1
|
Vyšín L, Wachulak P, Hájková V, Davídková M, Fiedorowicz H, Bartnik A, Juha L. Breaking the DNA by soft X-rays in the water window reveals the scavenging and temporal behaviour of ·OH radicals. Sci Rep 2024; 14:28515. [PMID: 39557928 PMCID: PMC11574138 DOI: 10.1038/s41598-024-79328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
A laser-plasma source emitting photons with energies in the water window spectral range has been used to reveal the radiation chemical yields of single-strand breaks in plasmid DNA as a function of ·OH radical scavenger concentration. Direct and indirect effects were investigated separately using DNA samples with various levels of hydration. We experimentally determined the value of the efficiency factor for strand cleavage in DNA caused by the reaction with ·OH radicals at 0.11, which was previously found in the theoretical studies. Additionally, the radiation chemical yield of ·OH radicals specific to the water window radiation emission of the source was determined by comparison with the gamma radiation-induced strand break yields. The ·OH radical yield determined using the plasmid DNA samples as a model was similar to the yield found using sensitive fluorescent dosimeters in previous experiments.
Collapse
Affiliation(s)
- Luděk Vyšín
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 00, Prague 8, Czech Republic.
| | - Przemyslaw Wachulak
- Institute of Optoelectronics, Military University of Technology, Kaliskiego 2 Str., 00-908, Warsaw, Poland
| | - Věra Hájková
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 00, Prague 8, Czech Republic
| | - Marie Davídková
- Nuclear Physics Institute of the Czech Academy of Sciences, Řež 130, 250 68, Řež, Czech Republic
| | - Henryk Fiedorowicz
- Institute of Optoelectronics, Military University of Technology, Kaliskiego 2 Str., 00-908, Warsaw, Poland
| | - Andrzej Bartnik
- Institute of Optoelectronics, Military University of Technology, Kaliskiego 2 Str., 00-908, Warsaw, Poland
| | - Libor Juha
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 00, Prague 8, Czech Republic
| |
Collapse
|
2
|
Ma Y, Zhang W, Zhao Z, Lv J, Chen J, Yan X, Lin X, Zhang J, Wang B, Gao S, Xiao J, Yang G. Current views on mechanisms of the FLASH effect in cancer radiotherapy. Natl Sci Rev 2024; 11:nwae350. [PMID: 39479528 PMCID: PMC11523052 DOI: 10.1093/nsr/nwae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
FLASH radiotherapy (FLASH-RT) is a new modality of radiotherapy that delivers doses with ultra-high dose rates. The FLASH effect was defined as the ability of FLASH-RT to suppress tumor growth while sparing normal tissues. Although the FLASH effect has been proven to be valid in various models by different modalities of irradiation and clinical trials of FLASH-RT have achieved promising initial success, the exact underlying mechanism is still unclear. This article summarizes mainstream hypotheses of the FLASH effect at physicochemical and biological levels, including oxygen depletion and free radical reactions, nuclear and mitochondria damage, as well as immune response. These hypotheses contribute reasonable explanations to the FLASH effect and are interconnected according to the chronological order of the organism's response to ionizing radiation. By collating the existing consensus, evidence and hypotheses, this article provides a comprehensive overview of potential mechanisms of the FLASH effect and practical guidance for future investigation in the field of FLASH-RT.
Collapse
Affiliation(s)
- Yuqi Ma
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Wenkang Zhang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Ziming Zhao
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Jianfeng Lv
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Junyi Chen
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Xueqin Yan
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - XiaoJi Lin
- Oncology Discipline Group, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Junlong Zhang
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bingwu Wang
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Song Gao
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jie Xiao
- KIRI Precision Particle Therapy Flash Technologies Research Center, Guangzhou 510700, China
| | - Gen Yang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Tang R, Yin J, Liu Y, Xue J. FLASH radiotherapy: A new milestone in the field of cancer radiotherapy. Cancer Lett 2024; 587:216651. [PMID: 38342233 DOI: 10.1016/j.canlet.2024.216651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/03/2023] [Accepted: 01/13/2024] [Indexed: 02/13/2024]
Abstract
Radiotherapy plays a pivotal role in the control and eradication of tumors, but it can also induce radiation injury to surrounding normal tissues while targeting tumor cells. In recent years, FLASH-Radiotherapy (FLASH-RT) has emerged as a cutting-edge research focus in the field of radiation therapy. By delivering high radiation doses to the treatment target in an ultra-short time, FLASH-RT produces the FLASH effect, which reduces the toxicity to normal tissues while achieving comparable tumor control efficacy to conventional radiotherapy. This review provides a brief overview of the development history of FLASH-RT and its impact on tumor control. Additionally, it focuses on introducing the protective effects and molecular mechanisms of this technology on various normal tissues, as well as exploring its synergistic effects when combined with other tumor therapies. Importantly, this review discusses the challenges faced in translating FLASH-RT into clinical practice and outlines its promising future applications.
