1
|
Bondarian S, Dekamin MG, Valiey E, Naimi-Jamal MR. Supramolecular Cu(ii) nanoparticles supported on a functionalized chitosan containing urea and thiourea bridges as a recoverable nanocatalyst for efficient synthesis of 1 H-tetrazoles. RSC Adv 2023; 13:27088-27105. [PMID: 37701273 PMCID: PMC10493853 DOI: 10.1039/d3ra01989f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
A cost-effective and convenient method for supporting of Cu(ii) nanoparticles on a modified chitosan backbone containing urea and thiourea bridges using thiosemicarbazide (TS), pyromellitic dianhydride (PMDA) and toluene-2,4-diisocyanate (TDI) linkers was designed. The prepared supramolecular (CS-TDI-PMDA-TS-Cu(ii)) nanocomposite was characterized by using Fourier-transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), thermogravimetry/differential thermogravimetry analysis (TGA/DTA), energy-dispersive X-ray spectroscopy (EDS), EDS elemental mapping and X-ray diffraction (XRD). The obtained supramolecular CS-TDI-PMDA-TS-Cu(ii) nanomaterial was demonstrated to act as a multifunctional nanocatalyst for promoting of multicomponent cascade Knoevenagel condensation/click 1,3-dipolar azide-nitrile cycloaddition reactions very efficiently between aromatic aldehydes, sodium azide and malononitrile under solvent-free conditions and affording the corresponding (E)-2-(1H-tetrazole-5-yl)-3-arylacrylenenitrile derivatives. Low catalyst loading, working under solvent-free conditions and short reaction time as well as easy preparation and recycling, and reuse of the catalyst for five consecutive cycles without considerable decrease in its catalytic efficiency make it a suitable candidate for the catalytic reactions promoted by Cu species.
Collapse
Affiliation(s)
- Shirin Bondarian
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Ehsan Valiey
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - M Reza Naimi-Jamal
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| |
Collapse
|
2
|
Beigi P, Ganjali F, Hassanzadeh-Afruzi F, Salehi MM, Maleki A. Enhancement of adsorption efficiency of crystal violet and chlorpyrifos onto pectin hydrogel@Fe 3O 4-bentonite as a versatile nanoadsorbent. Sci Rep 2023; 13:10764. [PMID: 37402768 DOI: 10.1038/s41598-023-38005-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/30/2023] [Indexed: 07/06/2023] Open
Abstract
The magnetic mesoporous hydrogel-based nanoadsornet was prepared by adding the ex situ prepared Fe3O4 magnetic nanoparticles (MNPs) and bentonite clay into the three-dimentional (3D) cross-linked pectin hydrogel substrate for the adsorption of organophosphorus chlorpyrifos (CPF) pesticide and crystal violet (CV) organic dye. Different analytical methods were utilized to confirm the structural features. Based on the obtained data, the zeta potential of the nanoadsorbent in deionized water with a pH of 7 was - 34.1 mV, and the surface area was measured to be 68.90 m2/g. The prepared hydrogel nanoadsorbent novelty owes to possessing a reactive functional group containing a heteroatom, a porous and cross-linked structure that aids convenient contaminants molecules diffusion and interactions between the nanoadsorbent and contaminants, viz., CPF and CV. The main driving forces in the adsorption by the Pectin hydrogel@Fe3O4-bentonite adsorbent are electrostatic and hydrogen-bond interactions, which resulted in a great adsorption capacity. To determine optimum adsorption conditions, effective factors on the adsorption capacity of the CV and CPF, including solution pH, adsorbent dosage, contact time, and initial concentration of pollutants, have been experimentally investigated. Thus, in optimum conditions, i.e., contact time (20 and 15 min), pH 7 and 8, adsorbent dosage (0.005 g), initial concentration (50 mg/L), T (298 K) for CPF and CV, respectively, the CPF and CV adsorption capacity were 833.333 mg/g and 909.091 mg/g. The prepared pectin hydrogel@Fe3O4-bentonite magnetic nanoadsorbent presented high porosity, enhanced surface area, and numerous reactive sites and was prepared using inexpensive and available materials. Moreover, the Freundlich isotherm has described the adsorption procedure, and the pseudo-second-order model explained the adsorption kinetics. The prepared novel nanoadsorbent was magnetically isolated and reused for three successive adsorption-desorption runs without a specific reduction in the adsorption efficiency. Therefore, the pectin hydrogel@Fe3O4-bentonite magnetic nanoadsorbent is a promising adsorption system for eliminating organophosphorus pesticides and organic dyes due to its remarkable adsorption capacity amounts.
