1
|
Ji L, Fu A, Zhang Y, Xu Y, Xi Y, Cui S, Gao N, Yang L, Shang W, Yang Z, He G. An AIE-TICT fluorescence probe cascade responsive to H 2S, polarity and viscosity to track microenvironment changes in cellular model of ischemia-reperfusion injury. Anal Chim Acta 2025; 1334:343425. [PMID: 39638469 DOI: 10.1016/j.aca.2024.343425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Ischemia-reperfusion injury is a common cause of cardiovascular and cerebrovascular diseases. The reoxygenation during reperfusion leads to an overproduction of reactive oxygen species (ROS). As an antioxidant, H2S can scavenge ROS to inhibit oxidative stress and inflammatory reaction, thus attenuating ischemia-reperfusion injury. In this process, the changes of cellular microenvironment (polarity or viscosity) have not been fully discussed. In order to real-time track the changes of cellular microenvironment during the treatment of ischemia-reperfusion injury with H2S. It is necessary to develop highly selective and sensitive probes that can cascade response to hydrogen sulfide and cellular microenvironment. RESULTS We designed and synthesized a fluorescent probe TPEC-DNBS which can produce cascade response to H2S and microenvironment. An intermediate TPEC-OH is produced after highly selective and sensitive response to H2S, which can further respond to polarity and viscosity. In addition, due to the aggregation-induced emission (AIE) and twisted intramolecular charge transfer (TICT) effects, polarity can promote the fluorescence emission wavelength and intensity of TPEC-OH to produce double response characteristics, and its change trend (from weak green fluorescence at low polarity to strong red fluorescence at high polarity) is opposite to that of traditional polar probes (from strong green fluorescence at low polarity to weak red fluorescence at high polarity). Viscosity can only induce the change of fluorescence intensity. By constructing the cardiomyocyte model and hepatocyte model of ischemia-reperfusion, we further prove that after ischemia-reperfusion injury, the cells are in an environment of low polarity, and the microenvironment can be recovered after H2S treatment. SIGNIFICANCE An AIE-TICT fluorescence probe capable of cascading responses to H2S, polarity and viscosity was constructed by using tetraphenylethylene and coumarin moieties. This probe provides a more intuitive and convenient condition for real-time tracking the changes of cellular microenvironment (polarity or viscosity) before and after H2S treatment of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Liguo Ji
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, 453003, Henan Province, PR China.
| | - Aoxiang Fu
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, 453003, Henan Province, PR China
| | - Yuying Zhang
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, 453003, Henan Province, PR China
| | - Ying Xu
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, 453003, Henan Province, PR China
| | - Yanbei Xi
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, 453003, Henan Province, PR China
| | - Shaoli Cui
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, 453003, Henan Province, PR China
| | - Na Gao
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, 453003, Henan Province, PR China
| | - Linlin Yang
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, 453003, Henan Province, PR China
| | - Wanbing Shang
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, 453003, Henan Province, PR China
| | - Zhijun Yang
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, 453003, Henan Province, PR China
| | - Guangjie He
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, 453003, Henan Province, PR China.
| |
Collapse
|
2
|
Huang H, Zhou G, Meng Z, Wang X, Wang Z, Yang Y. A novel dialdehyde cellulose-based colorimetric and turn-on fluorescent probe for H 2S detection and its application in red wine. Int J Biol Macromol 2024; 280:136018. [PMID: 39326599 DOI: 10.1016/j.ijbiomac.2024.136018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/07/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Hydrogen sulfide (H2S) is considered one of the most important gaseous transmitters in the metabolic system, and the abnormal concentration of H2S is associated with a variety of diseases. Up to now, it is still a challenge to develop a portable assay for H2S even though the research about the detection of H2S is booming. Herein, a novel bifunctional dialdehyde-cellulose fluorescent probe DAC-DPD was prepared with high selectivity and sensitivity to H2S with colorimetric and fluorescent "turn-on" characteristics, and the limit of detection (LOD) of DAC-DPD for H2S was 0.831 μM. The sensing mechanism of DAC-DPD's to H2S was a Michael addition reaction confirmed by HRMS, 1H NMR and density-functional theory (DFT) calculations. DAC-DPD can be used to detect H2S in red wine samples. In Addition, the prepared DAC-DPD embedded fluorescent membrane can be used as a reliable sensing platform for rapid detection of H2S. It provided a convenient and rapid detection material, simplifying the detection process of H2S, which is of great significance for the development of cellulose-based fluorescent smart material.