Collapse
Affiliation(s)
- Rui Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China; Division of Thoracic Tumor Multimodality Treatment, Cancer Center, The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jianqiong Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuanxin Liu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Disaster Medical Center, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Kusumoto T, Danvin A, Mamiya T, Arnone A, Chefson S, Galindo C, Peaupardin P, Raffy Q, Kamiguchi N, Amano D, Sasai K, Konishi T, Kodaira S. Dose Rate Effects on Hydrated Electrons, Hydrogen Peroxide, and a OH Radical Molecular Probe Under Clinical Energy Protons. Radiat Res 2024; 201:287-293. [PMID: 38407439 DOI: 10.1667/rade-23-00244.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
We report the dose rate dependence of radiation chemical yields (G value) of water radiolysis products under clinical energy protons (230 MeV) to understand mechanisms of the FLASH radiotherapy performed at ultra-high dose rate (>40 Gy/s). The G value of 7-hydoroxy-coumarin-3-carboxylic acid (7OH-C3CA) produced by reactions of coumarin-3-carboxylic acid (C3CA) with OH radicals and oxygen is evaluated by fluorescence method. Also, those of hydrated electrons and hydrogen peroxide are derived by absorption method using Saltzman and Ghomley techniques, respectively. Both G values of 7OH-C3CA and hydrated electrons decrease with increasing dose rate. The relative evolution of 7OH-C3CA is -39 ± 2% between 0.1 and 50 Gy/s. This value is higher than that of hydrated electrons, measured at -21 ± 4%. The G value of hydrogen peroxide in ultra-pure water also decreases with increasing dose rate. In comparison to these findings, we represent the increase of the G value of hydrogen peroxide with increasing dose rate in the mixture solution of MeOH and NaNO3, which act as scavengers of OH radicals and hydrated electrons, respectively, that decompose hydrogen peroxide. This finding indicates that a complex track structure can be expected with increasing dose rate and the reduction of OH radicals by forming hydrogen peroxide would be related to the sparing effect of healthy tissues.
Collapse
Affiliation(s)
- Tamon Kusumoto
- National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, 263-8555 Chiba, Japan
| | - Antoine Danvin
- Institute Pluridisiplinaire Hubert Curien (IPHC), 23 rue du Loess, 67037 Strasbourg Cedex 2, France
| | - Taisei Mamiya
- National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, 263-8555 Chiba, Japan
| | - Aurelia Arnone
- Institute Pluridisiplinaire Hubert Curien (IPHC), 23 rue du Loess, 67037 Strasbourg Cedex 2, France
| | - Severine Chefson
- Institute Pluridisiplinaire Hubert Curien (IPHC), 23 rue du Loess, 67037 Strasbourg Cedex 2, France
| | - Catherine Galindo
- Institute Pluridisiplinaire Hubert Curien (IPHC), 23 rue du Loess, 67037 Strasbourg Cedex 2, France
| | - Philippe Peaupardin
- Institute Pluridisiplinaire Hubert Curien (IPHC), 23 rue du Loess, 67037 Strasbourg Cedex 2, France
| | - Quentin Raffy
- Institute Pluridisiplinaire Hubert Curien (IPHC), 23 rue du Loess, 67037 Strasbourg Cedex 2, France
| | - Nagaaki Kamiguchi
- Sumitomo Heavy Industries, Ltd. (SHI), 2-1-1 Osaki, Shinagawa-ku, 141-6025 Tokyo, Japan
| | - Daizo Amano
- Sumitomo Heavy Industries, Ltd. (SHI), 2-1-1 Osaki, Shinagawa-ku, 141-6025 Tokyo, Japan
| | - Kenzo Sasai
- Sumitomo Heavy Industries, Ltd. (SHI), 2-1-1 Osaki, Shinagawa-ku, 141-6025 Tokyo, Japan
| | - Teruaki Konishi
- National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, 263-8555 Chiba, Japan
| | - Satoshi Kodaira
- National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, 263-8555 Chiba, Japan
| |
Collapse
|
5
|
Okazaki Y, Kusumoto T, Roux S, Hirayama R, Fromm M, Bazzi R, Kodaira S, Kataoka J. Increase of OH radical yields due to the decomposition of hydrogen peroxide by gold nanoparticles under X-ray irradiation. RSC Adv 2024; 14:9509-9513. [PMID: 38516151 PMCID: PMC10953845 DOI: 10.1039/d4ra00208c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
We elucidate the decomposition mechanism of hydrogen peroxide, which is formed by water radiolysis, by gold nanoparticles (GNPs) under X-ray irradiation. The variations in yields of hydrogen peroxide generated in the presence of GNPs are evaluated using the Ghormley technique. The increase of yields of OH radicals has been quantified using Ampliflu® Red solutions. Almost all hydrogen peroxide generated by irradiation of <25 Gy is decomposed by GNPs, while the yield of OH radicals increases by 1.6 times. The amount of OH radicals thus obtained is almost equivalent to that of the decomposed hydrogen peroxide. The decomposition of hydrogen peroxide is an essential reaction to produce additional OH radicals efficiently in the vicinity of GNPs.