Collapse
Affiliation(s)
- Paria Beigi
- Department of Physics, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fereshte Hassanzadeh-Afruzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
3
|
Jelodar DF, Rouhi M, Taheri-Ledari R, Hajizadeh Z, Maleki A. A magnetic X-band frequency microwave nanoabsorbent made of iron oxide/halloysite nanostructures combined with polystyrene. RSC Adv 2023; 13:6643-6655. [PMID: 36860539 PMCID: PMC9969233 DOI: 10.1039/d2ra08339f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
A novel nanocomposite has been designed and fabricated through an in situ polymerization process, based on iron oxide nanoparticles (Fe3O4 NPs), halloysite nanotubes (HNTs), and polystyrene (PS). The prepared nanocomposite (formulated as Fe3O4/HNT-PS) has been fully characterized through various methods, and its applicability in microwave absorption was investigated by using some single-layer and bilayer pellets containing nanocomposite and resin. The efficiency of the Fe3O4/HNT-PS composite with different weight ratios and pellets with the thickness of 3.0 and 4.0 mm were examined. Vector network analysis (VNA) revealed that the microwave (12 GHz) can be noticeably absorbed by Fe3O4/HNT-60% PS particles in a bilayer structure with 4.0 mm thickness and 85% resin of the pellets, resulting in a microwave absorption value of ca. -26.9 dB. The observed bandwidth (RL < -10 dB) was about 1.27 GHz, where ca. 95% of the radiated wave is absorbed. Ultimately, due to low-cost raw materials and high performance of the presented absorbent system, the Fe3O4/HNT-PS nanocomposite and the construction of the presented bilayer system can be subjected to further investigations to test and compare with other compounds for industrialization.
Collapse
Affiliation(s)
- Diana Fallah Jelodar
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Mojtaba Rouhi
- Department of Physics, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Zoleikha Hajizadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| |
Collapse
|
4
|
Pirani F, Eshghi H, Rounaghi SA. Immobilized Cu(0) nanoparticles on montmorillonite-modified with benzalkonium chloride (MMT-BAC@Cu(0)): as an eco-friendly and proficient heterogeneous nano-catalyst for green synthesis of 5-substituted 1 H-tetrazoles. RSC Adv 2023; 13:6160-6170. [PMID: 36814874 PMCID: PMC9940308 DOI: 10.1039/d2ra08208j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
In this study, Cu(0) nanoparticles supported on organo-modified montmorillonite with benzalkonium chloride (MMT-BAC@Cu(0)) were synthesized and used as an eco-friendly and green heterogeneous catalyst for the synthesis of 5-substituted 1H-tetrazoles in mild media. The structure of the catalyst was investigated using various techniques including XRD, EDX, ICP, TEM, FE-SEM, and FT-IR. The advantages of availability, low cost, non-toxicity, and biocompatibility of clay were our focus in synthesizing this nanoclay catalyst. The method's advantages include good to excellent product yields, mild conditions, easy work-up, short reaction times, and easy reuse of the nanocatalyst.
