1
|
Wu T, Jiang J, Yang Y, Zhang J, Dai Z, Tao H. Toxicity mechanism of metal-organic framework HKUST-1 and its carbonized product to Tetradesmus obliquus: Physiological and transcriptomic analysis. Comp Biochem Physiol C Toxicol Pharmacol 2025; 290:110130. [PMID: 39848481 DOI: 10.1016/j.cbpc.2025.110130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/16/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Metal-organic frameworks (MOFs) are emerging materials with unique structures and properties, which have been widely used in many fields due to their various advantages. However, compared with its popular application research, the ecological safety of MOFs has rarely been reported. In this paper, a biological model, the common freshwater green algae Tetradesmus obliquus (T. obliquus) was used to study the effects of the copper-based MOF HKUST-1 and its carbonation product DHKUST-1 on the physiology and transcription level of the algae. A suite of advanced material characterization techniques has been utilized to multidimensionally reveal the physicochemical properties of HKUST-1 and its carbonation product. Notably, DHKUST-1 exhibit higher stability than HKUST-1 in aqueous environments, with lower ion release. During a 96-h exposure experiment, relevant indicators such as algae density, chlorophyll-a content and antioxidant enzyme activities were measured. Additionally, an intriguing IBR model was employed to comprehensively assess the toxicity of HKUST-1 and DHKUST-1 on the antioxidant system of T. obliquus. Furthermore, an in-depth analysis was conducted on the differential gene expression changes in T. obliquus under 10 mg/L HKUST-1 stress, exploring the impact on various pathways within algal cells. Briefly, the toxicity mechanism of HKUST-1 on T. obliquus is multi-involved. The findings of this study are expected to provide important basic data and references for the evaluation of the ecological safety of MOFs.
Collapse
Affiliation(s)
- Tongtong Wu
- School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Jiahui Jiang
- School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Yi Yang
- School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Jiehe Zhang
- School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; School of Medical Imageology, Wannan Medical College, Wuhu 241002, China
| | - Zehong Dai
- School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Haisheng Tao
- School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
2
|
Li Q, Li F, Yang Y, Yan H, Yu C, Zheng M, Chen H. Carbon Nanosheet Preparation By Low-Temperature Two-Step Carbonization: A Study of Their Properties and Mechanism of Adsorption of Oxidized H 2S. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17547-17558. [PMID: 39118224 DOI: 10.1021/acs.langmuir.4c01769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Straw, as a kind of biomass waste, has the advantages of low cost and abundant storage, which makes it a promising renewable resource. Using rice straw as a carbon source, carbon nanosheets were prepared by a two-step carbonization method combining low-temperature pyrolysis and low-temperature hydrothermal, and they were used as H2S removal agents. The results showed that during the two-step carbonization process, the adsorption performance of carbon nanosheets for H2S showed a tendency of enhancing and then weakening with the increase of pyrolysis temperature in the first step, and the sulfur capacity could reach 3.1 mg/g at the maximum of the pyrolysis temperature of 200 °C, which was superior to or close to that of the modified or activated carbon. The XPS, EPR, and CO2-TPD tests showed that the surface of carbon nanosheets was alkaline, containing a large number of hydroxyl groups and the presence of phenoxy persistent free radicals or semiquinone persistent free radicals. It was analyzed that the direct or indirect oxidation of H2S by the persistent radicals under an alkaline environment could convert the -2-valent sulfur into -1-, 0- and +6-valent sulfur to realize the adsorption and removal of H2S. This work, while offering the possibility of utilizing carbon nanosheets made from straw as a material for H2S adsorption and removal, also expands the application of straw waste in exhaust gas treatment.
