1
|
Palma-Jacinto JA, López-López E, Medina-Franco JL, Montero-Ruíz O, Santiago-Roque I. Putative mechanism of a multivitamin treatment against insulin resistance. Adipocyte 2024; 13:2369777. [PMID: 38937879 PMCID: PMC11216102 DOI: 10.1080/21623945.2024.2369777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
Insulin resistance is caused by the abnormal secretion of proinflammatory cytokines in adipose tissue, which is induced by an increase in lipid accumulation in adipocytes, hepatocytes, and myocytes. The inflammatory pathway involves multiple targets such as nuclear factor kappa B, inhibitor of nuclear factor κ-B kinase, and mitogen-activated protein kinase. Vitamins are micronutrients with anti-inflammatory activities that have unclear mechanisms. The present study aimed to describe the putative mechanisms of vitamins involved in the inflammatory pathway of insulin resistance. The strategy to achieve this goal was to integrate data mining and analysis, target prediction, and molecular docking simulation calculations to support our hypotheses. Our results suggest that the multitarget activity of vitamins A, B1, B2, B3, B5, B6, B7, B12, C, D3, and E inhibits nuclear factor kappa B and mitogen-activated protein kinase, in addition to vitamins A and B12 against inhibitor of nuclear factor κ-B kinase. The findings of this study highlight the pharmacological potential of using an anti-inflammatory and multitarget treatment based on vitamins and open new perspectives to evaluate the inhibitory activity of vitamins against nuclear factor kappa B, mitogen-activated protein kinase, and inhibitor of nuclear factor κ-B kinase in an insulin-resistant context.
Collapse
Affiliation(s)
- José Antonio Palma-Jacinto
- Laboratory of Biochemistry and Neurotoxicology, Faculty of Bioanalysis-Xalapa, Universidad Veracruzana, Médicos y Odontólogos S/N Unidad del Bosque, Xalapa, Mexico
| | - Edgar López-López
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Chemistry and Graduate Program in Pharmacology, Center for Research, Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - José Luis Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Oreth Montero-Ruíz
- Laboratory of Biochemistry and Neurotoxicology, Faculty of Bioanalysis-Xalapa, Universidad Veracruzana, Médicos y Odontólogos S/N Unidad del Bosque, Xalapa, Mexico
| | - Isela Santiago-Roque
- Laboratory of Biochemistry and Neurotoxicology, Faculty of Bioanalysis-Xalapa, Universidad Veracruzana, Médicos y Odontólogos S/N Unidad del Bosque, Xalapa, Mexico
| |
Collapse
|
2
|
Peralta-Moreno MN, Mena Y, Ortega-Alarcon D, Jimenez-Alesanco A, Vega S, Abian O, Velazquez-Campoy A, Thomson TM, Pinto M, Granadino-Roldán JM, Santos Tomas M, Perez JJ, Rubio-Martinez J. Shedding Light on Dark Chemical Matter: The Discovery of a SARS-CoV-2 M pro Main Protease Inhibitor through Intensive Virtual Screening and In Vitro Evaluation. Int J Mol Sci 2024; 25:6119. [PMID: 38892306 PMCID: PMC11172690 DOI: 10.3390/ijms25116119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The development of specific antiviral therapies targeting SARS-CoV-2 remains fundamental because of the continued high incidence of COVID-19 and limited accessibility to antivirals in some countries. In this context, dark chemical matter (DCM), a set of drug-like compounds with outstanding selectivity profiles that have never shown bioactivity despite being extensively assayed, appears to be an excellent starting point for drug development. Accordingly, in this study, we performed a high-throughput screening to identify inhibitors of the SARS-CoV-2 main protease (Mpro) using DCM compounds as ligands. Multiple receptors and two different docking scoring functions were employed to identify the best molecular docking poses. The selected structures were subjected to extensive conventional and Gaussian accelerated molecular dynamics. From the results, four compounds with the best molecular behavior and binding energy were selected for experimental testing, one of which presented inhibitory activity with a Ki value of 48 ± 5 μM. Through virtual screening, we identified a significant starting point for drug development, shedding new light on DCM compounds.
Collapse
Affiliation(s)
- Maria Nuria Peralta-Moreno
- Department of Materials Science and Physical Chemistry, Institut de Recerca en Quimica Teòrica i Computacional (IQTCUB), University of Barcelona (UB), 08028 Barcelona, Spain; (M.N.P.-M.); (Y.M.)
| | - Yago Mena
- Department of Materials Science and Physical Chemistry, Institut de Recerca en Quimica Teòrica i Computacional (IQTCUB), University of Barcelona (UB), 08028 Barcelona, Spain; (M.N.P.-M.); (Y.M.)
| | - David Ortega-Alarcon
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (D.O.-A.); (A.J.-A.); (S.V.); (O.A.); (A.V.-C.)
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Ana Jimenez-Alesanco
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (D.O.-A.); (A.J.-A.); (S.V.); (O.A.); (A.V.-C.)
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Sonia Vega
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (D.O.-A.); (A.J.-A.); (S.V.); (O.A.); (A.V.-C.)
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (D.O.-A.); (A.J.-A.); (S.V.); (O.A.); (A.V.-C.)
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain;
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (D.O.-A.); (A.J.-A.); (S.V.); (O.A.); (A.V.-C.)