Collapse
Affiliation(s)
- Huan Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Guocheng Zhou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiyuan Meng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyuan Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yiqin Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Zhang S, Liu X, Chen X, Tang J, Wang J. A novel fluorescent probe with a phosphofluorene molecular structure for selective detection of hydrogen sulfide in living cells. RSC Adv 2024; 14:20966-20973. [PMID: 38957581 PMCID: PMC11218039 DOI: 10.1039/d4ra02979h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Hydrogen sulfide (H2S) gas plays a significant role in biological regulation. With advancements in technology, H2S has been discovered across diverse fields, necessitating a comprehensive understanding of its physiological functions through monitoring changes in H2S within complex environments and physiological processes. In this study, we designed a phosphofluorene-based conjugate probe PPF-CDNB with an asymmetric π-conjugated phosphine structure and utilized dinitrophenyl ether as the recognition site for H2S. PPF-CDNB exhibited exceptional resistance to interference and demonstrated stability over a broad pH range (3.0-10.0), making it suitable for various environmental conditions. Intracellular experiments revealed that PPF-CDNB effectively monitored both endogenous and exogenous levels of H2S.
Collapse
Affiliation(s)
- Shuntao Zhang
- College of Chemical Engineering, Sichuan University of Science & Engineering Zigong 643000 China
| | - Xingyong Liu
- College of Chemical Engineering, Sichuan University of Science & Engineering Zigong 643000 China
| | - Xiangjun Chen
- College of Chemical Engineering, Sichuan University of Science & Engineering Zigong 643000 China
| | - Jiefeng Tang
- College of Chemical Engineering, Sichuan University of Science & Engineering Zigong 643000 China
| | - Juan Wang
- College of Chemical Engineering, Sichuan University of Science & Engineering Zigong 643000 China
| |
Collapse
|
4
|
Gong Q, Lai Y, Lin W. A dual-color ESIPT-based probe for simultaneous detection of hydrogen sulfide and hydrazine. J Mater Chem B 2024; 12:5150-5156. [PMID: 38757243 DOI: 10.1039/d4tb00318g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Hydrogen sulfide (H2S) and hydrazine (N2H4) are toxic compounds in environmental and living systems, and hydrogen sulfide is also an important signaling molecule. However, in the absence of dual-color probes capable of detecting both H2S and N2H4, the ability to monitor the crosstalk of these substances is restricted. Herein, we developed an ESIPT-based dual-response fluorescent probe (BDM-DNP) for H2S and N2H4 detection via dually responsive sites. The BDM-DNP possessed absorbing strength in the detection of H2S and N2H4, with a large Stokes shift (156 nm for H2S and 108 nm for N2H4), high selectivity and sensitivity, and good biocompatibility. Furthermore, BDM-DNP can be utilized for the detection of hydrogen sulfide and hydrazine in actual soil, and gaseous H2S and N2H4 in environmental systems. Notably, BDM-DNP can detect H2S and N2H4 in living cells for disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Qian Gong
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Youbo Lai
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| |
Collapse
|
5
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
6
|
Anderson B, Bryant DL, Gozem S, Brambley C, Handy ST, Farone A, Miller JM. Solvent-Dependent Emissions Properties of a Model Aurone Enable Use in Biological Applications. J Fluoresc 2024:10.1007/s10895-024-03607-x. [PMID: 38411859 DOI: 10.1007/s10895-024-03607-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/27/2024] [Indexed: 02/28/2024]
Abstract
Fluorophores are powerful visualization tools and the development of novel small organic fluorophores are in great demand. Small organic fluorophores have been derived from the aurone skeleton, 2-benzylidenebenzofuran-3(2H)-one. In this study, we have utilized a model aurone derivative with a methoxy group at the 3' position and a hydroxyl group at the 4' position, termed vanillin aurone, to develop a foundational understanding of structural factors impacting aurone fluorescence properties. The fluorescent behaviors of the model aurone were characterized in solvent environments differing in relative polarity and dielectric constant. These data suggested that hydrogen bonding or electrostatic interactions between excited state aurone and solvent directly impact emissions properties such as peak emission wavelength, emission intensity, and Stokes shift. Time-dependent Density Functional Theory (TD-DFT) model calculations suggest that quenched aurone emissions observed in water are a consequence of stabilization of a twisted excited state conformation that disrupts conjugation. In contrast, the calculations indicate that low polarity solvents such as toluene or acetone stabilize a brightly fluorescent planar state. Based on this, additional experiments were performed to demonstrate use as a turn-on probe in an aqueous environment in response to conditions leading to planar excited state stabilization. Vanillin aurone was observed to bind to a model ATP binding protein, YME1L, leading to enhanced emissions intensities with a dissociation equilibrium constant equal to ~ 30 µM. Separately, the aurone was observed to be cell permeable with significant toxicity at doses exceeding 6.25 µM. Taken together, these results suggest that aurones may be broadly useful as turn-on probes in aqueous environments that promote either a change in relative solvent polarity or through direct stabilization of a planar excited state through macromolecular binding.