Collapse
Affiliation(s)
- Qiushuang Li
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, P. R. China
| | - Fen Li
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, P. R. China
| | - Ying Yang
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, P. R. China
| | - Hong Yan
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, P. R. China
| | - Cailian Yu
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, P. R. China
| | - Menglong Zheng
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, P. R. China
| | - Huiyu Chen
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, P. R. China
| |
Collapse
|
3
|
Sun X, Fu Q, Ren J, Sun-Waterhouse D, Waterhouse GIN, Qiao X. Defective copper-based metal-organic frameworks for the efficient extraction of organosulfur compounds from garlic-processing wastewater. Food Chem 2024; 435:137628. [PMID: 37804731 DOI: 10.1016/j.foodchem.2023.137628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Organosulfur compounds (OSCs) in garlic-processing wastewater are decomposed and generated to toxic and harmful substances with unpleasant odors under anaerobic conditions. Herein, were report the successful development of novel copper-based metal organic framework (Cu-MOF) adsorbents with high adsorption capacities for OSCs in aqueous media. Defect-rich Cu-MOF-X samples, with particle sizes between 360 and 750 nm, synthesized hydrothermal in the presence of acetic acid (where X denotes the molar ratio of acetic acid relative to the pentadentate MOF linker H4PPYD). OSC adsorption experiments using allicin, ajoene and 2-ethenyl-4H-1,3-dithiine (2-VDT) showed that Cu-MOF-200 delivered fast adsorption kinetics and high OSC adsorption capacities (149.02-171.33 mg g-1) owing to the pore accessibility and range of adsorption sites in the MOF. FT-IR, Raman, and XPS analyses, together with density functional theory (DFT) calculations, verified the strong yet reversible adsorption of OSCs in Cu-MOF-200. Results guide the development of improved adsorbents for OSC capture from garlic-processing wastewater.
Collapse
Affiliation(s)
- Xin Sun
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, PR China
| | - Quanbin Fu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, PR China
| | - Jun Ren
- School of Chemical Engineering and Technology, Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan 030051, PR China
| | | | | | - Xuguang Qiao
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, PR China.
| |
Collapse
|
4
|
Yimer M, Ansari SN, Berehe BA, Gudimella KK, Gedda G, Girma WM, Hasan N, Tasneem S. Adsorptive removal of heavy metals from wastewater using Cobalt-diphenylamine (Co-DPA) complex. BMC Chem 2024; 18:23. [PMID: 38287347 PMCID: PMC10826029 DOI: 10.1186/s13065-024-01128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
Heavy metals like Cadmium, Lead, and Chromium are the pollutants emitted into the environment through industrial development. In this work, a new diphenylamine coordinated cobalt complex (Co-DPA) has been synthesized and tested for its efficiency in removing heavy metals from wastewater, and its adsorption capacity was investigated. The effectiveness of heavy metals removal by Co-DPA was evaluated by adjusting the adsorption parameters, such as adsorbent dose, pH, initial metals concentration, and adsorption period. Heavy metal concentrations in real sample were 0.267, 0.075, and 0.125 mg/L for Cd2+, Pb2+, and Cr3+ before using as-synthesized Co-DPA to treat wastewater. After being treated with synthesized Co-DPA the concentration of heavy metals was reduced to 0.0129, 0.00028, 0.00054 mg/L for Cd2+, Pb2+, and Cr3+, respectively, in 80 min. The removal efficiency was 95.6%, 99.5%, and 99.5% for the respective metals. The adsorption process fitted satisfactorily with Freundlich isotherm with R2(0.999, 0.997, 0.995) for Cd2+, Pb2+, and Cr3+, respectively. The kinetic data obeyed the pseudo-second order for Cd2+ and Cr2+ and the pseudo-first order for Pb2+. Based on the results obtained within the framework of this study, it is concluded that the as-synthesized Co-DPA is a good adsorbent to eliminate heavy metal ions like Cd2+, Pb2+, and Cr3+from wastewater solution. In general, Co-DPA is a promising new material for the removal of heavy metal ions from water.
Collapse
Affiliation(s)
- Mesfin Yimer
- Department of Chemistry, College of Natural Science, Wollo University, P.O. Box:1145, Dessie, Ethiopia
| | - Shagufi Naz Ansari
- Department of Chemistry, School of Engineering, Presidency University, Bangalore, Karnataka, 560064, India
| | - Biniyam Abdu Berehe
- Department of Chemistry, College of Natural Science, Wollo University, P.O. Box:1145, Dessie, Ethiopia
| | - Krishna Kanthi Gudimella
- Department of Chemistry, School of Science, GITAM (Deemed to Be University), Rudraram, Telangana, 502329, India
| | - Gangaraju Gedda
- Central Research Laboratory, K S Hegde Medical Academy, NITTE (Deemed to Be University), Deralakatte, Mangaluru, Karnataka, 575018, India.
