1
|
Sultanov F, Tatykayev B, Bakenov Z, Mentbayeva A. The role of graphene aerogels in rechargeable batteries. Adv Colloid Interface Sci 2024; 331:103249. [PMID: 39032342 DOI: 10.1016/j.cis.2024.103249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Energy storage systems, particularly rechargeable batteries, play a crucial role in establishing a sustainable energy infrastructure. Today, researchers focus on improving battery energy density, cycling stability, and rate performance. This involves enhancing existing materials or creating new ones with advanced properties for cathodes and anodes to achieve peak battery performance. Graphene aerogels (GAs) possess extraordinary attributes, including a hierarchical porous and lightweight structure, high electrical conductivity, and robust mechanical stability. These qualities facilitate the uniform distribution of active sites within electrodes, mitigate volume changes during repeated cycling, and enhance overall conductivity. When integrated into batteries, GAs expedite electron/ion transport, offer exceptional structural stability, and deliver outstanding cycling performance. This review offers a comprehensive survey of the advancements in the preparation, functionalization, and modification of GAs in the context of battery research. It explores their application as electrodes and hosts for the dispersion of active material nanoparticles, resulting in the creation of hybrid electrodes for a wide range of rechargeable batteries including lithium-ion batteries (LIBs), Li-metal-air batteries, sodium-ion batteries (SIBs), zinc-ion batteries (AZIBs) and zinc-air batteries (ZABs), aluminum-ion batteries (AIBs) and aluminum-air batteries and other.
Collapse
Affiliation(s)
- Fail Sultanov
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Batukhan Tatykayev
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Zhumabay Bakenov
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan; Department of Chemical and Materials Engineering, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Almagul Mentbayeva
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan; Department of Chemical and Materials Engineering, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan.
| |
Collapse
|
2
|
Gu K, Li P, Yi G, Wu Y, Yang W, Zhang Z, Zhang X. N/S Co-Doped Graphene Aerogels as Superior Anode Materials for High-Rate Lithium-Ion Batteries. Chempluschem 2024; 89:e202300475. [PMID: 37903722 DOI: 10.1002/cplu.202300475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
The nitrogen and sulfur co-doped graphene aerogel (SNGA) was synthesized by a one-pot hydrothermal route using graphene oxide as the starting material and thiourea as the S and N source. The obtained SNGA with a three-dimensionally hierarchical structure, providing more available pathways for the transport of lithium ions. The existing form of S and N was regulated by changing the calcination temperature and thiourea doping amount. The results revealed that high temperature could decompose -SOX- functional groups and promote the transformation of C-S-C to C-S, ensuring the cyclic stability of electrode materials, and increasing the thiourea dosage amount introduced more pyridine nitrogen, improving the multiplicative performance of electrode materials. Benefiting from the synergistic effect of sulfur and nitrogen atoms, the prepared SNGA showed superior rate capability (107.8 mAh g-1 at 5 A g-1), twice more than that of GA (52.8 mAh g-1), and excellent stability (232.1 mAh g-1 at 1 A g-1 after 300 cycles), 1.85 times more than that of GA (125.6 mAh g-1). The present study provides a detailed report on thiourea as a dopant to provide a sufficient basis for SNGA and a theoretical guide for further modifying.