Collapse
Affiliation(s)
- Yu Okazaki
- Graduate School of Advanced Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Tamon Kusumoto
- National Institutes for Quantum Science and Technology (QST) 4-9-1 Anagawa, Inage-ku Chiba 263-8555 Japan
| | - Stephane Roux
- UMR CNRS 6249 Chrono-Environnement, Université de Franche-Comté F-25030 Besançon Cedex France
| | - Ryoichi Hirayama
- National Institutes for Quantum Science and Technology (QST) 4-9-1 Anagawa, Inage-ku Chiba 263-8555 Japan
| | - Michel Fromm
- UMR CNRS 6249 Chrono-Environnement, Université de Franche-Comté F-25030 Besançon Cedex France
| | - Rana Bazzi
- UMR CNRS 6249 Chrono-Environnement, Université de Franche-Comté F-25030 Besançon Cedex France
| | - Satoshi Kodaira
- National Institutes for Quantum Science and Technology (QST) 4-9-1 Anagawa, Inage-ku Chiba 263-8555 Japan
| | - Jun Kataoka
- Graduate School of Advanced Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| |
Collapse
|
6
|
Ducrozet F, Sebastian A, Garcia Villavicencio CJ, Ptasinska S, Sicard-Roselli C. Quantifying hydroxyl radicals generated by a low-temperature plasma using coumarin: methodology and precautions. Phys Chem Chem Phys 2024; 26:8651-8657. [PMID: 38436422 DOI: 10.1039/d4cp00040d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The detection and quantification of hydroxyl radicals (HO˙) generated by low-temperature plasmas (LTPs) are crucial for understanding their role in diverse applications of plasma radiation. In this study, the formation of HO˙ in the irradiated aqueous phase is investigated at various plasma parameters, by probing them indirectly using the coumarin molecule. We propose a quantification methodology for these radicals, combining spectrophotometry to study the coumarin reaction with hydroxyl radicals and fluorimetry to evaluate the formation yield of the hydroxylated product, 7-hydroxycoumarin. Additionally, we thoroughly examine and discuss the impact of pH on this quantification process. This approach enhances our comprehension of HO˙ formation during LTP irradiation, adding valuable insights to plasma's biological applications.
Collapse
Affiliation(s)
- Florent Ducrozet
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Amal Sebastian
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA.
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Cecilia Julieta Garcia Villavicencio
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA.
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sylwia Ptasinska
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA.
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Cécile Sicard-Roselli
- Institut de Chimie Physique, UMR 8000, CNRS, Université Paris-Saclay, 91405 Orsay, France.
| |
Collapse
|
7
|
Shiraishi Y, Matsuya Y, Fukunaga H. Possible mechanisms and simulation modeling of FLASH radiotherapy. Radiol Phys Technol 2024; 17:11-23. [PMID: 38184508 DOI: 10.1007/s12194-023-00770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/08/2024]
Abstract
FLASH radiotherapy (FLASH-RT) has great potential to improve patient outcomes. It delivers radiation doses at an ultra-high dose rate (UHDR: ≥ 40 Gy/s) in a single instant or a few pulses. Much higher irradiation doses can be administered to tumors with FLASH-RT than with conventional dose rate (0.01-0.40 Gy/s) radiotherapy. UHDR irradiation can suppress toxicity in normal tissues while sustaining antitumor efficiency, which is referred to as the FLASH effect. However, the mechanisms underlying the effects of the FLASH remain unclear. To clarify these mechanisms, the development of simulation models that can contribute to treatment planning for FLASH-RT is still underway. Previous studies indicated that transient oxygen depletion or augmented reactions between secondary reactive species produced by irradiation may be involved in this process. To discuss the possible mechanisms of the FLASH effect and its clinical potential, we summarized the physicochemical, chemical, and biological perspectives as well as the development of simulation modeling for FLASH-RT.