Collapse
Affiliation(s)
- Beth Anderson
- Department of Chemistry, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, TN, 37132, USA
| | - Daniel L Bryant
- Department of Biology, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, TN, 37132, USA
| | - Samer Gozem
- Department of Chemistry, Georgia State University, 50 Decatur Street SE, Atlanta, GA, 30302, USA
| | - Chad Brambley
- Department of Chemistry, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, TN, 37132, USA
| | - Scott T Handy
- Department of Chemistry, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, TN, 37132, USA
| | - Anthony Farone
- Department of Biology, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, TN, 37132, USA
| | - Justin M Miller
- Department of Chemistry, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, TN, 37132, USA.
| |
Collapse
|
7
|
Wang M, Chen J, Gu X, Yang X, Fu J, Xu K. A novel near-infrared fluorescent probe with large Stokes shift for imagining hydrogen sulfide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122587. [PMID: 36931062 DOI: 10.1016/j.saa.2023.122587] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen sulfide (H2S) plays an important role in regulating varieties of important physiological and pathological processes. Thus the development of fluorescent probe for the detection of H2S is of great significance and has attracted much attention recently. Herein, we reported a novel near-infrared (NIR) emitting fluorescent probe WFP-PC, which contained a positive charged hemicyanine-based WFP-OH as fluorophore and thiobenzoate unit as a specific reaction site. After treated with H2S, the probe exhibited significant fluorescence enhancement and response time within 4 min and detection limit as low as 0.47 μM, accompanied by color changes from purple to blue. The probe was successfully applied to imaging the exogenous/endogenous H2S in cells and mice, suggesting it could be a promising molecular tool for H2S detection in living systems.
Collapse
Affiliation(s)
- Minghui Wang
- Henan Engineering Research Center of Industrial Recirculating Water Treatment, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Jiajia Chen
- Henan Engineering Research Center of Industrial Recirculating Water Treatment, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Xin Gu
- Henan Engineering Research Center of Industrial Recirculating Water Treatment, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Xindi Yang
- Henan Engineering Research Center of Industrial Recirculating Water Treatment, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Jia Fu
- School of Medicine, Henan University, Zhengzhou, Henan 450001, PR China.
| | - Kuoxi Xu
- Henan Engineering Research Center of Industrial Recirculating Water Treatment, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China.
| |
Collapse
|
8
|
Xu C, Zhang Y, Sun H, Ai J, Ren M. Development of a two-photon fluorescent probe for imaging hydrogen sulfide (H 2S) in living cells and zebrafish. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1948-1952. [PMID: 37017111 DOI: 10.1039/d3ay00375b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We present a new two-photon fluorescent probe (T-HS) for the detection of H2S. With the addition of hydrogen sulfide, the absorption and fluorescence spectra of the probe show regular changes. The probe exhibited favorable properties, such as large turn-on fluorescence signal, good selectivity and low cytotoxicity. Moreover, the probe T-HS was successfully used for the fluorescence imaging of H2S in live cells and zebrafish.