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain;
| | - Timothy M. Thomson
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain;
- Institute of Molecular Biology of Barcelona (IBMB-CSIC), 08028 Barcelona, Spain
- Instituto de investigaciones de la Altura, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, Lima 15102, Peru
| | - Marta Pinto
- AbbVie Deutschland GmbH & Co. KG, Computational Drug Discovery, Knollstrasse, 67061 Ludwigshafen, Germany;
| | - José M. Granadino-Roldán
- Departamento de Química Física y Analítica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus “Las Lagunillas” s/n, 23071 Jaén, Spain;
| | - Maria Santos Tomas
- Department of Architecture Technology, Universitat Politecnica de Catalunya (UPC), Av. Diagonal 649, 08028 Barcelona, Spain;
| | - Juan J. Perez
- Department of Chemical Engineering, Universitat Politecnica de Catalunya (UPC), Barcelona Tech. Av. Diagonal, 647, 08028 Barcelona, Spain;
| | - Jaime Rubio-Martinez
- Department of Materials Science and Physical Chemistry, Institut de Recerca en Quimica Teòrica i Computacional (IQTCUB), University of Barcelona (UB), 08028 Barcelona, Spain; (M.N.P.-M.); (Y.M.)
| |
Collapse
|
3
|
Girgis AS, Panda SS, Kariuki BM, Bekheit MS, Barghash RF, Aboshouk DR. Indole-Based Compounds as Potential Drug Candidates for SARS-CoV-2. Molecules 2023; 28:6603. [PMID: 37764378 PMCID: PMC10537473 DOI: 10.3390/molecules28186603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
The COVID-19 pandemic has posed a significant threat to society in recent times, endangering human health, life, and economic well-being. The disease quickly spreads due to the highly infectious SARS-CoV-2 virus, which has undergone numerous mutations. Despite intense research efforts by the scientific community since its emergence in 2019, no effective therapeutics have been discovered yet. While some repurposed drugs have been used to control the global outbreak and save lives, none have proven universally effective, particularly for severely infected patients. Although the spread of the disease is generally under control, anti-SARS-CoV-2 agents are still needed to combat current and future infections. This study reviews some of the most promising repurposed drugs containing indolyl heterocycle, which is an essential scaffold of many alkaloids with diverse bio-properties in various biological fields. The study also discusses natural and synthetic indole-containing compounds with anti-SARS-CoV-2 properties and computer-aided drug design (in silico studies) for optimizing anti-SARS-CoV-2 hits/leads.
Collapse
Affiliation(s)
- Adel S. Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (M.S.B.); (R.F.B.); (D.R.A.)
| | - Siva S. Panda
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Benson M. Kariuki
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK; (B.M.K.)
| | - Mohamed S. Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (M.S.B.); (R.F.B.); (D.R.A.)
| | - Reham F. Barghash
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (M.S.B.); (R.F.B.); (D.R.A.)
| | - Dalia R. Aboshouk
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (M.S.B.); (R.F.B.); (D.R.A.)
| |
Collapse
|
4
|
López-López E, Cerda-García-Rojas CM, Medina-Franco JL. Consensus Virtual Screening Protocol Towards the Identification of Small Molecules Interacting with the Colchicine Binding Site of the Tubulin-microtubule System. Mol Inform 2023; 42:e2200166. [PMID: 36175374 PMCID: PMC10078098 DOI: 10.1002/minf.202200166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/29/2022] [Indexed: 01/12/2023]
Abstract
Modification of the tubulin-microtubule (Tub-Mts) system has generated effective strategies for developing different treatments for cancer. A huge amount of clinical data about inhibitors of the tubulin-microtubule system have supported and validated the studies on this pharmacological target. However, many tubulin-microtubule inhibitors have been developed from representative and common scaffolds that cover a small region of the chemical space with limited structural innovation. The main goal of this study is to develop the first consensus virtual screening protocol for natural products (ligand- and structure-based drug design methods) tuned for the identification of new potential inhibitors of the Tub-Mts system. A combined strategy that involves molecular similarity, molecular docking, pharmacophore modeling, and in silico ADMET prediction has been employed to prioritize the selections of potential inhibitors of the Tub-Mts system. Five compounds were selected and further studied using molecular dynamics and binding energy predictions to characterize their possible binding mechanisms. Their structures correspond to 5-[2-(4-hydroxy-3-methoxyphenyl) ethyl]-2,3-dimethoxyphenol (1), 9,10-dihydro-3,4-dimethoxy-2,7-phenanthrenediol (2), 2-(3,4-dimethoxyphenyl)-5,7-dihydroxy-6-methoxy-4H-1-benzopyran-4-one (3), 13,14-epoxyparvifoline-4',5',6'-trimethoxybenzoate (4), and phenylmethyl 6-hydroxy-2,3-dimethoxybenzoate (5). Compounds 1-3 have been associated with literature reports that confirm their activity against several cancer cell lines, thus supporting the utility of this protocol.