Collapse
Affiliation(s)
- Yuta Shiraishi
- Graduate School of Health Sciences, Hokkaido University, N12 W5 Kita-Ku, Sapporo, Hokkaido, 060-0812, Japan
- Faculty of Health Sciences, Japan Healthcare University, 3-11-1-50 Tsukisamu-Higashi, Toyohira-Ku, Sapporo, Hokkaido, 062-0053, Japan
| | - Yusuke Matsuya
- Faculty of Health Sciences, Hokkaido University, N12 W5 Kita-Ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Hisanori Fukunaga
- Faculty of Health Sciences, Hokkaido University, N12 W5 Kita-Ku, Sapporo, Hokkaido, 060-0812, Japan.
| |
Collapse
|
8
|
Shiraishi Y, Matsuya Y, Kusumoto T, Fukunaga H. Modeling for predicting survival fraction of cells after ultra-high dose rate irradiation. Phys Med Biol 2023; 69:015017. [PMID: 38056015 DOI: 10.1088/1361-6560/ad131b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Objective. FLASH radiotherapy (FLASH-RT) with ultra-high dose rate (UHDR) irradiation (i.e. > 40 Gy s-1) spares the function of normal tissues while preserving antitumor efficacy, known as the FLASH effect. The biological effects after conventional dose rate-radiotherapy (CONV-RT) with ≤0.1 Gy s-1have been well modeled by considering microdosimetry and DNA repair processes, meanwhile modeling of radiosensitivities under UHDR irradiation is insufficient. Here, we developed anintegrated microdosimetric-kinetic(IMK)model for UHDR-irradiationenabling the prediction of surviving fraction after UHDR irradiation.Approach.TheIMK model for UHDR-irradiationconsiders the initial DNA damage yields by the modification of indirect effects under UHDR compared to CONV dose rate. The developed model is based on the linear-quadratic (LQ) nature with the dose and dose square coefficients, considering the reduction of DNA damage yields as a function of dose rate.Main results.The estimate by the developed model could successfully reproduce thein vitroexperimental dose-response curve for various cell line types and dose rates.Significance.The developed model would be useful for predicting the biological effects under the UHDR irradiation.
Collapse
Affiliation(s)
- Yuta Shiraishi
- Graduate school of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
- Faculty of Health Sciences, Japan Healthcare University, 3-11-1-50 Tsukisamu-higashi, Toyohira-ku, Sapporo, Hokkaido, 062-0053, Japan
| | - Yusuke Matsuya
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan
| | - Tamon Kusumoto
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Hisanori Fukunaga
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| |
Collapse
|
9
|
Audouin J, Hofverberg P, Ngono-Ravache Y, Desorgher L, Baldacchino G. Intermediate LET-like effect in distal part of proton Bragg peak revealed by track-ends imaging during super-Fricke radiolysis. Sci Rep 2023; 13:15460. [PMID: 37726376 PMCID: PMC10509149 DOI: 10.1038/s41598-023-42639-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Upstream of the efficiency of proton or carbon ion beams in cancer therapy, and to optimize hadrontherapy results, we analysed the chemistry of Fricke solutions in track-end of 64-MeV protons and 1.14-GeV carbon ions. An original optical setup is designed to determine the primary track-segment yields along the last millimetres of the ion track with a sub-millimetre resolution. The Fe3+-yield falls in the Bragg peak to (4.9 ± 0.4) × 10-7 mol/J and 1.9 × 10-7 mol/J, under protons and carbon ions respectively. Beyond the Bragg peak, a yield recovery is observed over 1 mm for proton beams. It is attributed to the intermediate-LET of protons in this region where their energy decreases and energy distribution becomes broader, in relation with the longitudinal straggling of the beam. Consequently to this LET decrease in the distal part of the Bragg peak, Fe3+-yield increases. For the first time, this signature is highlighted at the chemical level under proton irradiation. Nevertheless, this phenomenon is not identified for carbon ion beams since their straggling is lower. It would need a greater spatial resolution to be observed.
