ruslin F, Kassim M, Yamin BM, Heng LY, Hasbullah SA. Hexaferrocenium tri[hexa(isothiocyanato)iron(III)] trihydroxonium complex as a new DNA intercalator for electrochemical DNA biosensor. Sci Rep 2021; 11:7883. [PMID: 33846405 PMCID: PMC8041802 DOI: 10.1038/s41598-021-86939-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/17/2021] [Indexed: 11/09/2022] Open
Abstract
Ferrocene or ferrocenium has been widely studied in the field of organometallic complexes because of its stable thermodynamic, kinetic and redox properties. Novel hexaferrocenium tri[hexa(isothiocyanato)iron(III)]trihydroxonium (HexaFc) complex was the product from the reaction of ferrocene, maleic acid and ammonium thiocyanate and was confirmed by elemental analysis CHNS, FTIR and single crystal X-ray crystallography. In this study, HexaFc was used for the first time as an electroactive indicator for porcine DNA biosensor. The UV-Vis DNA titrations with this compound showed hypochromism and redshift at 250 nm with increasing DNA concentrations. The binding constant (Kb) for HexaFc complex towards CT-DNA (calf-thymus DNA) was 3.1 × 104 M-1, indicated intercalator behaviour of the complex. To test the usefulness of this complex for DNA biosensor application, a porcine DNA biosensor was constructed. The recognition probes were covalently immobilised onto silica nanospheres (SiNSs) via glutaraldehyde linker on a screen-printed electrode (SPE). After intercalation with the HexaFc complex, the response of the biosensor to the complementary porcine DNA was measured using differential pulse voltammetry. The DNA biosensor demonstrated a linear response range to the complementary porcine DNA from 1 × 10-6 to 1 × 10-3 µM (R2 = 0.9642) with a limit detection of 4.83 × 10-8 µM and the response was stable up to 23 days of storage at 4 °C with 86% of its initial response. The results indicated that HexaFc complex is a feasible indicator for the DNA hybridisation without the use of a chemical label for the detection of porcine DNA.
Collapse
Affiliation(s)
- Eda Yuhana Ariffin
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Emma Izzati Zakariah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Farah Ruslin
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Muhammad Kassim
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Bohari M Yamin
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Lee Yook Heng
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|