Collapse
Affiliation(s)
- Kaijie Gu
- College of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, P.R. China
- Collaborative Innovation Center of Coal Work Safety of Henan Province, Jiaozuo, 454003, P.R. China
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Jiaozuo, 454003, P.R. China
| | - Peng Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, P.R. China
- Collaborative Innovation Center of Coal Work Safety of Henan Province, Jiaozuo, 454003, P.R. China
| | - Guiyun Yi
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, P.R. China
- Collaborative Innovation Center of Coal Work Safety of Henan Province, Jiaozuo, 454003, P.R. China
- Henan Key Laboratory of Coal Green Conversion, Jiaozuo, 454003, P.R. China
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Jiaozuo, 454003, P.R. China
| | - Yuanfeng Wu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, P.R. China
- Collaborative Innovation Center of Coal Work Safety of Henan Province, Jiaozuo, 454003, P.R. China
- Henan Key Laboratory of Coal Green Conversion, Jiaozuo, 454003, P.R. China
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Jiaozuo, 454003, P.R. China
| | - WenPeng Yang
- College of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, P.R. China
- Collaborative Innovation Center of Coal Work Safety of Henan Province, Jiaozuo, 454003, P.R. China
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Jiaozuo, 454003, P.R. China
| | - Zhengting Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, P.R. China
- Collaborative Innovation Center of Coal Work Safety of Henan Province, Jiaozuo, 454003, P.R. China
| | - Xiuxiu Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, P.R. China
- Collaborative Innovation Center of Coal Work Safety of Henan Province, Jiaozuo, 454003, P.R. China
| |
Collapse
|
3
|
Shanmugasundaram E, Vellaisamy K, Ganesan V, Narayanan V, Saleh N, Thambusamy S. Dual Applications of Cobalt-Oxide-Grafted Carbon Quantum Dot Nanocomposite for Two Electrode Asymmetric Supercapacitors and Photocatalytic Behavior. ACS OMEGA 2024; 9:14101-14117. [PMID: 38559980 PMCID: PMC10976396 DOI: 10.1021/acsomega.3c09594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Carbon materials, such as graphene, carbon nanotubes, and quantum-dot-doped metal oxides, are highly attractive for energy storage and environmental applications. This is due to their large surface area and efficient optical and electrochemical activity. In this particular study, a composite material of cobalt oxide and carbon quantum dots (Co3O4-CQD) was prepared using cobalt nitrate and ascorbic acid (carbon source) through a simple one-pot hydrothermal method. The properties of the composite material, including the functional groups, composition, surface area, and surface morphology, were evaluated by using various methods such as ultraviolet, Fourier transform infrared, X-ray diffraction, Raman, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller, scanning electron microscopy, and transmission electron microscopy analysis. The electrochemical performance of the Co3O4-CQD composite has been studied using a three-electrode system. The results show that at 1 A g-1, the composite delivers a higher capacitance of 1209 F g-1. The asymmetric supercapacitor (Co3O4-CQD//AC) provided 13.88 W h kg-1 energy and 684.65 W kg-1 power density with a 96% capacitance retention. The Co3O4-CQD composite also demonstrated excellent photocatalytic activity (90% in 60 min) for the degradation of methylene blue dye under UV irradiation, which is higher than that of pristine Co3O4 and CQD. This demonstrates that the Co3O4-CQD composite is a promising material for commercial energy storage and environmental applications.
Collapse
Affiliation(s)
| | - Kannan Vellaisamy
- Department
of Industrial Chemistry, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| | - Vigneshkumar Ganesan
- Department
of Industrial Chemistry, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| | - Vimalasruthi Narayanan
- Department
of Industrial Chemistry, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| | - Na’il Saleh
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain 15551, United Arab
Emirates
| | - Stalin Thambusamy
- Department
of Industrial Chemistry, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| |
Collapse
|
4
|
Chang X, Zhu Q, Zhao Q, Zhang P, Sun N, Soomro RA, Wang X, Xu B. 3D Porous Co 3O 4/MXene Foam Fabricated via a Sulfur Template Strategy for Enhanced Li/K-Ion Storage. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7999-8009. [PMID: 36719841 DOI: 10.1021/acsami.2c19681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Co3O4 is a potential high-capacity anode material for lithium-ion batteries (LIBs) and potassium-ion batteries (PIBs), but the poor electrical conductivity and large volume fluctuations during long-term cycling severely limit its cycle durability and rate capabilities, especially for PIBs with large K-ion size. Here, we propose a sulfur template route to fabricate an integral 3D porous Co3O4/MXene (Ti3C2Tx) foam using simple vacuum co-filtrating an aqueous dispersion of Co3O4, S and MXene followed by calcining to remove the S template. The 3D porous structure can easily accommodate the large volume changes of Co3O4 while maintains electrode structural integrity, allowing to realize outstanding long-term cycle stability when tested as anodes for both LIBs (620.4 mA h g-1 after 1000 cycles at 1 A g-1) and PIBs (134.1 mA h g-1 after 1000 cycles at 0.5 A g-1). The high metallic conductivity of the 3D porous MXene network further facilitates the electron/ion transmission, resulting in an improved rate capability of 390 mA h g-1 at 13 A g-1 for LIBs and 125.3 mA h g-1 at 1 A g-1 for PIBs. The robust performance of the 3D porous Co3O4/MXene foam reflects its perspective as a high-performance anode material for both LIBs and PIBs.