Collapse
Affiliation(s)
- Fatemeh Pirani
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad 91775-1436 Iran
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad 91775-1436 Iran
| | - S Amin Rounaghi
- Research and Development Laboratory, Nano Parmin Khavaran Company Birjand Iran
| |
Collapse
|
5
|
Hassanzadeh-Afruzi F, Amiri-Khamakani Z, Saeidirad M, Salehi MM, Taheri-Ledari R, Maleki A. Facile synthesis of pyrazolopyridine pharmaceuticals under mild conditions using an algin-functionalized silica-based magnetic nanocatalyst (Alg@SBA-15/Fe 3O 4) †. RSC Adv 2023; 13:10367-10378. [PMID: 37020883 PMCID: PMC10068431 DOI: 10.1039/d2ra07228a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Pyrazolopyridines are common scaffolds in various bioactive compounds, which have several therapeutic effects and unique pharmacological properties. In this study, we fabricated a novel environmentally friendly silica-based nanocomposite as a multifunctional catalytic system for the synthesis of pyrazolopyridine derivatives. This novel heterogeneous nanocomposite named Alg@SBA-15/Fe3O4 (Alg stands for alginic acid), was prepared in several steps. In this regard, SBA-15 was synthesized by the hydrothermal method. Next, it was magnetized by Fe3O4 nanoparticles via an in situ co-precipitation process. Then, SBA-15/Fe3O4 particles were functionalized with 3-minopropyltriethoxysilane (APTES). Afterward, Alg@SBA-15/Fe3O4 was obtained by a nucleophilic substitution reaction between SBA-15/Fe3O4–NH2 and an as-synthesized methyl-esterified alginic. Different analyses such as Fourier-transform infrared (FTIR), energy-dispersive X-ray (EDX) spectroscopy, field-emission scanning-electron microscopy (FESEM), vibrating-sample magnetometer (VSM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and BET (Brunauer–Emmett–Teller) have been used to confirm the structure of the fabricated catalyst. The magnetic properties of the Alg@SBA-15/Fe3O4 catalytic system imparted by Fe3O4 MNPs enable it to be conveniently isolated from the reaction mixture by using an external magnet. According to the obtained results, the prepared nanocatalyst has high thermal stability and it lost approximately 26% of its weight up to 800 °C. Interestingly, a small amount of prepared nanocatalyst (0.02 g) has shown excellent catalytic performance in the synthesis of pyrazolopyridine derivatives (90–97%) in a short reaction time (20–30 min) at room temperature which can be attributed to its porous structure and large surface area, and the presence of many acidic and basic functional groups. In general, it can be argued that the Alg@SBA-15/Fe3O4 nanocomposite deserves more attention due to its non-toxicity, ease of preparation, good recyclability, and its high catalytic efficiency. Pyrazolopyridines are common scaffolds in various bioactive compounds, which have several therapeutic effects and unique pharmacological properties.![]()
Collapse
Affiliation(s)
- Fereshte Hassanzadeh-Afruzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and TechnologyTehran 16846-13114Iran+98-21-73021584+98-21-73228313
| | - Zeinab Amiri-Khamakani
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and TechnologyTehran 16846-13114Iran+98-21-73021584+98-21-73228313
| | - Mahdi Saeidirad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and TechnologyTehran 16846-13114Iran+98-21-73021584+98-21-73228313
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and TechnologyTehran 16846-13114Iran+98-21-73021584+98-21-73228313
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and TechnologyTehran 16846-13114Iran+98-21-73021584+98-21-73228313
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and TechnologyTehran 16846-13114Iran+98-21-73021584+98-21-73228313
| |
Collapse
|
6
|
Valiey E, Dekamin MG. Design and characterization of an urea-bridged PMO supporting Cu(II) nanoparticles as highly efficient heterogeneous catalyst for synthesis of tetrazole derivatives. Sci Rep 2022; 12:18139. [PMID: 36307538 PMCID: PMC9616949 DOI: 10.1038/s41598-022-22905-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/20/2022] [Indexed: 12/30/2022] Open
Abstract
In this work, a new periodic mesoporous organosilica with urea-bridges produced by the reaction of (3-aminopropyl)triethoxysilane and toluene-2,4-diisocyanate (APS-TDU-PMO) is introduced. The obtained APS-TDU-PMO was found to be an appropriate support for loading of Cu(II) nanoparticles to afford supramolecular Cu@APS-TDU-PMO nanocomposite. Uniformity and mesoporosity of both synthesized nanomaterials including APS-TDU-PMO and Cu@APS-TDU-PMO were proved by different spectroscopic, microscopic or analytical techniques including FTIR, EDX, XRD, FESEM, TEM, BET, TGA and DTA. Furthermore, the prepared Cu@APS-TDU-PMO nanomaterial was also used, as a heterogeneous and recyclable catalyst, for the synthesis of tetrazole derivatives through cascade condensation, concerted cycloaddition and tautomerization reactions. Indeed, the main advantages of this Cu@APS-TDU-PMO is its simple preparation and high catalytic activity as well as proper surface area which enable it to work under solvent-free conditions. Also, the introduced Cu@APS-TDU-PMO heterogeneous catalyst showed good stability and reusability for six consecutive runs to address more green chemistry principles.