Collapse
Affiliation(s)
- Edgar López-López
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.,Departamento de Química y Programa de Posgrado en Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, 07000, Mexico
| | - Carlos M Cerda-García-Rojas
- Departamento de Química y Programa de Posgrado en Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, 07000, Mexico
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| |
Collapse
|
5
|
Progress and Impact of Latin American Natural Product Databases. Biomolecules 2022; 12:biom12091202. [PMID: 36139041 PMCID: PMC9496143 DOI: 10.3390/biom12091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Natural products (NPs) are a rich source of structurally novel molecules, and the chemical space they encompass is far from being fully explored. Over history, NPs have represented a significant source of bioactive molecules and have served as a source of inspiration for developing many drugs on the market. On the other hand, computer-aided drug design (CADD) has contributed to drug discovery research, mitigating costs and time. In this sense, compound databases represent a fundamental element of CADD. This work reviews the progress toward developing compound databases of natural origin, and it surveys computational methods, emphasizing chemoinformatic approaches to profile natural product databases. Furthermore, it reviews the present state of the art in developing Latin American NP databases and their practical applications to the drug discovery area.
Collapse
|
6
|
Cheung LK, Yada RY. Predicting global diet-disease relationships at the atomic level: a COVID-19 case study. Curr Opin Food Sci 2022; 44:100804. [PMID: 35004187 PMCID: PMC8721929 DOI: 10.1016/j.cofs.2021.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past few months, numerous studies harnessed in silico methods such as molecular docking to evaluate food compounds for inhibitory activity against coronavirus infection and replication. These studies capitalize on the efficiency of computational methods to quickly guide subsequent research and examine diet-disease relationships, and their sudden widespread utility may signal new opportunities for future antiviral and bioactive food research. Using Coronavirus Disease 2019 (COVID-19) research as a case study, we herein provide an overview of findings from studies using molecular docking to study food compounds as potential inhibitors of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), explore considerations for the critical interpretation of study findings, and discuss how these studies help shape larger conversations of diet and disease.
Collapse
Affiliation(s)
- Lennie Ky Cheung
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rickey Y Yada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
7
|
Manandhar S, Pai KSR, Krishnamurthy PT, Kiran AVVVR, Kumari GK. Identification of novel TMPRSS2 inhibitors against SARS-CoV-2 infection: a structure-based virtual screening and molecular dynamics study. Struct Chem 2022; 33:1529-1541. [PMID: 35345416 PMCID: PMC8941836 DOI: 10.1007/s11224-022-01921-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/13/2022] [Indexed: 12/27/2022]
Abstract
The scientific insights gained from the severe acute respiratory syndrome (SARS) and the middle east respiratory syndrome (MERS) outbreaks are helping scientists to fast-track the antiviral drug discovery process against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronaviruses, as well as influenza viruses, depend on host type 2 transmembrane serine protease, TMPRSS2, for entry and propagation in the human cell. Recent studies show that SARS-CoV-2 also uses TMPRSS2 for its cell entry. In the present study, a structure-based virtual screening of 52,337, protease ligands downloaded from the Zinc database was carried out against the homology model of TMPRSS2 protein followed by the molecular dynamics-based simulation to identify potential TMPRSS2 hits. The virtual screening has identified 13 hits with a docking score range of -10.447 to -9.863 and glide energy range of -60.737 to -40.479 kcal/mol. The binding mode analysis shows that the hit molecules form H-bond (Asp180, Gly184 & Gly209), Pi-Pi stacking (His41), and salt bridge (Asp180) type of contacts with the active site residues of TMPRSS2. In the MD simulation of ZINC000013444414, ZINC000137976768, and ZINC000143375720 hits show that these molecules form a stable complex with TMPRSS2. The complex equilibrates well with a minimal RMSD and RMSF fluctuation. All three structures, as predicted in Glide XP docking, show a prominent interaction with the Asp180, Gly184, Gly209, and His41. Further, MD simulation also identifies a notable H-bond interaction with Ser181 for all three hits. Among these hits, ZINC000143375720 shows the most stable binding interaction with TMPRSS2. The present study is successful in identifying TMPRSS2 ligands from zinc data base for a possible application in the treatment of COVID-19.
Collapse
Affiliation(s)
- Suman Manandhar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104 India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104 India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty, The Nilgiris, 643 001 Tamil Nadu India
| | - Ammu V V V Ravi Kiran
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty, The Nilgiris, 643 001 Tamil Nadu India
| | - Garikapati Kusuma Kumari
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty, The Nilgiris, 643 001 Tamil Nadu India
| |
Collapse
|
8
|
Patel R, Prajapati J, Rao P, Rawal RM, Saraf M, Goswami D. Repurposing the antibacterial drugs for inhibition of SARS-CoV2-PLpro using molecular docking, MD simulation and binding energy calculation. Mol Divers 2021; 26:2189-2209. [PMID: 34591234 PMCID: PMC8481324 DOI: 10.1007/s11030-021-10325-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022]
Abstract
Papain-like protease (nsp-3; non-structural protein) of novel corona virus is an ideal target for developing drugs as it plays multiple important functions for viral growth and replication. For instance, role of nsp-3 has been recognized in cleavage of viral polyprotein; furthermore, in infected host it weakens the immune system via downregulating the production of type I interferon. This downregulation is promoted by removal of ubiquitin-like interferon-stimulated gene 15 protein (ISG15) from interferon-responsive factor 3 (IRF3) protein. Among known inhibitors of SARS-CoV-PLpro GRL0617 is by far the most effective inhibitor. As PLpro of SARS-CoV2 is having more than 80% similarity with SARS-CoV-PLpro, GRL0617 is reported to be effective even against SARS-CoV2. Owing to this similarity, certain key amino acids remain the same/conserved in both proteins. Among conserved amino acids Tyr268 for SARS-CoV2 and Tyr269 for SARS-CoV produce important hydrophobic interactions with aromatic rings of GRL0617. Here, in this study antibacterial compounds were collected from ZINC database, and they were filtered to select compounds that are having similar structural features as GRL0617. This filtered library of compound was then docked with SARS-CoV and CoV2-PLpro. Five hits were noted that were able to interact with Tyr268 (SARS-CoV2) and Tyr269 (SARS-CoV). Further, best hit 2-(2-((benzofuran-2-carboxamido)methyl)-5-methoxy-1H-indol-1-yl)acetic acid (ZINC44459905) was studied using molecular dynamic simulation where stability of protein–ligand complex as well as stability of produced interactions was noted.