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| | - Wubshet Mekonnen Girma
- Department of Chemistry, College of Natural Science, Wollo University, P.O. Box:1145, Dessie, Ethiopia.
| | - Nazim Hasan
- Department of Chemistry, College of Science, Jazan University, P.O. Box 114, Jazan, 45142, Kingdom of Saudi Arabia
| | - Shadma Tasneem
- Department of Chemistry, College of Science, Jazan University, P.O. Box 114, Jazan, 45142, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Huang Y, Huang J, Zhou Y, Fan X, Li Y. Pd@HKUST-1@Cu(II)/CMC composite bead as an efficient synergistic bimetallic catalyst for Sonogashira cross-coupling reactions. Carbohydr Polym 2024; 324:121531. [PMID: 37985060 DOI: 10.1016/j.carbpol.2023.121531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
We fabricated an efficient Pd@HKUST-1@Cu(II)/CMC composite bead catalyst through an innovative strategy based on the unique properties of metal-organic frameworks (MOFs) and carboxymethylcellulose (CMC). In this strategy, HKUST-1 MOFs were grown in-situ on the surface of micrometer-sized Cu-based CMC beads (Cu(II)/CMC), then Pd(II) ions were incorporated into the pores of the MOF and further be partially reduced to Pd(0) NPs, which is an active species for oxidative addition with aryl halides in Sonogashira reactions. The micron-sized Cu(II)/CMC beads were formed through inter/intramolecularly crosslinking facilitated by Cu(II) ions, which was achieved by the metathesis of Cu(II) with numerous carboxylic groups of CMC. Such Cu(II)/CMC bead offers many Cu(II) ions as interaction sites for in-situ nucleation and growth of HKUST-1 MOFs. The architecture and composition of the prepared Pd@HKUST-1@Cu(II)/CMC composite were fully verified by various techniques such as FTIR, XRD, TGA, BET, XPS, SEM, TEM, EDX, and elemental mapping analysis. This novel composite bead was applied as an efficient and reusable heterogeneous Pd/Cu bimetallic catalyst for Sonogashira reactions, decarbonylative Sonogashira reaction, and Sonogashira cyclization tandem reactions. The catalyst is readily isolated by simple filtration, and can be reused for five consecutive runs with retaining its activity and structural integrity.
Collapse
Affiliation(s)
- Yuling Huang
- Department of Chemistry, College of Chemistry and Materials Science, Panyu Campus, Jinan University, Guangzhou 511443, China
| | - Jiayi Huang
- Department of Chemistry, College of Chemistry and Materials Science, Panyu Campus, Jinan University, Guangzhou 511443, China
| | - Yuping Zhou
- Department of Chemistry, College of Chemistry and Materials Science, Panyu Campus, Jinan University, Guangzhou 511443, China
| | - Xuetao Fan
- Department of Chemistry, College of Chemistry and Materials Science, Panyu Campus, Jinan University, Guangzhou 511443, China
| | - Yiqun Li
- Department of Chemistry, College of Chemistry and Materials Science, Panyu Campus, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
6
|
Moghaddam FM, Jarahiyan A, Pazoki PY. β-Ketoallylic methylsulfones synthesis via inert C(sp 3)-H bond activation by magnetic Ag-Cu MOF. Sci Rep 2023; 13:22518. [PMID: 38110516 PMCID: PMC10728156 DOI: 10.1038/s41598-023-49670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023] Open
Abstract
Herein, the one-pot tandem synthesis of β-ketoallylic methylsulfones has been achieved from readily available dimethyl sulfoxide and acetophenones as coupling partners in one step. In this procedure, dimethyl sulfoxide serves as a triple role including solvent, dual synthon and as an oxidant agent. The use of magnetic Ag-Cu MOF as a bimetallic catalyst is the key to the progress of the reaction due to its accessible active sites. It provides facile access to various β-ketoallylic methylsulfone derivatives from direct C(sp3)-H bond activation and functionalization of aromatic methyl ketones especially acetophenones with electron-rich and electron-poor groups. Moreover, the present work offers a synthetically powerful strategy to form products in good to excellent yields (74-96%) with the atom, step, and pot economics. It has also delivered a new chromane-4-one derivative from 2-hydroxy acetophenone with intramolecular Michael-addition of related β-ketoallyl methylsulfone product. In the final step, the electronic properties of some products have been predicted with the theoretical studies.