Collapse
Affiliation(s)
- Ehsan Valiey
- grid.411748.f0000 0001 0387 0587Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114 Iran
| | - Mohammad G. Dekamin
- grid.411748.f0000 0001 0387 0587Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114 Iran
| |
Collapse
|
7
|
Kolvari E, Marandi A, Kheyrodine N. Magnetic cellulose nanocrystals as efficient support for indium(III) in the synthesis of tetrazoles and phthalazines. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Safapoor S, Dekamin MG, Akbari A, Naimi-Jamal MR. Synthesis of (E)-2-(1H-tetrazole-5-yl)-3-phenylacrylenenitrile derivatives catalyzed by new ZnO nanoparticles embedded in a thermally stable magnetic periodic mesoporous organosilica under green conditions. Sci Rep 2022; 12:10723. [PMID: 35750767 PMCID: PMC9232489 DOI: 10.1038/s41598-022-13011-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 05/19/2022] [Indexed: 11/20/2022] Open
Abstract
ZnO nanoparticles embedded in a magnetic isocyanurate-based periodic mesoporous organosilica (Fe3O4@PMO-ICS-ZnO) were prepared through a modified environmentally-benign procedure for the first time and properly characterized by appropriate spectroscopic and analytical methods or techniques used for mesoporous materials. The new thermally stable Fe3O4@PMO-ICS-ZnO nanomaterial with proper active sites and surface area as well as uniform particle size was investigated for the synthesis of medicinally important tetrazole derivatives through cascade condensation and concerted 1,3-cycloaddition reactions as a representative of the Click Chemistry concept. The desired 5-substituted-1H-tetrazole derivatives were smoothly prepared in high to quantitative yields and good purity in EtOH under reflux conditions. Low catalyst loading, short reaction time and the use of green solvents such as EtOH and water instead of carcinogenic DMF as well as easy separation and recyclability of the catalyst for at least five consecutive runs without significant loss of its activity are notable advantages of this new protocol compared to other recent introduced procedures.
Collapse
Affiliation(s)
- Sajedeh Safapoor
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Arezoo Akbari
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - M Reza Naimi-Jamal
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| |
Collapse
|
9
|
Ahghari MA, Ahghari MR, Kamalzare M, Maleki A. Design, synthesis, and characterization of novel eco-friendly chitosan-AgIO 3 bionanocomposite and study its antibacterial activity. Sci Rep 2022; 12:10491. [PMID: 35729281 PMCID: PMC9213402 DOI: 10.1038/s41598-022-14501-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/08/2022] [Indexed: 11/10/2022] Open
Abstract
This work reports a facile and green approach to preparing AgIO3 nanoparticles decorated with chitosan (chitosan-AgIO3). The bionanocomposite was fully characterized by Fourier transform infrared (FTIR), scanning electron microscopy (SEM) images, energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction analysis (XRD). The antibacterial effect of chitosan-AgIO3 bionanocomposite was investigated for Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus saprophyticus, Escherichia coli, and Staphylococcus aureus as pathogen microorganisms via the plate count method, disk diffusion method, and optical density (OD) measurements. The antibacterial performance of the bionanocomposite was compared with two commercial drugs (penicillin and silver sulfadiazine) and in some cases, the synthesized bionanocomposite has a better effect in the eradication of bacteria. The bionanocomposite represented great antibacterial properties. Flow cytometry was performed to investigate the mechanism of bionanocomposite as an antibacterial agent. Reactive oxygen species (ROS) production was responsible for the bactericidal mechanisms. These results demonstrate that the chitosan-AgIO3 bionanocomposite, as a kind of antibacterial material, got potential for application in a broad range of biomedical applications and water purification. The design and synthesis of green and biodegradable antibacterial materials with simple processes and by using readily available materials cause the final product to be economically affordable and could be scaled in different industries.