Collapse
Affiliation(s)
- J Audouin
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191, Gif-sur-Yvette, France
| | | | - Y Ngono-Ravache
- CIMAP, CEA-CNRS-ENSICAEN-UNICAEN, Normandy University, Cedex 04, 14050, Caen, France
| | - L Desorgher
- Institute of Radiation Physics (IRA), Lausanne University Hospital and University of Lausanne, CH-1007, Lausanne, Switzerland
| | - G Baldacchino
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
10
|
Froidevaux P, Grilj V, Bailat C, Geyer WR, Bochud F, Vozenin MC. FLASH irradiation does not induce lipid peroxidation in lipids micelles and liposomes. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2022.110733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Konishi T, Kusumoto T, Hiroyama Y, Kobayashi A, Mamiya T, Kodaira S. Induction of DNA strand breaks and oxidative base damages in plasmid DNA by ultra-high dose rate proton irradiation. Int J Radiat Biol 2023; 99:1405-1412. [PMID: 36731459 DOI: 10.1080/09553002.2023.2176562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/30/2022] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
PURPOSE Radiation cancer therapy with ultra-high dose rate (UHDR) exposure, so-called FLASH radiotherapy, appears to reduce normal tissue damage without compromising tumor response to therapy. The aim of this study was to clarify whether a 59.5 MeV proton beam at an UHDR of 48.6 Gy/s could effectively reduce the DNA damage of pBR322 plasmid DNA in solution compared to the conventional dose rate (CONV) of 0.057 Gy/s. MATERIALS AND METHODS A simple system, consisting of pBR322 plasmid DNA in 1× Tris-EDTA buffer, was initially employed for proton beam exposure. We then used formamidopyrimidine-DNA glycosylase (Fpg) enzymes. which convert oxidative base damages of oxidized purines to DNA strand breaks, to quantify DNA single strand breaks (SSBs) and double strand breaks (DSBs) by agarose gel electrophoresis. RESULTS Our findings showed that the SSB induction rate (SSB per plasmid DNA/Gy) at UHDR and the induction of Fpg enzyme sensitive sites (ESS) were significantly reduced in UHDR compared to CONV. However, there was no significant difference in DSB induction and non-DSB cluster damages. CONCLUSIONS UHDR of a 59.5 MeV proton beam could reduce non-clustered, non-DSB damages, such as SSB and sparsely distributed ESS. However, this effect may not be significant in reducing lethal DNA damage that becomes apparent only in acute radiation effects of mammalian cells and in vivo studies.
Collapse
Affiliation(s)
- Teruaki Konishi
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
- Graduate School of Health Science, Hirosaki University, Hirosaki City, Japan
- Department of Physics, Rikkyo (St. Paul's) University, Tokyo, Japan
| | - Tamon Kusumoto
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
| | - Yota Hiroyama
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
- Graduate School of Health Science, Hirosaki University, Hirosaki City, Japan
| | - Alisa Kobayashi
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
| | - Taisei Mamiya
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
- Department of Physics, Rikkyo (St. Paul's) University, Tokyo, Japan
| | - Satoshi Kodaira
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
| |
Collapse
|
12
|
Kusumoto T, Inaniwa T, Mizushima K, Sato S, Hojo S, Kitamura H, Konishi T, Kodaira S. Radiation Chemical Yields of 7-Hydroxy-Coumarin-3-Carboxylic Acid for Proton- and Carbon-Ion Beams at Ultra-High Dose Rates: Potential Roles in FLASH Effects. Radiat Res 2022; 198:255-262. [PMID: 35738014 DOI: 10.1667/rade-21-00.230.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/06/2022] [Indexed: 11/03/2022]
Abstract
It has been observed that healthy tissues are spared at ultra-high dose rate (UHDR: >40 Gy/s), so called FLASH effect. To elucidate the mechanism of FLASH effect, we evaluate changes in radiation chemical yield (G value) of 7-hydroxy-coumarin-3-carboxylic acid (7OH-C3CA), which is formed by the reaction of hydroxyl radicals with coumarin-3-carboxylic acid (C3CA), under carbon ions (140 MeV/u) and protons (27.5 and 55 MeV) in a wide-dose-rate range up to 100 Gy/s. The relative G value, which is the G value at each dose rate normalized by that at the conventional dose (CONV: 0.1 Gy/s >), 140 MeV/u carbon-ion beam is almost equivalent to 27.5 and 55 MeV proton beams. This finding implies that UHDR irradiations using carbon-ion beams have a potential to spare healthy tissues. Furthermore, we evaluate the G value of 7OH-C3CA under the de-oxygenated condition to investigate roles of oxygen to the generation of 7OH-C3CA effect. The G value of 7OH-C3CA under the de-oxygenated condition is lower than that under the oxygenated condition. The G value of 7OH-C3CA under the de-oxygenated condition is higher than those under UHDR irradiations. By direct measurements of the oxygen concentration during 55 MeV proton irradiations, the oxygen concentration drops by 0.1%/Gy, which is independent of the dose rate. When the oxygen concentration directly affects to yields of 7OH-C3CA, the rate of decrease in the oxygen concentration may be correlated with that of decrease in the G value of 7OH-C3CA. However, the reduction rate of G value under UHDR is significantly higher than the oxygen consumption. This finding implied that the influence of the reaction between water radiolysis species formed by neighborhood tracks could be strongly related to the mechanisms of UHDR effect.