Collapse
Affiliation(s)
- Chen Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yukun Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Hui Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Jindong Ai
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Mingguang Ren
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
9
|
Wang Y, Zhao X, Chen Y, James TD, Wang G, Zhang H. Synergistically activated dual-locked fluorescent probes to monitor H 2S-induced DNA damage. Chem Commun (Camb) 2022; 58:10500-10503. [PMID: 36043365 DOI: 10.1039/d2cc04247a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Naphthalimide-based fluorescent probes (NAN0-N3 and NAN6-N3) were developed with dual locked fluorescence. Here, ≥1.9 × 10-2 mM of H2S and ≥2.2 × 10-2 μg mL-1 of DNA could unlock a highly sensitive off-on fluorescence response through synergistic changes of the molecular structure and conformation. As such, the probes could monitor DNA damage induced by the overexpression of H2S, and were able to evaluate the degree of apoptosis of living cells mediated by H2S-induced mtDNA or nDNA damage.
Collapse
Affiliation(s)
- Yafu Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering Institution, Henan Normal University, Xinxiang, 453007, China.
| | - Xiaoli Zhao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering Institution, Henan Normal University, Xinxiang, 453007, China.
| | - Yuehua Chen
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering Institution, Henan Normal University, Xinxiang, 453007, China.
| | - Tony D James
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering Institution, Henan Normal University, Xinxiang, 453007, China. .,Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - Ge Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453007, China
| | - Hua Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering Institution, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
10
|
Chen R, Ye H, Fang T, Liu S, Yi L, Cheng L. An NBD tertiary amine is a fluorescent quencher and/or a weak green-light fluorophore in H 2S-specific probes. Org Biomol Chem 2022; 20:4128-4134. [PMID: 35510487 DOI: 10.1039/d2ob00442a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The thiolysis of NBD piperazinyl amine (NBD-PZ) is highly selective for H2S over GSH and has been widely used for the development of many H2S fluorescent probes. Whether the NBD amine in H2S-specific probes could be a fluorescent quencher should be further clarified, because NBD amines have been used as environment-sensitive fluorophores for many years. Here, we compared the properties of NBD-based secondary and tertiary amines under the same conditions. For example, the emission of NBD-N(Et)2 is much smaller in water and less responsive to changes in polarity than that of NBD-NHEt. The emission of NBD-PZ-TPP is also smaller than that of NBD-NH-TPP both in aqueous buffer and in live cells. In addition, confocal bioimaging signals of NBD-PZ-TPP with excitation at 405 nm and 454 nm are much weaker than that at 488 nm. Based on these results as well as the previous work on NBD-based probes, we discuss and summarize the design strategies and sensing mechanisms for different NBD-based H2S probes. Moreover, NBD-PZ-TPP may be a useful tool for reaction with and imaging of mitochondrial H2S in live cells. This work should be useful for clarification of the roles of NBD in H2S-specific fluorescent probes as well as for facilitating the development of future NBD-based probes.
Collapse
Affiliation(s)
- Ruirui Chen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Haishun Ye
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P. R. China.
| | - Tian Fang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Shanshan Liu
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P. R. China.
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P. R. China.