Collapse
Affiliation(s)
- Mohammad Ali Ahghari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Reza Ahghari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Maryam Kamalzare
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
10
|
Hassanzadeh-Afruzi F, Esmailzadeh F, Asgharnasl S, Ganjali F, Taheri-Ledari R, Maleki A. Efficient removal of Pb(II)/Cu(II) from aqueous samples by a guanidine-functionalized SBA-15/Fe3O4. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120956] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Zare-Bakheir E, Ahghari MR, Maleki A, Ghafuri H. Synthesis of Cu(OH) 2 nanowires modified by Fe 3O 4@SiO 2 nanocomposite via green and innovative method with antibacterial activity and investigation of magnetic behaviours. ROYAL SOCIETY OPEN SCIENCE 2022; 9:212025. [PMID: 35706673 PMCID: PMC9156904 DOI: 10.1098/rsos.212025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/09/2022] [Indexed: 05/03/2023]
Abstract
In this study, green synthesis of modified Cu(OH)2 nanowires by Fe3O4@SiO2 core-shell nanospheres was easily performed via chemical reduction. In other words, the direct coating of Cu(OH)2 on Fe3O4@SiO2 was successfully realized without the extra complicated procedures. Various concentrations of synthesized nanocomposites were tested on pathogenic and nosocomial bacteria. In this study, the structural information and characterization of Fe3O4@SiO2/Cu(OH)2 nanowires (FSCNWs) were obtained using FE-SEM, FT-IR, EDX and X-ray diffraction. This nanocomposite can effectively kill important infectious bacteria, including Staphylococcus aureus, Escherichia coli, Staphylococcus saprophyticus, Pseudomonas aeruginosa and Klebsiella pneumoniae. Studies have shown that FSCNW nanocomposites affect common antibiotic-resistant bacteria. This result confirms the function of FSCNW as an effective, beneficial and environmentally friendly antibacterial agent that can used in a wide range of applications in medicine. FSCNWs can be separated conveniently from bacteria-containing solutions using a magnet. Compared with nanocomposites based on other metals such as silver and gold, the use of FSCNWs in water treatment has been recommended because of the precursor of copper for its low price and less toxicity. In addition to its special properties such as mild reaction conditions, green synthesis methods, admissible magnetic properties, easy separation, high antibacterial activity and beneficial efficiency.
Collapse
Affiliation(s)
- Ensiye Zare-Bakheir
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mohammad Reza Ahghari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
12
|
Arora B, Sharma S, Dutta S, Sharma A, Yadav S, Rana P, Rana P, Sharma RK. A sustainable gateway to access 1,8-dioxo-octahydroxanthene scaffolds via a surface-engineered halloysite-based magnetically responsive catalyst. NEW J CHEM 2022. [DOI: 10.1039/d1nj05509g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A covalently modified, surface-engineered Cu(ii)@DCH@CPTMS@MHNT nanocatalyst is synthesized, which showed incredible catalytic activity in accessing a library of xanthene scaffolds.
Collapse
Affiliation(s)
- Bhavya Arora
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - Shivani Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - Sriparna Dutta
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - Aditi Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - Sneha Yadav
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - Pooja Rana
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - Pooja Rana
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - R. K. Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India
| |
Collapse
|
13
|
Kamalzare M, Ahghari MR, Bayat M, Maleki A. Fe 3O 4@chitosan-tannic acid bionanocomposite as a novel nanocatalyst for the synthesis of pyranopyrazoles. Sci Rep 2021; 11:20021. [PMID: 34625599 PMCID: PMC8501051 DOI: 10.1038/s41598-021-99121-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023] Open
Abstract
Recently magnetic nanocatalyst has attracted considerable attention because of its unique properties, including high performance, easy separation from the reaction mixture, and recyclability. In this study, a novel magnetic bionanocomposite was synthesized with chitosan and tannic acid as a natural material. The synthesized bionanocatalyst was characterized by essential analysis. Fe3O4@chitosan-tannic acid as a heterogeneous nanocatalyst was successfully applied to synthesize pyranopyrazole and its derivatives by a one-pot four-component reaction of malononitrile, ethyl acetoacetate, hydrazine hydrate, and various aromatic aldehyde. At the end of the reaction, the nanocatalyst was separated from the reaction mixture and was reused several times with no significant decrease in its catalytic performance. Simple purification of products, the ability for recovering and reusing the nanocatalyst, eco-friendliness, high yields of pure products, mild reaction conditions, short reaction time, non-toxicity, economically affordable are some of the advantages of using the fabricated nanocatalyst in the synthesis of pyranopyrazole.
Collapse
Affiliation(s)
- Maryam Kamalzare
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Reza Ahghari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
14
|
Hassanzadeh-Afruzi F, Asgharnasl S, Mehraeen S, Amiri-Khamakani Z, Maleki A. Guanidinylated SBA-15/Fe 3O 4 mesoporous nanocomposite as an efficient catalyst for the synthesis of pyranopyrazole derivatives. Sci Rep 2021; 11:19852. [PMID: 34615925 PMCID: PMC8494731 DOI: 10.1038/s41598-021-99120-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, a novel mesoporous nanocomposite was fabricated in several steps. In this regard, SBA-15 was prepared by the hydrothermal method, next it was magnetized by in-situ preparation of Fe3O4 MNPs. After that, the as-prepared SBA-15/Fe3O4 functionalized with 3-minopropyltriethoxysilane (APTES) via post-synthesis approach. Then, the guanidinylated SBA-15/Fe3O4 was obtained by nucleophilic addition of APTES@SBA-15/Fe3O4 to cyanimide. The prepared nanocomposite exhibited excellent catalytic activity in the synthesis of dihydropyrano[2,3-c]pyrazole derivatives which can be related to its physicochemical features such as strong basic sites (presented in guanidine group), Lewis acid site (presented in Fe3O4), high porous structure, and high surface area. The characterization of the prepared mesoporous nanocomposite was well accomplished by different techniques such as FT-IR, EDX, FESEM, TEM, VSM, TGA, XRD and BET. Furthermore, the magnetic catalyst was reused at least six consequent runs without considerable reduction in its catalytic activity.
