1
|
Bijoy TK, Sudhakaran S, Lee SC. WS 2-Graphene van der Waals Heterostructure as Promising Anode Material for Lithium-Ion Batteries: A First-Principles Approach. ACS OMEGA 2024; 9:6482-6491. [PMID: 38371824 PMCID: PMC10870414 DOI: 10.1021/acsomega.3c06559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/20/2024]
Abstract
In this work, we report the results of density functional theory (DFT) calculations on a van der Waals (VdW) heterostructure formed by vertically stacking single-layers of tungsten disulfide and graphene (WS2/graphene) for use as an anode material in lithium-ion batteries (LIBs). The electronic properties of the heterostructure reveal that the graphene layer improves the electronic conductivity of this hybrid system. Phonon calculations demonstrate that the WS2/graphene heterostructure is dynamically stable. Charge transfer from Li to the WS2/graphene heterostructure further enhances its metallic character. Moreover, the Li binding energy in this heterostructure is higher than that of the Li metal's cohesive energy, significantly reducing the possibility of Li-dendrite formation in this WS2/graphene electrode. Ab initio molecular dynamics (AIMD) simulations of the lithiated WS2/graphene heterostructure show the system's thermal stability. Additionally, we explore the effect of heteroatom doping (boron (B) and nitrogen (N)) on the graphene layer of the heterostructure and its impact on Li-adsorption ability. The results suggest that B-doping strengthens the Li-adsorption energy. Notably, the calculated open-circuit voltage (OCV) and Li-diffusion energy barrier further support the potential of this heterostructure as a promising anode material for LIBs.
Collapse
Affiliation(s)
- T. K. Bijoy
- Indo-Korea
Science and Technology Center (IKST), Third Floor, Windsor, NCC Urban Building, New Airport Road, Yelahanka, Bengaluru 560065, India
| | - Sooryadas Sudhakaran
- Mechanical
Engineering Department, National Institute
of Technology Calicut, Calicut, Kerala 673601, India
| | - Seung-Cheol Lee
- Indo-Korea
Science and Technology Center (IKST), Third Floor, Windsor, NCC Urban Building, New Airport Road, Yelahanka, Bengaluru 560065, India
- Electronic
Materials Research Center, KIST, Seoul 136-791, South Korea
| |
Collapse
|
2
|
Price CJ, Baker EAD, Hepplestone SP. Properties of Layered TMDC Superlattices for Electrodes in Li-Ion and Mg-Ion Batteries. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:1867-1876. [PMID: 38352854 PMCID: PMC10860140 DOI: 10.1021/acs.jpcc.3c05155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/16/2024]
Abstract
In this work, we present a first-principles investigation of the properties of superlattices made from transition metal dichalcogenides for use as electrodes in lithium-ion and magnesium-ion batteries. From a study of 50 pairings, we show that, in general, the volumetric expansion, intercalation voltages, and thermodynamic stability of vdW superlattice structures can be well approximated with the average value of the equivalent property for the component layers. We also found that the band gap can be reduced, improving the conductivity. Thus, we conclude that superlattice construction can be used to improve material properties through the tuning of intercalation voltages toward specific values and by increasing the stability of conversion-susceptible materials. For example, we demonstrate how pairing SnS2 with systems such as MoS2 can change it from a conversion to an intercalation material, thus opening it up for use in intercalation electrodes.
Collapse
Affiliation(s)
- Conor Jason Price
- Department of Physics, University
of Exeter, Stocker Road, Exeter EX4
4QL, U.K.
| | | | | |
Collapse
|
3
|
Cheng L, Ge M, Chen J, Zhang J. Interfacial effects on lithium-ion diffusion in two-dimensional lateral black phosphorus-graphene heterostructures. Phys Chem Chem Phys 2023; 25:6830-6837. [PMID: 36794496 DOI: 10.1039/d2cp05255e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Lateral heterostructures constructed from different two-dimensional (2D) materials can be potentially used in lithium-ion batteries (LIBs). The interface between two different components strongly affects LIB charge and discharge processes. Herein, the atomic structures, electronic properties, and Li-ion diffusion characteristics of lateral black phosphorus-graphene (BP-G) heterostructures are studied via first-principles calculations. The obtained results reveal that BP-G heterostructures with either zigzag (ZZ) or misoriented interfaces constructed according to Clar's rule possess a small number of interfacial states and are electronically stable. Furthermore, compared with the perfect ZZ interface of BP-G, Clar's interfaces provide a larger number of diffusion paths with much lower energy barriers. The findings of this study suggest that lateral BP-G heterostructures can provide insights for rapid charge and discharge processes in LIBs.