Collapse
Affiliation(s)
- Firouz Matloubi Moghaddam
- Laboratory of Organic Synthesis and Natural Products, Department of Chemistry, Sharif University of Technology, Azadi Street, PO Box 111559516, Tehran, Iran.
| | - Atefeh Jarahiyan
- Laboratory of Organic Synthesis and Natural Products, Department of Chemistry, Sharif University of Technology, Azadi Street, PO Box 111559516, Tehran, Iran
| | - Parisa Yaqubnezhad Pazoki
- Laboratory of Organic Synthesis and Natural Products, Department of Chemistry, Sharif University of Technology, Azadi Street, PO Box 111559516, Tehran, Iran
| |
Collapse
|
7
|
Bhosale R, Bhosale S, Narale D, Jambhale C, Kolekar S. Construction of Well-Defined Two-Dimensional Architectures of Trimetallic Metal-Organic Frameworks for High-Performance Symmetric Supercapacitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12075-12089. [PMID: 37578309 DOI: 10.1021/acs.langmuir.3c01337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The high surface-to-volume ratio and extraordinarily large-surface area of two-dimensional (2D) metal-organic framework (MOF) architectures have drawn particular interest for use in supercapacitors. To achieve an excellent electrode material for supercapacitors, well-defined 2D nanostructures of novel trimetallic MOFs were developed for supercapacitor applications. Multivariate MOFs (terephthalate and trimesate MOF) with distinctive nanobrick and nanoplate-like structures were successfully synthesized using a straightforward one-step reflux condensation method by combining Ni, Co, and Zn metal species in equimolar ratios with two different ligands. Furthermore, the effects of the tricarboxylic and dicarboxylic ligands on cyclic voltammetry, charge-discharge cycling, and electrochemical impedance spectroscopy were studied. The derived terephthalate and trimesate MOFs are supported with stainless-steel mesh and provide a suitable electrolyte environment for rapid faradaic reactions with an elevated specific capacity, excellent rate capability, and exceptional cycling stability. It shows a specific capacitance of 582.8 F g-1, a good energy density of 40.47 W h kg-1, and a power density of 687.5 W kg-1 at 5 mA cm-2 with an excellent cyclic stability of 92.44% for 3000 charge-discharge cycles. A symmetric BDC-MOF//BDC-MOF supercapacitor device shows a specific capacitance of 95.22 F g-1 with low capacitance decay, high energy, and power densities which is used for electronic applications. These brand-new trimetallic MOFs display outstanding electrochemical performance and provide a novel strategy for systematically developing high-efficiency energy storage systems.
Collapse
Affiliation(s)
- Rakhee Bhosale
- Analytical Chemistry and Material Science Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, India
| | - Sneha Bhosale
- Analytical Chemistry and Material Science Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, India
| | - Dattatray Narale
- Analytical Chemistry and Material Science Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, India
| | - Chitra Jambhale
- Analytical Chemistry and Material Science Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, India
| | - Sanjay Kolekar
- Analytical Chemistry and Material Science Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, India
| |
Collapse
|
8
|
Liu Z, Sun G, Chen Z, Ma Y, Qiu K, Li M, Ni BJ. Anchoring Cu-N active sites on functionalized polyacrylonitrile fibers for highly selective H 2S/CO 2 separation. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131084. [PMID: 36863102 DOI: 10.1016/j.jhazmat.2023.131084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/05/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
As an essential part of clean energy, natural gas is often mixed with varying degrees of H2S and CO2, which poses a serious environmental hazard and reduces the fuel's calorific value. However, technology for selective H2S removal from CO2-containing gas streams is still not fully established. Herein, we synthesized functional polyacrylonitrile fibers with Cu-N coordination structure (PANFEDA-Cu) by an amination-ligand reaction. The results showed that PANFEDA-Cu exhibited a remarkable adsorption capacity (143 mg/g) for H2S at ambient temperature, even in the presence of water vapor, and showed a good separation of H2S/CO2. X-ray absorption spectroscopy results confirmed the Cu-N active sites in as-prepared PANFEDA-Cu and the formed S-Cu-N coordination structures after H2S adsorption. The active Cu-N sites on the fiber surface and the strong interaction between highly reactive Cu atoms and S are the main reasons for the selective removal of H2S. Additionally, a possible mechanism for the selective adsorption/removal of H2S is proposed based on experimental and characterization results. This work will pave the way for the design of highly efficient and low-cost materials for gas separation.