Collapse
Affiliation(s)
- Fereshte Hassanzadeh-Afruzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Somayeh Asgharnasl
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Sara Mehraeen
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Zeinab Amiri-Khamakani
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran.
| |
Collapse
|
15
|
Jullakan S, Bunkoed O. A nanocomposite adsorbent of metallic copper, polypyrrole, halloysite nanotubes and magnetite nanoparticles for the extraction and enrichment of sulfonamides in milk. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1180:122900. [PMID: 34418797 DOI: 10.1016/j.jchromb.2021.122900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022]
Abstract
A composite adsorbent composed of metallic copper (Cu), polypyrrole (PPy), halloysite nanotubes (HNTs) and magnetite nanoparticles (Fe3O4) was developed to extract and enrich sulfonamides by dispersive magnetic solid phase extraction. The composite could adsorb sulfonamides via hydrogen bonding and hydrophobic, π-π and π-electron-metal interactions. The extraction conditions were optimized and the developed composite adsorbent was characterized and provided a large surface area that enhanced extraction efficiency for sulfonamides. Coupled with high performance liquid chromatography, the adsorbent was used to quantitatively determine sulfonamides found in milk samples. The response of the developed method exhibited linearity from 5.0 to 150.0 μg kg-1 for sulfathiazole, and from 2.5 to 100.0 μg kg-1 for sulfamerazine, sulfamonomethoxine and sulfadimethoxine. Limits of detection were between 2.5 and 5.0 μg kg-1. Recoveries of sulfonamides in milk samples ranged from 83.0 to 99.2% with RSDs lower than 6%. The developed composite adsorbent showed good reproducibility and reusability.
Collapse
Affiliation(s)
- Sirintorn Jullakan
- Center of Excellence for Innovation in Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Opas Bunkoed
- Center of Excellence for Innovation in Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
16
|
Hassanzadeh‐Afruzi F, Dogari H, Esmailzadeh F, Maleki A. Magnetized melamine‐modified polyacrylonitrile (PAN@melamine/Fe
3
O
4
) organometallic nanomaterial: Preparation, characterization, and application as a multifunctional catalyst in the synthesis of bioactive dihydropyrano [2,3‐c]pyrazole and 2‐amino‐3‐cyano 4H‐pyran derivatives. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6363] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Fereshte Hassanzadeh‐Afruzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry Iran University of Science and Technology Tehran Iran
| | - Haniyeh Dogari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry Iran University of Science and Technology Tehran Iran
| | - Farhad Esmailzadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry Iran University of Science and Technology Tehran Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry Iran University of Science and Technology Tehran Iran
| |
Collapse
|
17
|
Mousavi H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int J Biol Macromol 2021; 186:1003-1166. [PMID: 34174311 DOI: 10.1016/j.ijbiomac.2021.06.123] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Heterocyclic compounds are among the most prestigious and valuable chemical molecules with diverse and magnificent applications in various sciences. Due to the remarkable and numerous properties of the heterocyclic frameworks, the development of efficient and convenient synthetic methods for the preparation of such outstanding compounds is of great importance. Undoubtedly, catalysis has a conspicuous role in modern chemical synthesis and green chemistry. Therefore, when designing a chemical reaction, choosing and or preparing powerful and environmentally benign simple catalysts or complicated catalytic systems for an acceleration of the chemical reaction is a pivotal part of work for synthetic chemists. Chitosan, as a biocompatible and biodegradable pseudo-natural polysaccharide is one of the excellent choices for the preparation of suitable catalytic systems due to its unique properties. In this review paper, every effort has been made to cover all research articles in the field of one-pot synthesis of heterocyclic frameworks in the presence of chitosan-based catalytic systems, which were published roughly by the first quarter of 2020. It is hoped that this review paper can be a little help to synthetic scientists, methodologists, and catalyst designers, both on the laboratory and industrial scales.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|