Collapse
Affiliation(s)
- Liyuan Cheng
- Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University, Taiyuan 030031, China.,School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China.
| | - Mei Ge
- Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University, Taiyuan 030031, China.,School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China.
| | - Jiali Chen
- Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University, Taiyuan 030031, China.,School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China.
| | - Junfeng Zhang
- Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University, Taiyuan 030031, China.,School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China.
| |
Collapse
|
4
|
Lin DY, Hsu HP, Wang CW, Chen SW, Shih YT, Hwang SB, Sitarek P. Temperature-Dependent Absorption of Ternary HfS 2-xSe x 2D Layered Semiconductors. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6304. [PMID: 36143616 PMCID: PMC9502516 DOI: 10.3390/ma15186304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/27/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
In this study, we present the investigation of optical properties on a series of HfS2-xSex crystals with different Se compositions x changing from 0 to 2. We used the chemical-vapor transport method to grow these layered ternary compound semiconductors in bulk form. Their lattice constants and crystal properties were characterized by X-ray diffraction, high-resolution transmission electron microscopy, and Raman spectroscopy. We have performed absorption spectroscopies to determine their optical band-gap energies, which started from 2.012 eV with x = 0, and gradually shifts to 1.219 eV for x = 2. Furthermore, we measured the absorption spectroscopies at different temperatures in the range of 20-300 K to identify the temperature dependence of band-gap energies. The band-gap energies of HfS2-xSex were determined from the linear extrapolation method. We have noticed that the band-gap energy may be continuously tuned to the required energy by manipulating the ratio of S and Se. The parameters that describe the temperature influence on the band-gap energy are evaluated and discussed.
Collapse
Affiliation(s)
- Der-Yuh Lin
- Department of Electronic Engineering, National Changhua University of Education, Changhua City 50074, Taiwan
| | - Hung-Pin Hsu
- Department of Electronic Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
| | - Cheng-Wen Wang
- Department of Electronic Engineering, National Changhua University of Education, Changhua City 50074, Taiwan
| | - Shang-Wei Chen
- Department of Electronic Engineering, National Changhua University of Education, Changhua City 50074, Taiwan
| | - Yu-Tai Shih
- Department of Physics, National Changhua University of Education, Changhua City 500207, Taiwan
| | - Sheng-Beng Hwang
- Department of Electronic Engineering, Chienkuo Technology University, Changhua City 500020, Taiwan
| | - Piotr Sitarek
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50370 Wrocław, Poland
| |
Collapse
|
5
|
Razeghizadeh M, Pourfath M. First principles study on structural, electronic and optical properties of HfS 2(1-x)Se 2x and ZrS 2(1-x)Se 2x ternary alloys. RSC Adv 2022; 12:14061-14068. [PMID: 35558829 PMCID: PMC9092027 DOI: 10.1039/d2ra01905a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/01/2022] [Indexed: 11/29/2022] Open
Abstract
Alloying 2D transition metal dichalcogenides (TMDs) with dopants to achieve ternary alloys is as an efficient and scalable solution for tuning the electronic and optical properties of two-dimensional materials. This study provides a comprehensive study on the electronic and optical properties of ternary HfS2(1−x)Se2(x) and ZrS2(1−x)Se2(x) [0 ≤ x ≤ 1] alloys, by employing density functional theory calculations along with random phase approximation. Phonon dispersions were also obtained by using density functional perturbation theory. The results indicate that both of the studied ternary families are stable and the increase of Selenium concentration in HfS2(1−x)Se2(x) and ZrS2(1−x)Se2(x) alloys results in a linear decrease of the electronic bandgap from 2.15 (ev) to 1.40 (ev) for HfS2(1−x)Se2(x) and 1.94 (ev) to 1.23 (ev) for ZrS2(1−x)Se2(x) based on the HSE06 functional. Increasing the Se concentration in the ternary alloys results in a red shift of the optical absorption spectra such that the main absorption peaks of HfS2(1−x)Se2(x) and ZrS2(1−x)Se2(x) cover a broad visible range from 3.153 to 2.607 eV and 2.405 to 1.908 eV, respectively. The studied materials appear to be excellent base materials for tunable electronic and optoelectronic devices in the visible range. Adding Selenium to HfS2 and ZrS2 two-dimensional materials allows tuning the optical properties in a wide visible spectrum that can be used in various electronic and optical applications, including solar cells.![]()