| | - Longhuai Cheng
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
11
|
Yu XX, Cheng H, Li X, Li YJ, Song XQ. A hydrostable Cu II coordination network prepared hydrothermally as a "turn-on" fluorescent sensor for S 2- and a selective adsorbent for methylene blue. Dalton Trans 2022; 51:2962-2974. [PMID: 35108721 DOI: 10.1039/d1dt04283a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effective monitoring of water pollution and further purification are pressing yet challenging issues for guaranteeing the health of human beings and the stabilization of ecological systems. For this purpose, the development of efficient sensing and adsorption materials as a result of supramolecular interactions, including coordination and H-bonding etc., have been attracting increasing attention. With the aid of a coordination-driven self-assembly strategy, a new nonporous 2D CuII coordination network, [Cu2L(H2O)2]n (donated as CuCP), based on H4L, where H4L = 4-(4-(3,5-di-carboxy-pyridin-4-yl)phenyl)pyridine-2,6-dicarboxylic acid, was afforded hydrothermally. Structural analysis indicated that CuCP featured a wrinkled network similar to the ancient Chinese folding screens and constructed by the fully deprotonated ligand L4- with the coordination mode of bis(μ2-η1:η1:η2) and penta-coordinated Cu2+, which could be further upgraded to a supramolecular 3D framework as a result of the synergism of multiple C-H⋯O hydrogen bonds. The hydrostability of CuCP could be maintained within a wide pH range from 2 to 12 as verified by PXRD determination, endowing it with potential environmental applications. Thanks to the combination of the soft Lewis acidity of Cu2+ and its large conjugated structure, CuCP could be used as a turn-on fluorescence sensor for S2- and exhibited a different fluorescence response when Na2S, (NH4)2S or H2S were incorporated, even in actual water samples. The sensing mechanisms were disclosed in detail by the combination of experiments and density functional theory (DFT) calculations. Furthermore, CuCP was shown to be a selective and recoverable adsorbent with a maximum adsorption capacity of 379 mg g-1 in 60 minutes for methylene blue (MB). The adsorption mechanism could be a combination of π⋯π stacking, n⋯π interaction, aggregation effects and Soft and Hard Acid-Base theory (HSAB). The results presented herein open up new perspectives for CuII species in environmental applications.
Collapse
Affiliation(s)
- Xin-Xin Yu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Hao Cheng
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Xuan Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Ya-Jun Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Xue-Qin Song
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| |
Collapse
|
12
|
Bryant DL, Kafle A, Handy ST, Farone AL, Miller JM. Aurone-derived 1,2,3-triazoles as potential fluorescence molecules in vitro. RSC Adv 2022; 12:22639-22649. [PMID: 36105995 PMCID: PMC9372874 DOI: 10.1039/d2ra02578g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
Aurones are a class of naturally occurring compounds with fluorescent derivatives. Here we show a newly synthesized derivative of aurones containing a 1,2,3-triazole which is fluorescent in aqueous environments and has potential to be used as a probe in vitro.
Collapse
Affiliation(s)
- Daniel L. Bryant
- Department of Biology, Middle Tennessee State University, 1301 E Main St., Murfreesboro 37132, Tennessee, USA
- Department of Chemistry, Middle Tennessee State University, 1301 E Main St., Murfreesboro 37132, Tennessee, USA
| | - Arjun Kafle
- Department of Chemistry, Middle Tennessee State University, 1301 E Main St., Murfreesboro 37132, Tennessee, USA
| | - Scott T. Handy
- Department of Chemistry, Middle Tennessee State University, 1301 E Main St., Murfreesboro 37132, Tennessee, USA
| | - Anthony L. Farone
- Department of Biology, Middle Tennessee State University, 1301 E Main St., Murfreesboro 37132, Tennessee, USA
| | - Justin M. Miller
- Department of Chemistry, Middle Tennessee State University, 1301 E Main St., Murfreesboro 37132, Tennessee, USA
| |
Collapse
|
13
|
Progress on the reaction-based methods for detection of endogenous hydrogen sulfide. Anal Bioanal Chem 2021; 414:2809-2839. [PMID: 34825272 DOI: 10.1007/s00216-021-03777-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/12/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022]
Abstract
Hydrogen sulfide (H2S) is a biologically signaling molecule that mediates a wide range of physiological functions, which is frequently misregulated in numerous pathological processes. As such, measurement of H2S holds great attention due to its unique physiological and pathophysiological roles. Currently, a variety of methods based on the H2S-involved reactions have been reported for detection of endogenous H2S, bearing the advantages of good specificity and high sensitivity. This review describes in detail the types of reactions, their mechanisms, and their applications in biological research, thus hopefully providing some guidelines to the researchers in this field for further investigation.
Collapse
|
14
|
A new sensitive “turn-on” fluorescent probe based on naphthalimide: Application in visual recognition of hydrogen sulfide in environmental samples and living cells. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Niu P, Liu J, Rong Y, Liu X, Wei L. A fluorescent probe for selective and instantaneous detection of hydrogen sulfide in living cells and zebrafish. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|