Collapse
Affiliation(s)
- Zhihao Liu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Gang Sun
- Northwest Sichuan Gas Mine of Southwest Oil field, Southwest Oil and Gas Field Company, PetroChina, Jiangyou, Sichuan 621709, China
| | - Zhijie Chen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Yue Ma
- Northwest Sichuan Gas Mine of Southwest Oil field, Southwest Oil and Gas Field Company, PetroChina, Jiangyou, Sichuan 621709, China
| | - Kui Qiu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Min Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
9
|
Tran TQ, Tran HM, Nguyen XT, Nguyen DT, Giang PLT, Nguyen NT. Fabrication of Copper-Terephthalate Frameworks and N-Doped Carbon Dots Composite for Boosting Photocatalytic Performance. Top Catal 2022. [DOI: 10.1007/s11244-022-01732-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Paz R, Gupta NK, Viltres H, Leyva C, Romero-Galarza A, Srinivasan S, Rajabzadeh AR. Lanthanides adsorption on metal-organic framework: Experimental insight and spectroscopic evidence. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Ternary metal oxide nanocomposite for room temperature H2S and SO2 gas removal in wet conditions. Sci Rep 2022; 12:15387. [PMID: 36100623 PMCID: PMC9470665 DOI: 10.1038/s41598-022-19800-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
A ternary Mn–Zn–Fe oxide nanocomposite was fabricated by a one-step coprecipitation method for the remotion of H2S and SO2 gases at room temperature. The nanocomposite has ZnO, MnO2, and ferrites with a surface area of 21.03 m2 g−1. The adsorbent was effective in mineralizing acidic sulfurous gases better in wet conditions. The material exhibited a maximum H2S and SO2 removal capacity of 1.31 and 0.49 mmol g−1, respectively, in the optimized experimental conditions. The spectroscopic analyses confirmed the formation of sulfide, sulfur, and sulfite as the mineralized products of H2S. Additionally, the nanocomposite could convert SO2 to sulfate as the sole oxidation by-product. The oxidation of these toxic gases was driven by the dissolution and dissociation of gas molecules in surface adsorbed water, followed by the redox behaviour of transition metal ions in the presence of molecular oxygen and water. Thus, the study presented a potential nanocomposite adsorbent for deep desulfurization applications.
Collapse
|
12
|
Probing the origin and stability of bivalency in copper based porous coordination network and its application for H 2S gas capture. Sci Rep 2022; 12:15388. [PMID: 36100662 PMCID: PMC9470748 DOI: 10.1038/s41598-022-19808-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022] Open
Abstract
A bivalent Cu(I,II) metal–organic framework (MOF) based on the 4,4′,4″-s-Triazine-2,4,6-triyl-tribenzoate linker was synthesized via a solvothermal method. The MOF possessed 43.8% of the Cu sites as Cu+ with a surface area of 1257 m2 g−1. The detailed spectroscopic analysis confirmed dimethylformamide (DMF) solvent as the reductant responsible for Cu+ sites in the synthesized MOF. The Cu+ sites were easily accessible and prone to oxidation in hot water or acidic gas environment. The MOF showed water-induced structural change, which could be partially recovered after soaking in DMF solvent. The synthesized MOF showed a high hydrogen sulfide (H2S) uptake capacity of 4.3 mmol g–1 at 298 K and an extremely low H2S pressure of 0.0005 bar. The adsorption capacity was the highest among Cu-based MOFs with PCN-6-M being regenerable, which made it useful for deep desulfurization applications. The adsorbed H2S was mineralized to sulfide, sulfur, and sulfates, mediated by the Cu+/Cu2+ redox cycle in the presence of adsorbed water and molecular oxygen. Thus, the study confirmed that DMF as a reductant is responsible for the origin of bivalency in PCN-6-M and possibly in other Cu-based MOFs reported in the literature. Also, the developed MOF could be a potential candidate for flue gas desulfurization and gas purification applications.