Collapse
Affiliation(s)
- Xiaqing Chang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing100029, China
| | - Qizhen Zhu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing100029, China
| | - Qian Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan250353, China
| | - Peng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing100029, China
| | - Ning Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing100029, China
| | - Razium A Soomro
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing100029, China
| | - Xiaoxue Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing100029, China
| | - Bin Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing100029, China
| |
Collapse
|
5
|
Zhang X, Yi G, Li P, Zheng X, Shen X, Ning K, Chen L, Zhang C, Zhang Y, Sun Q. Construction of nitrogen vacant g-C 3N 4 nanosheet supported Ag 3PO 4 nanoparticle Z-scheme photocatalyst for improved visible-light photocatalytic activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23094-23103. [PMID: 34796441 DOI: 10.1007/s11356-021-17286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The superior photocatalytic activity of semiconductor-based photocatalytic materials has attracted great attention. In this work, a series of novel Ag3PO4/g-C3N4-x (APO/CNx) composites with the Z-scheme structure were fabricated through a facile precipitation method. B naphthol, a typical phenolic compound, was selected to evaluate the photocatalytic activity of all as-prepared photocatalysts. The obtained APO/CNx composites exhibited excellent photocatalytic activity for degradation of B naphthol under visible-light irradiation. Experimental results showed that the degradation rate toward B naphthol could reach to 90.5% for 180 min, which was almost 3.66 times higher than pure g-C3N4, indicating that the presence of nitrogen vacancies and Z-scheme structure could efficiently improve the photocatalytic performance of pure g-C3N4. Furthermore, the results of trapping experiments and electron spin resonance (ESR) spectroscopy manifest that •O2- and •OH radicals were the predominant active substances for B naphthol degradation, and the possible mechanism of improved photocatalytic performance was elucidated. This work will provide an innovative perspective for constructing Z-scheme photocatalysts for the application of photocatalytic in the field of wastewater treatment.
Collapse
Affiliation(s)
- Xiuxiu Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
- Collaborative Innovation Center of Coal Work Safety of Henan Province, Jiaozuo, 454003, China
- Henan Key Laboratory of Coal Green Conversion, Jiaozuo, 454003, China
| | - Guiyun Yi
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China.
- Collaborative Innovation Center of Coal Work Safety of Henan Province, Jiaozuo, 454003, China.
- Henan Key Laboratory of Coal Green Conversion, Jiaozuo, 454003, China.
- State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Jiaozuo, 454003, China.
| | - Peng Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
- Collaborative Innovation Center of Coal Work Safety of Henan Province, Jiaozuo, 454003, China
- Henan Key Laboratory of Coal Green Conversion, Jiaozuo, 454003, China
| | - Xiaomeng Zheng
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Xuhang Shen
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Kunlei Ning
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Lunjian Chen
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China.
- Collaborative Innovation Center of Coal Work Safety of Henan Province, Jiaozuo, 454003, China.
- Henan Key Laboratory of Coal Green Conversion, Jiaozuo, 454003, China.
| | - Chuanxiang Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
- Collaborative Innovation Center of Coal Work Safety of Henan Province, Jiaozuo, 454003, China
- Henan Key Laboratory of Coal Green Conversion, Jiaozuo, 454003, China
| | - Yulong Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
- Collaborative Innovation Center of Coal Work Safety of Henan Province, Jiaozuo, 454003, China
- Henan Key Laboratory of Coal Green Conversion, Jiaozuo, 454003, China
| | - Qi Sun
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
- Collaborative Innovation Center of Coal Work Safety of Henan Province, Jiaozuo, 454003, China
- Henan Key Laboratory of Coal Green Conversion, Jiaozuo, 454003, China
| |
Collapse
|
6
|
Ultrasonic-assisted synthesis of NiCo2O4/TiO2 ceramic as an efficient and novel hydrogen storage material. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02216-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Ye H, Zheng G, Yang X, Zhang D, Zhang Y, Yan S, You L, Hou S, Huang Z. Application of different carbon-based transition metal oxide composite materials in lithium-ion batteries. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Yi G, Li P, Xing B, Tian Q, Zhang X, Xu B, Huang G, Chen L, Zhang Y. Nitrogen-rich graphene aerogel with interconnected thousand-layer pancake structure as anode for high performance of lithium-ion batteries. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|