Collapse
Affiliation(s)
- Mohammadreza Razeghizadeh
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran 14395-515 Iran
| | - Mahdi Pourfath
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran 14395-515 Iran
| |
Collapse
|
6
|
Browne S, Waghmare UV, Singh A. Opportunities and challenges for 2D heterostructures in battery applications: a computational perspective. NANOTECHNOLOGY 2022; 33:272501. [PMID: 35344940 DOI: 10.1088/1361-6528/ac61c9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
With an increasing demand for large-scale energy storage systems, there is a need for novel electrode materials to store energy in batteries efficiently. 2D materials are promising as electrode materials for battery applications. Despite their excellent properties, none of the available single-phase 2D materials offers a combination of properties required for maximizing energy density, power density, and cycle life. This article discusses how stacking distinct 2D materials into a 2D heterostructure may open up new possibilities for battery electrodes, combining favourable characteristics and overcoming the drawbacks of constituent 2D layers. Computational studies are crucial to advancing this field rapidly with first-principles simulations of various 2D heterostructures forming the basis for such investigations that offer insights into processes that are hard to determine otherwise. We present a perspective on the current methodology, along with a review of the known 2D heterostructures as anodes and their potential for Li and Na-ion battery applications. 2D heterostructures showcase excellent tunability with different compositions. However, each of them has distinct properties, with its own set of challenges and opportunities for application in batteries. We highlight the current status and prospects to stimulate research into designing new 2D heterostructures for battery applications.
Collapse
Affiliation(s)
- Stephen Browne
- Center for Study of Science, Technology & Policy (CSTEP), Bangalore-560094, India
| | - Umesh V Waghmare
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India
| | - Anjali Singh
- Center for Study of Science, Technology & Policy (CSTEP), Bangalore-560094, India
| |
Collapse
|
7
|
Ougherb C, Ouahrani T, Badawi M, Morales-García Á. Effect of the sulfur termination on the properties of Hf 2CO 2 MXene. Phys Chem Chem Phys 2022; 24:7243-7252. [PMID: 35274659 DOI: 10.1039/d2cp00288d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A computational study was carried out to investigate the effect of surface termination on Janus Hf2COS MXene by substituting partly the O-terminated layer with S atoms. Our predictions confirm that this chemical strategy allows one to tailor the band gap of MXenes. Indeed, the semiconducting character of Hf2CO2 MXene decreases by the exchange of O by S atoms. From a structural point of view, dynamical, mechanical, and thermal analysis confirm the thermodynamic stability of the Janus Hf2COS MXene, which shows metallic character. Furthermore, topological chemical analysis indicates an ionic nature of Hf2CO2 MXene that tends to be reduced by increasing the concentration of S atoms, promoting a covalent character. Shortly, the present study illustrates how the properties of MXenes can be tailored by functionalizing them with different chemical terminations.
Collapse
Affiliation(s)
- Chewki Ougherb
- Laboratoire de Physique Théorique, Université de Tlemcen, 1300, Algeria.
| | - Tarik Ouahrani
- Laboratoire de Physique Théorique, Université de Tlemcen, 1300, Algeria.
| | - Michael Badawi
- Université de Lorraine and CNRS, LPCT, UMR 7019, 54506 Vandoeuvre-lés-Nancy, France
| | - Ángel Morales-García
- Departament de Ciéncia de Materials i Química Física & Institut de Química Teórica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
8
|
Dat VD, Vu TV. Janus monolayer HfSO with improved optical properties as a novel material for photovoltaic and photocatalyst applications. NEW J CHEM 2022. [DOI: 10.1039/d1nj05096f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
First principles calculations were performed to investigate the photocatalytic behavior of 2D Janus monolayer HfSO at equilibrium and under the influence of strains and external electric fields.