Collapse
Affiliation(s)
- Rohit Patel
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Jignesh Prajapati
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Priyashi Rao
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Rakesh M Rawal
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Meenu Saraf
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Dweipayan Goswami
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
9
|
Szilágyi K, Flachner B, Hajdú I, Szaszkó M, Dobi K, Lőrincz Z, Cseh S, Dormán G. Rapid Identification of Potential Drug Candidates from Multi-Million Compounds' Repositories. Combination of 2D Similarity Search with 3D Ligand/Structure Based Methods and In Vitro Screening. Molecules 2021; 26:5593. [PMID: 34577064 PMCID: PMC8468386 DOI: 10.3390/molecules26185593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/23/2022] Open
Abstract
Rapid in silico selection of target focused libraries from commercial repositories is an attractive and cost-effective approach in early drug discovery. If structures of active compounds are available, rapid 2D similarity search can be performed on multimillion compounds' databases. This approach can be combined with physico-chemical parameter and diversity filtering, bioisosteric replacements, and fragment-based approaches for performing a first round biological screening. Our objectives were to investigate the combination of 2D similarity search with various 3D ligand and structure-based methods for hit expansion and validation, in order to increase the hit rate and novelty. In the present account, six case studies are described and the efficiency of mixing is evaluated. While sequentially combined 2D/3D similarity approach increases the hit rate significantly, sequential combination of 2D similarity with pharmacophore model or 3D docking enriched the resulting focused library with novel chemotypes. Parallel integrated approaches allowed the comparison of the various 2D and 3D methods and revealed that 2D similarity-based and 3D ligand and structure-based techniques are often complementary, and their combinations represent a powerful synergy. Finally, the lessons we learnt including the advantages and pitfalls of the described approaches are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - György Dormán
- TargetEx Ltd., Madách I. u. 31/2, 2120 Dunakeszi, Hungary; (K.S.); (B.F.); (I.H.); (M.S.); (K.D.); (Z.L.); (S.C.)
| |
Collapse
|
10
|
Xu T, Chen W, Zhou J, Dai J, Li Y, Zhao Y. Computational Analysis of Naturally Occurring Aristolochic Acid Analogues and Their Biological Sources. Biomolecules 2021; 11:1344. [PMID: 34572557 PMCID: PMC8471445 DOI: 10.3390/biom11091344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/18/2022] Open
Abstract
Aristolochic acids are known for nephrotoxicity, and implicated in multiple cancer types such as hepatocellular carcinomas demonstrated by recent studies. Natural products that are analogues to aristolochic acids have been constantly isolated from organisms; a larger chemical space of these compounds and a wider coverage of biological sources should be determined in consideration of the potential hazard of aristolochic acid analogues and the wide distribution of their biological sources in the nature. Therefore, we carried out an in silico research of naturally occurring aristolochic acid analogues and their biological sources, as a supplement to existing studies. The result shows a chemical space of 238 naturally occurring aristolochic acid analogues that are present in 175 species of biological sources including 44 traditional medicines. With the computational estimation for toxicity and the implication in hazard assessment of a biological source with the presence of aristolochic acid analogues, we propose that additional awareness should be raised to the public for avoidance of toxic species, especially those that are used as herbal medicines and easily accessible.
Collapse
Affiliation(s)
- Tingjun Xu
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China; (W.C.); (J.Z.); (J.D.); (Y.L.); (Y.Z.)
