1
|
Xie YT, Bai TT, Zhang T, Zheng P, Huang M, Xin L, Gong WH, Naeem A, Chen FY, Zhang H, Zhang JL. Correlations between flavor and fermentation days and changes in quality-related physiochemical characteristics of fermented Aurantii Fructus. Food Chem 2023; 429:136424. [PMID: 37481981 DOI: 10.1016/j.foodchem.2023.136424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 07/25/2023]
Abstract
The effects of different fermentation times (0, 1, 2, 3, 4, and 5 days) on the physicochemical properties and flavor components of fermented Aurantii Fructus (FAF) were evaluated. Component analysis identified 66 compounds in positive ion mode and 32 compounds in negative ion mode. Flash GC e-nose results showed that propanal, (+)-limonene and n-nonanal may be the flavor characteristic components that distinguish FAF with different fermentation days. Furthermore, we found that the change of total flavonoid content was closely related to colony growth vitality. The total flavonoid content of FAF gradually decreased from 3rd day and then increased from 5th day (3rd day: 0.766 ± 0.123 mg/100 g; 4th day: 0.464 ± 0.001 mg/100 g; 5th day: 0.850 ± 0.192 mg/100 g). Finally, according to antioxidant activity correlation analysis, meranzin, (+)-limonene and total flavonoids were found to be the key substances affecting the fermentation days of FAF. Overall, the optimal fermentation time for FAF was 4 days.
Collapse
Affiliation(s)
- Ya-Ting Xie
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330000, PR China
| | - Ting-Ting Bai
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330000, PR China
| | - Tao Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330000, PR China
| | - Peng Zheng
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330000, PR China
| | - Min Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330000, PR China
| | - Li Xin
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330000, PR China
| | - Wen-Hui Gong
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330000, PR China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330000, PR China
| | - Fang-You Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330000, PR China
| | - Hua Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330000, PR China.
| | - Jin-Lian Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330000, PR China.
| |
Collapse
|
2
|
Suzuki A, Otsuka Y, Shikinaka K. Electrically conducting films prepared from graphite and lignin in pure water. Front Bioeng Biotechnol 2022; 10:1049123. [PMID: 36425648 PMCID: PMC9679407 DOI: 10.3389/fbioe.2022.1049123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/07/2022] [Indexed: 09/08/2024] Open
Abstract
In this study, we present electrically conducting self-standing graphite films consisting of lignin derivatives extracted by simultaneous enzymatic saccharification and comminution (SESC). Sonication of graphite powder in the presence of SESC lignin and pure water allows dispersion of the SESC-lignin-attached graphite without addition of other chemicals. The SESC-lignin-attached graphite having a diameter of several micrometers can be used as a surface electroconductive coating and molded into self-standing films by drying. The SESC-lignin-attached graphite film exhibits higher conductivity (∼2,075 S/cm) than graphite-based composites consisting of ordinary lignin derivatives. Manufacturing self-standing films of micrometer-sized graphite using SESC lignin enables high electrical conductivity of the SESC-lignin-attached graphite film. The size of the SESC-lignin-attached graphite is proportional to the conductivity of the film. The SESC-lignin-attached graphite also acts as an antiplasticizer and a conductive filler for polymer films, i.e., conductive films consisting of poly(ethylene glycol) or Li+ montmorillonite can be obtained through a water-based process.
Collapse
Affiliation(s)
- Asami Suzuki
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology, Sendai, Japan
| | - Yuichiro Otsuka
- Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Kazuhiro Shikinaka
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology, Sendai, Japan
| |
Collapse
|
3
|
Suzuki Y, Otsuka Y, Araki T, Kamimura N, Masai E, Nakamura M, Katayama Y. Lignin valorization through efficient microbial production of β-ketoadipate from industrial black liquor. BIORESOURCE TECHNOLOGY 2021; 337:125489. [PMID: 34320768 DOI: 10.1016/j.biortech.2021.125489] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Vanillin and vanillate are the major lignin-derived aromatic compounds produced through the alkaline oxidation of softwood lignin. Because the production of higher-value added chemicals from these compounds is essential for lignin valorization, the microbial production of β-ketoadipate, a promising raw material for the synthesis of novel nylons, from lignin was considered. Pseudomonas putida KT2440 was engineered to convert vanillin and vanillate to β-ketoadipate. By examining the culture conditions with an initial culture volume of 1 L, the engineered strain completely converted 25 g of vanillin and 25 g of vanillate and produced approximately 23 g of β-ketoadipate from each of them with a yield of 93% or higher. Furthermore, this strain showed the ability to efficiently produce β-ketoadipate from softwood lignin extracts in black liquor, a byproduct of pulp production. These results suggest that the production of β-ketoadipate from industrial black liquor is highly feasible for substantial lignin valorization.
Collapse
Affiliation(s)
- Yuzo Suzuki
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687 Japan.
| | - Yuichiro Otsuka
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687 Japan
| | - Takuma Araki
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687 Japan
| | - Naofumi Kamimura
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Eiji Masai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Masaya Nakamura
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687 Japan
| | - Yoshihiro Katayama
- Bio-based Solution Division, Kantechs Co. Ltd., Bunkyo, Tokyo 112-0004, Japan
| |
Collapse
|
4
|
Shikinaka K, Suzuki A, Otsuka Y. Nonflammable UV protective films consisting of clay and lignin with tunable light/gas transparency. RSC Adv 2021; 11:23385-23389. [PMID: 35479773 PMCID: PMC9036610 DOI: 10.1039/d1ra04096k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022] Open
Abstract
In this paper, we present nonflammable UV protective films consisting of clay minerals and lignin derivatives. The nonflammable transparent films were produced by mixing clay with a lignin derivative extracted from plants by simultaneous enzymatic saccharification and comminution. The preparation procedure did not require hazardous chemicals. The optical properties and gas permeability of the films could be tuned by the components and phase separation structure of the clay minerals and lignin derivatives. In particular, the gas transmittance of the films could be controlled in the range of several mol m-2 s-1 Pa-1. The present film uses mineral and plant components as high-value industrial materials and reduces the environmental load of extracting limited petroleum-based resources.
Collapse
Affiliation(s)
- Kazuhiro Shikinaka
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology Nigatake, 4-2-1, Miyagino-ku Sendai 983-8551 Japan
| | - Asami Suzuki
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology Nigatake, 4-2-1, Miyagino-ku Sendai 983-8551 Japan
| | - Yuichiro Otsuka
- Forestry and Forest Products Research Institute Matsunosato, 1 Tsukuba 305-8687 Japan
| |
Collapse
|
5
|
Polymer heat-proofing using defibered plants obtained by wet-type bead milling of Japanese cedar. Polym J 2021. [DOI: 10.1038/s41428-021-00473-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|