Collapse
Affiliation(s)
- Tamon Kusumoto
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, 263-8555 Chiba, Japan
| | - Taku Inaniwa
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, 263-8555 Chiba, Japan
| | - Kota Mizushima
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, 263-8555 Chiba, Japan
| | - Shinji Sato
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, 263-8555 Chiba, Japan
| | - Satoru Hojo
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, 263-8555 Chiba, Japan
| | - Hisashi Kitamura
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, 263-8555 Chiba, Japan
| | - Teruaki Konishi
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, 263-8555 Chiba, Japan
| | - Satoshi Kodaira
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, 263-8555 Chiba, Japan
| |
Collapse
|
13
|
Blain G, Vandenborre J, Villoing D, Fiegel V, Fois GR, Haddad F, Koumeir C, Maigne L, Métivier V, Poirier F, Potiron V, Supiot S, Servagent N, Delpon G, Chiavassa S. Proton Irradiations at Ultra-High Dose Rate vs. Conventional Dose Rate: Strong Impact on Hydrogen Peroxide Yield. Radiat Res 2022; 198:318-324. [PMID: 35675499 DOI: 10.1667/rade-22-00021.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/25/2022] [Indexed: 11/03/2022]
Abstract
During ultra-high dose rate (UHDR) external radiation therapy, healthy tissues appear to be spared while tumor control remains the same compared to conventional dose rate. However, the understanding of radiochemical and biological mechanisms involved are still to be discussed. This study shows how the hydrogen peroxide (H2O2) production, one of the reactive oxygen species (ROS), could be controlled by early heterogenous radiolysis processes in water during UHDR proton-beam irradiations. Pure water was irradiated in the plateau region (track-segment) with 68 MeV protons under conventional (0.2 Gy/s) and several UHDR conditions (40 Gy/s to 60 kGy/s) at the ARRONAX cyclotron. Production of H2O2 was then monitored using the Ghormley triiodide method. New values of GTS(H2O2) were added in conventional dose rate. A substantial decrease in H2O2 production was observed from 0.2 to 1.5 kGy/s with a more dramatic decrease below 100 Gy/s. At higher dose rate, up to 60 kGy/s, the H2O2 production stayed stable with a mean decrease of 38% ± 4%. This finding, associated to the decrease in the production of hydroxyl radical (•OH) already observed in other studies in similar conditions can be explained by the well-known spur theory in radiation chemistry. Thus, a two-step FLASH-RT mechanism can be envisioned: an early step at the microsecond scale mainly controlled by heterogenous radiolysis, and a second, slower, dominated by O2 depletion and biochemical processes. To validate this hypothesis, more measurements of radiolytic species will soon be performed, including radicals and associated lifetimes.