| | | | | | | | | | | |
Collapse
|
11
|
Muratov EN, Amaro R, Andrade CH, Brown N, Ekins S, Fourches D, Isayev O, Kozakov D, Medina-Franco JL, Merz KM, Oprea TI, Poroikov V, Schneider G, Todd MH, Varnek A, Winkler DA, Zakharov AV, Cherkasov A, Tropsha A. A critical overview of computational approaches employed for COVID-19 drug discovery. Chem Soc Rev 2021; 50:9121-9151. [PMID: 34212944 PMCID: PMC8371861 DOI: 10.1039/d0cs01065k] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Indexed: 01/18/2023]
Abstract
COVID-19 has resulted in huge numbers of infections and deaths worldwide and brought the most severe disruptions to societies and economies since the Great Depression. Massive experimental and computational research effort to understand and characterize the disease and rapidly develop diagnostics, vaccines, and drugs has emerged in response to this devastating pandemic and more than 130 000 COVID-19-related research papers have been published in peer-reviewed journals or deposited in preprint servers. Much of the research effort has focused on the discovery of novel drug candidates or repurposing of existing drugs against COVID-19, and many such projects have been either exclusively computational or computer-aided experimental studies. Herein, we provide an expert overview of the key computational methods and their applications for the discovery of COVID-19 small-molecule therapeutics that have been reported in the research literature. We further outline that, after the first year the COVID-19 pandemic, it appears that drug repurposing has not produced rapid and global solutions. However, several known drugs have been used in the clinic to cure COVID-19 patients, and a few repurposed drugs continue to be considered in clinical trials, along with several novel clinical candidates. We posit that truly impactful computational tools must deliver actionable, experimentally testable hypotheses enabling the discovery of novel drugs and drug combinations, and that open science and rapid sharing of research results are critical to accelerate the development of novel, much needed therapeutics for COVID-19.
Collapse
Affiliation(s)
- Eugene N. Muratov
- UNC Eshelman School of Pharmacy, University of North CarolinaChapel HillNCUSA
| | - Rommie Amaro
- University of California in San DiegoSan DiegoCAUSA
| | | | | | - Sean Ekins
- Collaborations PharmaceuticalsRaleighNCUSA
| | - Denis Fourches
- Department of Chemistry, North Carolina State UniversityRaleighNCUSA
| | - Olexandr Isayev
- Department of Chemistry, Carnegie Melon UniversityPittsburghPAUSA
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook UniversityStony BrookNYUSA
| | | | - Kenneth M. Merz
- Department of Chemistry, Michigan State UniversityEast LansingMIUSA
| | - Tudor I. Oprea
- Department of Internal Medicine and UNM Comprehensive Cancer Center, University of New Mexico, AlbuquerqueNMUSA
- Department of Rheumatology and Inflammation Research, Gothenburg UniversitySweden
- Novo Nordisk Foundation Center for Protein Research, University of CopenhagenDenmark
| | | | - Gisbert Schneider
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of TechnologyZurichSwitzerland
| | | | - Alexandre Varnek
- Department of Chemistry, University of StrasbourgStrasbourgFrance
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido UniversitySapporoJapan
| | - David A. Winkler
- Monash Institute of Pharmaceutical Sciences, Monash UniversityMelbourneVICAustralia
- School of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe UniversityBundooraAustralia
- School of Pharmacy, University of NottinghamNottinghamUK
| | | | - Artem Cherkasov
- Vancouver Prostate Centre, University of British ColumbiaVancouverBCCanada
| | - Alexander Tropsha
- UNC Eshelman School of Pharmacy, University of North CarolinaChapel HillNCUSA
| |
Collapse
|
12
|
Chikhale R, Sinha SK, Wanjari M, Gurav NS, Ayyanar M, Prasad S, Khanal P, Dey YN, Patil RB, Gurav SS. Computational assessment of saikosaponins as adjuvant treatment for COVID-19: molecular docking, dynamics, and network pharmacology analysis. Mol Divers 2021; 25:1889-1904. [PMID: 33492566 PMCID: PMC7829483 DOI: 10.1007/s11030-021-10183-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022]
Abstract
Saikosaponins are major biologically active triterpenoids, usually as glucosides, isolated from Traditional Chinese Medicines (TCM) such as Bupleurum spp., Heteromorpha spp., and Scrophularia scorodonia with their antiviral and immunomodulatory potential. This investigation presents molecular docking, molecular dynamics simulation, and free energy calculation studies of saikosaponins as adjuvant therapy in the treatment for COVID19. Molecular docking studies for 23 saikosaponins on the crystal structures of the extracellular domains of human lnterleukin-6 receptor (IL6), human Janus Kinase-3 (JAK3), and dehydrogenase domain of Cylindrospermum stagnale NADPH-oxidase 5 (NOX5) were performed, and selected protein-ligand complexes were subjected to 100 ns molecular dynamics simulations. The molecular dynamics trajectories were subjected to free energy calculation by the MM-GBSA method. Molecular docking and molecular dynamics simulation studies revealed that IL6 in complex with Saikosaponin_U and Saikosaponin_V, JAK3 in complex with Saikosaponin_B4 and Saikosaponin_I, and NOX5 in complex with Saikosaponin_BK1 and Saikosaponin_C have good docking and molecular dynamics profiles. However, the Janus Kinase-3 is the best interacting partner for the saikosaponin compounds. The network pharmacology analysis suggests saikosaponins interact with the proteins CAT Gene CAT (Catalase) and Checkpoint kinase 1 (CHEK1); both of these enzymes play a major role in cell homeostasis and DNA damage during infection, suggesting a possible improvement in immune response toward COVID-19.