Collapse
Affiliation(s)
- Vo D. Dat
- Group of Computational Physics and Simulation of Advanced Materials, Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
| | - Tuan V. Vu
- Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
9
|
Cao Y, Zhu S, Bachmann J. HfS 2 thin films deposited at room temperature by an emerging technique, solution atomic layer deposition. Dalton Trans 2021; 50:13066-13072. [PMID: 34581330 PMCID: PMC8477444 DOI: 10.1039/d1dt01232k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022]
Abstract
As a member of the two-dimensional metal dichalcogenide family, HfS2 has emerged as a promising material for various optoelectronic applications. Atomic layer deposition is widely used in microelectronics manufacturing with unique properties in terms of accurate thickness control and high conformality. In this work, a simple and versatile method based on the atomic layer deposition principles is presented to generate hafnium disulfide from the solution phase ('solution ALD' or sALD). For ease of comparison with the traditional gaseous atomic layer deposition (gALD) method, the same precursors are used, namely tetrakis-(dimethylamido) hafnium(IV) and H2S. The deposit is characterized on several different oxide substrates by spectroscopic ellipsometry, scanning electron microscopy, and X-ray photoelectron spectroscopy. In the saturated regime, the growth rate depends on the substrate nature and is between 0.4 and 0.6 Å per sALD cycle. This growth rate determined at room temperature is lower than with the gALD process reported at 100 °C recently. At those low deposition temperatures, the films remain in an amorphous state. This success in sALD expands the range of material classes available by the new method, adding transition metal dichalcogenides to the list containing oxides, cubic sulfides, hydrides, and organics so far. It promises to overcome the precursor constraints associated with the traditional gALD method, in particular the volatility requirement.
Collapse
Affiliation(s)
- Yuanyuan Cao
- Chemistry of Thin Film Materials (CTFM), Interdisciplinary Center of Nanostructured Films (IZNF), Friedrich Alexander University of Erlangen-Nuremberg, Cauerstr. 3, 91058 Erlangen, Germany.
| | - Sha Zhu
- Chemistry of Thin Film Materials (CTFM), Interdisciplinary Center of Nanostructured Films (IZNF), Friedrich Alexander University of Erlangen-Nuremberg, Cauerstr. 3, 91058 Erlangen, Germany.
| | - Julien Bachmann
- Chemistry of Thin Film Materials (CTFM), Interdisciplinary Center of Nanostructured Films (IZNF), Friedrich Alexander University of Erlangen-Nuremberg, Cauerstr. 3, 91058 Erlangen, Germany.
- Institute of Chemistry, Saint-Petersburg State University, Universitetskii pr. 26, St. Petersburg 198504, Russia
| |
Collapse
|
10
|
Blackstone C, Ignaszak A. Van der Waals Heterostructures-Recent Progress in Electrode Materials for Clean Energy Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3754. [PMID: 34279324 PMCID: PMC8269904 DOI: 10.3390/ma14133754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 01/09/2023]
Abstract
The unique layered morphology of van der Waals (vdW) heterostructures give rise to a blended set of electrochemical properties from the 2D sheet components. Herein an overview of their potential in energy storage systems in place of precious metals is conducted. The most recent progress on vdW electrocatalysis covering the last three years of research is evaluated, with an emphasis on their catalytic activity towards the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). This analysis is conducted in pair with the most active Pt-based commercial catalyst currently utilized in energy systems that rely on the above-listed electrochemistry (metal-air battery, fuel cells, and water electrolyzers). Based on current progress in HER catalysis that employs vdW materials, several recommendations can be stated. First, stacking of the two types vdW materials, with one being graphene or its doped derivatives, results in significantly improved HER activity. The second important recommendation is to take advantage of an electronic coupling when stacking 2D materials with the metallic surface. This significantly reduces the face-to-face contact resistance and thus improves the electron transfer from the metallic surface to the vdW catalytic plane. A dual advantage can be achieved from combining the vdW heterostructure with metals containing an excess of d electrons (e.g., gold). Despite these recent and promising discoveries, more studies are needed to solve the complexity of the mechanism of HER reaction, in particular with respect to the electron coupling effects (metal/vdW combinations). In addition, more affordable synthetic pathways allowing for a well-controlled confined HER catalysis are emerging areas.
Collapse
Affiliation(s)
- Chance Blackstone
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Anna Ignaszak
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|