Collapse
Affiliation(s)
- Guillaume Blain
- Laboratoire SUBATECH, UMR 6457, CNRS IN2P3, IMT Atlantique, Université de Nantes, France
| | - Johan Vandenborre
- Laboratoire SUBATECH, UMR 6457, CNRS IN2P3, IMT Atlantique, Université de Nantes, France
| | | | - Vincent Fiegel
- Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | - Giovanna Rosa Fois
- Université Clermont Auvergne, CNRS/IN2P3, LPC, 63000 Clermont-Ferrand, France
| | - Ferid Haddad
- Laboratoire SUBATECH, UMR 6457, CNRS IN2P3, IMT Atlantique, Université de Nantes, France.,GIP ARRONAX, Saint-Herblain, France
| | | | - Lydia Maigne
- Université Clermont Auvergne, CNRS/IN2P3, LPC, 63000 Clermont-Ferrand, France
| | - Vincent Métivier
- Laboratoire SUBATECH, UMR 6457, CNRS IN2P3, IMT Atlantique, Université de Nantes, France
| | | | | | | | - Noël Servagent
- Laboratoire SUBATECH, UMR 6457, CNRS IN2P3, IMT Atlantique, Université de Nantes, France
| | - Grégory Delpon
- Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | | |
Collapse
|
14
|
Ohsawa D, Hiroyama Y, Kobayashi A, Kusumoto T, Kitamura H, Hojo S, Kodaira S, Konishi T. DNA strand break induction of aqueous plasmid DNA exposed to 30 MeV protons at ultra-high dose rate. JOURNAL OF RADIATION RESEARCH 2022; 63:255-260. [PMID: 34952540 PMCID: PMC8944314 DOI: 10.1093/jrr/rrab114] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/22/2021] [Indexed: 06/14/2023]
Abstract
Radiation cancer therapy with ultra-high dose rate exposure, so called FLASH radiotherapy, appears to reduce normal tissue damage without compromising tumor response. The aim of this study was to clarify whether FLASH exposure of proton beam would be effective in reducing the DNA strand break induction. We applied a simple model system, pBR322 plasmid DNA in aqueous 1 × TE solution, where DNA single strand breaks (SSBs) and double strand breaks (DSBs) can be precisely quantified by gel electrophoresis. Plasmid DNA were exposed to 27.5 MeV protons in the conventional dose rate of 0.05 Gy/s (CONV) and ultra-high dose rate of 40 Gy/s (FLASH). With both dose rate, the kinetics of the SSB and DSB induction were proportional to absorbed dose. The SSB induction of FLASH was significantly less than CONV, which were 8.79 ± 0.14 (10-3 SSB per Gy per molecule) and 10.8 ± 0.68 (10-3 SSB per Gy per molecule), respectively. The DSB induction of FLASH was also slightly less than CONV, but difference was not significant. Altogether, 27.5 MeV proton beam at 40 Gy/s reduced SSB and not DSB, thus its effect may not be significant in reducing lethal DNA damage that become apparent in acute radiation effect.
Collapse
Affiliation(s)
- Daisuke Ohsawa
- Single Cell Radiation Biology Group, National Institutes for Quantum Science and Technology; 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
| | - Yota Hiroyama
- Single Cell Radiation Biology Group, National Institutes for Quantum Science and Technology; 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
- Graduate School of Health Sciences, Hirosaki University, 66-1 Hommachi, Hirosaki-shi, Aomori, 036-8564, Japan
| | - Alisa Kobayashi
- Single Cell Radiation Biology Group, National Institutes for Quantum Science and Technology; 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
- Electrostatic Accelerator Operation Section, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
| | - Tamon Kusumoto
- Single Cell Radiation Biology Group, National Institutes for Quantum Science and Technology; 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
- Radiation Measurement Research Group, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
| | - Hisashi Kitamura
- Radiation Measurement Research Group, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
| | - Satoru Hojo
- Cyclotron Operation Section, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
| | - Satoshi Kodaira
- Single Cell Radiation Biology Group, National Institutes for Quantum Science and Technology; 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
- Radiation Measurement Research Group, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
| | - Teruaki Konishi
- Single Cell Radiation Biology Group, National Institutes for Quantum Science and Technology; 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
- Graduate School of Health Sciences, Hirosaki University, 66-1 Hommachi, Hirosaki-shi, Aomori, 036-8564, Japan
| |
Collapse
|
15
|
Precek M, Kubelik P, Vysin L, Schmidhammer U, Larbre JP, Demarque A, Jeunesse P, Mostafavi M, Juha L. Dose Rate Effects in Fluorescence Chemical Dosimeters Exposed to Picosecond Electron Pulses: An Accurate Measurement of Low Doses at High Dose Rates. Radiat Res 2022; 197:131-148. [PMID: 34614193 DOI: 10.1667/rade-20-00292.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/07/2021] [Indexed: 11/03/2022]
Abstract