Collapse
Affiliation(s)
- Rupesh Chikhale
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Saurabh K Sinha
- Department of Pharmaceutical Sciences, Mohanlal Shukhadia University, Udaipur, Rajasthan, 313 001, India
| | - Manish Wanjari
- Regional Ayurveda Research Institute for Drug Development, Gwalior, Madhya Pradesh, 474009, India
| | - Nilambari S Gurav
- PES's Rajaram and Tarabai Bandekar College of Pharmacy, Goa University, Ponda, Goa, 403401, India
| | - Muniappan Ayyanar
- Department of Botany, A. Veeriya Vandayar Memorial Sri Pushpam College (Autonomous), Affiliated To Bharathidasan University, Poondi, Thanjavur, 613 503, India
| | - Satyendra Prasad
- Department of Pharmaceutical Sciences, R.T.M. University, Nagpur, Maharashtra, 440033, India
| | - Pukar Khanal
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010, India
| | - Yadu Nandan Dey
- School of Pharmaceutical Technology, Adamas University, Kolkata, West Bengal, 700126, India
| | - Rajesh B Patil
- Sinhgad Technical Education Society's, Smt. Kashibai Navale College of Pharmacy, Pune, Maharashtra, India.
| | - Shailendra S Gurav
- Department of Pharmacognosy and Phytochemistry, Goa College of Pharmacy, Goa University, Panaji, Goa, 403 001, India.
| |
Collapse
|
13
|
Sabe VT, Ntombela T, Jhamba LA, Maguire GEM, Govender T, Naicker T, Kruger HG. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. Eur J Med Chem 2021; 224:113705. [PMID: 34303871 DOI: 10.1016/j.ejmech.2021.113705] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 12/30/2022]
Abstract
Computer-aided drug design (CADD) is one of the pivotal approaches to contemporary pre-clinical drug discovery, and various computational techniques and software programs are typically used in combination, in a bid to achieve the desired outcome. Several approved drugs have been developed with the aid of CADD. On SciFinder®, we evaluated more than 600 publications through systematic searching and refining, using the terms, virtual screening; software methods; computational studies and publication year, in order to obtain data concerning particular aspects of CADD. The primary focus of this review was on the databases screened, virtual screening and/or molecular docking software program used. Furthermore, we evaluated the studies that subsequently performed molecular dynamics (MD) simulations and we reviewed the software programs applied, the application of density functional theory (DFT) calculations and experimental assays. To represent the latest trends, the most recent data obtained was between 2015 and 2020, consequently the most frequently employed techniques and software programs were recorded. Among these, the ZINC database was the most widely preferred with an average use of 31.2%. Structure-based virtual screening (SBVS) was the most prominently used type of virtual screening and it accounted for an average of 57.6%, with AutoDock being the preferred virtual screening/molecular docking program with 41.8% usage. Following the screening process, 38.5% of the studies performed MD simulations to complement the virtual screening and GROMACS with 39.3% usage, was the popular MD software program. Among the computational techniques, DFT was the least applied whereby it only accounts for 0.02% average use. An average of 36.5% of the studies included reports on experimental evaluations following virtual screening. Ultimately, since the inception and application of CADD in pre-clinical drug discovery, more than 70 approved drugs have been discovered, and this number is steadily increasing over time.
Collapse
Affiliation(s)
- Victor T Sabe
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| | - Thandokuhle Ntombela
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| | - Lindiwe A Jhamba
- HIV Pathogenesis Program, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa; School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Thavendran Govender
- Faculty of Science and Agriculture, Department of Chemistry, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| |
Collapse
|
14
|
Identification of phytocompounds from Houttuynia cordata Thunb. as potential inhibitors for SARS-CoV-2 replication proteins through GC-MS/LC-MS characterization, molecular docking and molecular dynamics simulation. Mol Divers 2021; 26:365-388. [PMID: 33961167 PMCID: PMC8103070 DOI: 10.1007/s11030-021-10226-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a massive viral disease outbreak of international concerns. The present study is mainly intended to identify the bioactive phytocompounds from traditional antiviral herb Houttuynia cordata Thunb. as potential inhibitors for three main replication proteins of SARS-CoV-2, namely Main protease (Mpro), Papain-Like protease (PLpro) and ADP ribose phosphatase (ADRP) which control the replication process. A total of 177 phytocompounds were characterized from H. cordata using GC–MS/LC–MS and they were docked against three SARS-CoV-2 proteins (receptors), namely Mpro, PLpro and ADRP using Epic, LigPrep and Glide module of Schrödinger suite 2020-3. During docking studies, phytocompounds (ligand) 6-Hydroxyondansetron (A104) have demonstrated strong binding affinity toward receptors Mpro (PDB ID 6LU7) and PLpro (PDB ID 7JRN) with G-score of − 7.274 and − 5.672, respectively, while Quercitrin (A166) also showed strong binding affinity toward ADRP (PDB ID 6W02) with G-score -6.788. Molecular Dynamics Simulation (MDS) performed using Desmond module of Schrödinger suite 2020–3 has demonstrated better stability in the ligand–receptor complexes A104-6LU7 and A166-6W02 within 100 ns than the A104-7JRN complex. The ADME-Tox study performed using SwissADMEserver for pharmacokinetics of the selected phytocompounds 6-Hydroxyondansetron (A104) and Quercitrin (A166) demonstrated that 6-Hydroxyondansetron passes all the required drug discovery rules which can potentially inhibit Mpro and PLpro of SARS-CoV-2 without causing toxicity while Quercitrin demonstrated less drug-like properties but also demonstrated as potential inhibitor for ADRP. Present findings confer opportunities for 6-Hydroxyondansetron and Quercitrin to be developed as new therapeutic drug against COVID-19.