The development of ultra-intense electron pulse for applications needs to be accompanied by the implementation of a practical dosimetry system. In this study four different systems were investigated as dosimeters for low doses with a very high-dose-rate source. First, the effects of ultra-short pulses were investigated for the yields of the Fricke dosimeter based on acidic solutions of ferrous sulfate; it was established that the yields were not significantly affected by the high dose rates, so the Fricke dosimeter system was used as a reference. Then, aqueous solutions of three compounds as fluorescence chemical dosimeters were utilized, each operated at a different solution pH: terephthalic acid - basic, trimesic acid - acidic, and coumarin-3-carboxylic acid (C3CA) - neutral. Fluorescence chemical dosimeters offer an attractive alternative to chemical dosimeters based on optical absorption for measuring biologically relevant low doses because of their higher sensitivity. The effects of very intense dose rate (TGy/ s) from pulses of fast electrons generated by a picosecond linear accelerator on the chemical yields of fluorescence chemical dosimeters were investigated at low peak doses (<20 Gy) and compared with yields determined under low-dose-rate irradiation from a 60 Co gamma-ray source (mGy/s). For the terephthalate and the trimesic acid dosimeters changes in the yields were not detected within the estimated (∼10%) precision of the experiments, but, due to the complexity of the mechanism of the hydroxyl radical initiated reactions in solutions of the relevant aromatic compounds, significant reductions of the chemical yield (-60%) were observed when the C3CA dosimeter was irradiated with the ultra-short pulses.
Collapse
Affiliation(s)
- Martin Precek
- ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, 252 41 Dolní Břežany, Czech Republic
- Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, 18221 Prague, Czech Republic
| | - Petr Kubelik
- Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, 18221 Prague, Czech Republic
- Department of Spectroscopy, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Ludek Vysin
- Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, 18221 Prague, Czech Republic
| | - Uli Schmidhammer
- Institut de Chimie Physique/ELYSE, CNRS UMR 8000, Université Paris-Saclay, 91400 Orsay, France
| | - Jean-Philippe Larbre
- Institut de Chimie Physique/ELYSE, CNRS UMR 8000, Université Paris-Saclay, 91400 Orsay, France
| | - Alexandre Demarque
- Institut de Chimie Physique/ELYSE, CNRS UMR 8000, Université Paris-Saclay, 91400 Orsay, France
| | - Pierre Jeunesse
- Institut de Chimie Physique/ELYSE, CNRS UMR 8000, Université Paris-Saclay, 91400 Orsay, France
| | - Mehran Mostafavi
- Institut de Chimie Physique/ELYSE, CNRS UMR 8000, Université Paris-Saclay, 91400 Orsay, France
| | - Libor Juha
- Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, 18221 Prague, Czech Republic
- Laser Plasma Department, Institute of Plasma Physics, Czech Academy of Sciences, Za Slovankou 1782/3, 18200 Prague, Czech Republic
| |
Collapse
|
16
|
Marcu LG, Bezak E, Peukert DD, Wilson P. Translational Research in FLASH Radiotherapy-From Radiobiological Mechanisms to In Vivo Results. Biomedicines 2021; 9:181. [PMID: 33670409 PMCID: PMC7918545 DOI: 10.3390/biomedicines9020181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/18/2023] Open
Abstract
FLASH radiotherapy, or the administration of ultra-high dose rate radiotherapy, is a new radiation delivery method that aims to widen the therapeutic window in radiotherapy. Thus far, most in vitro and in vivo results show a real potential of FLASH to offer superior normal tissue sparing compared to conventionally delivered radiation. While there are several postulations behind the differential behaviour among normal and cancer cells under FLASH, the full spectra of radiobiological mechanisms are yet to be clarified. Currently the number of devices delivering FLASH dose rate is few and is mainly limited to experimental and modified linear accelerators. Nevertheless, FLASH research is increasing with new developments in all the main areas: radiobiology, technology and clinical research. This paper presents the current status of FLASH radiotherapy with the aforementioned aspects in mind, but also to highlight the existing challenges and future prospects to overcome them.
Collapse
Affiliation(s)
- Loredana G Marcu
- Faculty of Informatics & Science, Department of Physics, University of Oradea, 410087 Oradea, Romania
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
- School of Physical Sciences, Department of Physics, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Dylan D Peukert
- School of Civil, Environmental & Mining Engineering, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
- STEM, University of South Australia, Adelaide, SA 5001, Australia
| | - Puthenparampil Wilson
- STEM, University of South Australia, Adelaide, SA 5001, Australia
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| |
Collapse
|