Collapse
|
15
|
Shiryaev VA, Klimochkin YN. Main Chemotypes of SARS-CoV-2 Reproduction Inhibitors. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [PMCID: PMC8188765 DOI: 10.1134/s107042802105002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The COVID-19 pandemic has forced scientists all over the world to focus their effort on searching for targeted drugs for coronavirus chemotherapy. The present review is an attempt to systematize low-molecular-weight compounds, including well-known pharmaceuticals and natural substances that have exhibited high anti-coronavirus activity, not in terms of action on their targets, but in terms of their structural type.
Collapse
Affiliation(s)
- V. A. Shiryaev
- Samara State Technical University, 443100 Samara, Russia
| | | |
Collapse
|
16
|
Núñez MJ, Díaz-Eufracio BI, Medina-Franco JL, Olmedo DA. Latin American databases of natural products: biodiversity and drug discovery against SARS-CoV-2. RSC Adv 2021; 11:16051-16064. [PMID: 35481202 PMCID: PMC9030473 DOI: 10.1039/d1ra01507a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/13/2021] [Indexed: 01/22/2023] Open
Abstract
In this study, we evaluated 3444 Latin American natural products using cheminformatic tools. We also characterized 196 compounds for the first time from the flora of El Salvador that were compared with the databases of secondary metabolites from Brazil, Mexico, and Panama, and 42 969 compounds (natural, semi-synthetic, synthetic) from different regions of the world. The overall analysis was performed using drug-likeness properties, molecular fingerprints of different designs, two parameters similarity, molecular scaffolds, and molecular complexity metrics. It was found that, in general, Salvadoran natural products have a large diversity based on fingerprints. Simultaneously, those belonging to Mexico and Panama present the greatest diversity of scaffolds compared to the other databases. This study provided evidence of the high structural complexity that Latin America's natural products have as a benchmark. The COVID-19 pandemic has had a negative effect on a global level. Thus, in the search for substances that may influence the coronavirus life cycle, the secondary metabolites from El Salvador and Panama were evaluated by docking against the endoribonuclease NSP-15, an enzyme involved in the SARS CoV-2 viral replication. We propose in this study three natural products as potential inhibitors of NSP-15.
Collapse
Affiliation(s)
- Marvin J Núñez
- Natural Product Research Laboratory, School of Chemistry and Pharmacy, University of El Salvador San Salvador El Salvador
| | - Bárbara I Díaz-Eufracio
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico Mexico City 04510 Mexico
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico Mexico City 04510 Mexico
| | - Dionisio A Olmedo
- Center for Pharmacognostic Research on Panamanian Flora (CIFLORPAN), College of Pharmacy, University de Panama Panama
- Sistema Nacional de Investigación (SNI), SENACYT Panamá
| |
Collapse
|
17
|
López-López E, Bajorath J, Medina-Franco JL. Informatics for Chemistry, Biology, and Biomedical Sciences. J Chem Inf Model 2020; 61:26-35. [PMID: 33382611 DOI: 10.1021/acs.jcim.0c01301] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Informatics is growing across disciplines, impacting several areas of chemistry, biology, and biomedical sciences. Besides the well-established bioinformatics discipline, other informatics-based interdisciplinary fields have been evolving over time, such as chemoinformatics and biomedical informatics. Other related research areas such as pharmacoinformatics, food informatics, epi-informatics, materials informatics, and neuroinformatics have emerged more recently and continue to develop as independent subdisciplines. The goals and impacts of each of these disciplines have typically been separately reviewed in the literature. Hence, it remains challenging to identify commonalities and key differences. Herein, we discuss in context three major informatics disciplines in the natural and life sciences including bioinformatics, chemoinformatics, and biomedical informatics and briefly comment on related subdisciplines. We focus the discussion on the definitions, historical background, actual impact, main similarities, and differences and evaluate the dissemination and teaching of bioinformatics, chemoinformatics, and biomedical informatics.
Collapse
Affiliation(s)
- Edgar López-López
- Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Av Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Endenicher Allee 19c, Rheinische Friedrich-Wilhelms-Universität, D-53115 Bonn, Germany
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Av Universidad 3000, Mexico City 04510, Mexico
| |
Collapse
|
18
|
Chávez-Hernández AL, Sánchez-Cruz N, Medina-Franco JL. Fragment Library of Natural Products and Compound Databases for Drug Discovery. Biomolecules 2020; 10:E1518. [PMID: 33172012 PMCID: PMC7694623 DOI: 10.3390/biom10111518] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/27/2022] Open
Abstract
Natural products and semi-synthetic compounds continue to be a significant source of drug candidates for a broad range of diseases, including coronavirus disease 2019 (COVID-19), which is causing the current pandemic. Besides being attractive sources of bioactive compounds for further development or optimization, natural products are excellent substrates of unique substructures for fragment-based drug discovery. To this end, fragment libraries should be incorporated into automated drug design pipelines. However, public fragment libraries based on extensive collections of natural products are still limited. Herein, we report the generation and analysis of a fragment library of natural products derived from a database with more than 400,000 compounds. We also report fragment libraries of a large food chemical database and other compound datasets of interest in drug discovery, including compound libraries relevant for COVID-19 drug discovery. The fragment libraries were characterized in terms of content and diversity.
Collapse
Affiliation(s)
| | | | - José L. Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico; (A.L.C.-H.); (N.S.-C.)
| |
Collapse
|
19
|
Francés-Monerris A, Hognon C, Miclot T, García-Iriepa C, Iriepa I, Terenzi A, Grandemange S, Barone G, Marazzi M, Monari A. Molecular Basis of SARS-CoV-2 Infection and Rational Design of Potential Antiviral Agents: Modeling and Simulation Approaches. J Proteome Res 2020; 19:4291-4315. [PMID: 33119313 PMCID: PMC7640986 DOI: 10.1021/acs.jproteome.0c00779] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Indexed: 01/18/2023]
Abstract
The emergence in late 2019 of the coronavirus SARS-CoV-2 has resulted in the breakthrough of the COVID-19 pandemic that is presently affecting a growing number of countries. The development of the pandemic has also prompted an unprecedented effort of the scientific community to understand the molecular bases of the virus infection and to propose rational drug design strategies able to alleviate the serious COVID-19 morbidity. In this context, a strong synergy between the structural biophysics and molecular modeling and simulation communities has emerged, resolving at the atomistic level the crucial protein apparatus of the virus and revealing the dynamic aspects of key viral processes. In this Review, we focus on how in silico studies have contributed to the understanding of the SARS-CoV-2 infection mechanism and the proposal of novel and original agents to inhibit the viral key functioning. This Review deals with the SARS-CoV-2 spike protein, including the mode of action that this structural protein uses to entry human cells, as well as with nonstructural viral proteins, focusing the attention on the most studied proteases and also proposing alternative mechanisms involving some of its domains, such as the SARS unique domain. We demonstrate that molecular modeling and simulation represent an effective approach to gather information on key biological processes and thus guide rational molecular design strategies.
Collapse
Affiliation(s)
- Antonio Francés-Monerris
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
- Departament
de Química Física, Universitat
de València, 46100 Burjassot, Spain
| | - Cécilia Hognon
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | - Tom Miclot
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
- Department
of Biological, Chemical and Pharmaceutical Sciences and Technologies, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - Cristina García-Iriepa
- Department
of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km 33,600, 28871 Alcalá de Henares, Madrid, Spain
- Chemical
Research Institute “Andrés M. del Río”
(IQAR), Universidad de Alcalá, 28871 Alcalá de
Henares, Madrid, Spain
| | - Isabel Iriepa
- Chemical
Research Institute “Andrés M. del Río”
(IQAR), Universidad de Alcalá, 28871 Alcalá de
Henares, Madrid, Spain
- Department
of Organic and Inorganic Chemistry, Universidad
de Alcalá, Ctra.
Madrid-Barcelona, Km 33,600, 28871 Alcalá de Henares, Madrid, Spain
| | - Alessio Terenzi
- Department
of Biological, Chemical and Pharmaceutical Sciences and Technologies, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | | | - Giampaolo Barone
- Department
of Biological, Chemical and Pharmaceutical Sciences and Technologies, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - Marco Marazzi
- Department
of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km 33,600, 28871 Alcalá de Henares, Madrid, Spain
- Chemical
Research Institute “Andrés M. del Río”
(IQAR), Universidad de Alcalá, 28871 Alcalá de
Henares, Madrid, Spain
| | - Antonio Monari
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
| |
Collapse
|
20
|
Iheagwam FN, Rotimi SO. Computer-Aided Analysis of Multiple SARS-CoV-2 Therapeutic Targets: Identification of Potent Molecules from African Medicinal Plants. SCIENTIFICA 2020; 2020:1878410. [PMID: 32963884 PMCID: PMC7492903 DOI: 10.1155/2020/1878410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 05/05/2023]
Abstract
The COVID-19 pandemic, which started in Wuhan, China, has spread rapidly over the world with no known antiviral therapy or vaccine. Interestingly, traditional Chinese medicine helped in flattening the pandemic curve in China. In this study, molecules from African medicinal plants were analysed as potential candidates against multiple SARS-CoV-2 therapeutic targets. Sixty-five molecules from the ZINC database subset (AfroDb Natural Products) were virtually screened with some reported repurposed therapeutics against six SARS-CoV-2 and two human targets. Molecular docking, druglikeness, absorption, distribution, metabolism, excretion, and toxicity (ADMET) of the best hits were further simulated. Of the 65 compounds, only three, namely, 3-galloylcatechin, proanthocyanidin B1, and luteolin 7-galactoside found in almond (Terminalia catappa), grape (Vitis vinifera), and common verbena (Verbena officinalis), were able to bind to all eight targets better than the reported repurposed drugs. The findings suggest these molecules may play a role as therapeutic leads in tackling this pandemic due to their multitarget activity.
Collapse
Affiliation(s)
- Franklyn Nonso Iheagwam
- Department of Biochemistry, College of Science and Technology, Covenant University, Canaanland, P.M.B. 1023, Ota, Ogun, Nigeria
- Covenant University Public Health and Wellness Research Cluster (CUPHWERC), College of Science and Technology, Covenant University, Canaanland, P.M.B. 1023, Ota, Ogun, Nigeria
| | - Solomon Oladapo Rotimi
- Department of Biochemistry, College of Science and Technology, Covenant University, Canaanland, P.M.B. 1023, Ota, Ogun, Nigeria
| |
Collapse
|