Collapse
|
13
|
Gupta NK, Vikrant K, Kim KS, Kim KH, Giannakoudakis DA. Regeneration strategies for metal–organic frameworks post acidic gas capture. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Single-Step Synthesized Functionalized Copper Carboxylate Framework Meshes as Hierarchical Catalysts for Enhanced Reduction of Nitrogen-Containing Phenolic Contaminants. Catalysts 2022. [DOI: 10.3390/catal12070765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Nitrogen-containing phenolic contaminants (NCPCs) represent typical pollutants of industrial wastewaters. As catalytic reduction of NCPCs is a useful technique and Cu is an efficient metal catalyst, Cu-carboxylate frameworks (CuCF) are favorable materials. However, they are in powder form, making them difficult to use; thus, in this study, CuCF was grown on macroscale supports. Herein, we present a facile approach to develop such a CuCF composite by directly using a Cu mesh to grow CuCF on the mesh through a single-step electrochemical synthesis method, forming CuCF mesh (CFM). CFM could be further modified to afford CuCF mesh with amines (NH2) (CFNM), and CuCF mesh with carboxylates (COOH) (CFCM). These CuCF meshes are compared to investigate how their physical and chemical characteristics influenced their catalytic behaviors for reduction/hydrogenation of NPCPs, including nitrophenols (NPs) and dyes. Their nanostructures and surface properties influence their behaviors in catalytic reactions. In particular, CFCM appears to be the most efficient mesh for catalyzing 4-NP, with a much higher rate constant. CFCM also shows a significantly lower Ea (28.1 kJ/mol). CFCM is employed for many consecutive cycles, as well as convenient filtration-type 4-NP reduction. These CuCF meshes can also be employed for decolorization of methylene blue and methyl orange dyes via catalytic hydrogenation.
Collapse
|
15
|
Hydrogen Sulfide Capture and Removal Technologies: A Comprehensive Review of Recent Developments and Emerging Trends. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Prasad SS, Sudarsanakumar M, Ashalatha A, Drisya R, Suma S. Crystal growth, characterization and photoluminescence study of a novel one dimensional coordination polymer of Cd(II) with thiophene-2,5-dicarboxylic acid. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Role of Bimetallic Solutions in the Growth and Functionality of Cu-BTC Metal-Organic Framework. MATERIALS 2022; 15:ma15082804. [PMID: 35454498 PMCID: PMC9033043 DOI: 10.3390/ma15082804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 11/29/2022]
Abstract
Bimetallic solutions play a vital role in the growth and functionality of copper trimesate (Cu-BTC) metal–organic frameworks (MOFs). The effect of Ag+, Ca2+, Mn2+, Co2+, and Zn2+ on the growth of Cu-BTC was studied by fabricating M-Cu-BTC MOFs at room temperature using bimetallic M-Cu solutions. While Ag+ in the MOF had a rod-like morphology and surface properties, divalent cations deteriorated it. Moreover, unconventional Cu+ presence in the MOF formed a new building unit, which was confirmed in all the MOFs. Apart from Ag and Mn, no other MOF showed any presence of secondary cations in the structure. While Ag-Cu-BTC showed an improved H2S uptake capacity, other M-Cu-BTC MOFs had superior organic pollutant adsorption behavior. Thus, we have demonstrated that the physicochemical properties of Cu-BTC could be modified by growing it in bimetallic solutions.
Collapse
|
18
|
Gupta NK, Bae J, Baek S, Kim KS. Metal-organic framework-derived NaM xO y adsorbents for low-temperature SO 2 removal. CHEMOSPHERE 2022; 291:132836. [PMID: 34762880 DOI: 10.1016/j.chemosphere.2021.132836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
This work reported the fabrication of NaMxOy-type adsorbents from air calcination of (Na, M)-trimesate metal-organic frameworks. NaMnxOy (NMO) crystallized as disc-shaped microsheets, whereas NaCoxOy (NCO) crystallized as smooth microsheets with surface deposition of polyhedral nanoparticles. The oxides have a surface area of 1.90-2.56 m2 g-1. The synthesized adsorbents were studied for low-temperature SO2 removal in breakthrough studies. The maximum adsorption capacity of 46.8 mg g-1 was recorded for NMO at 70 °C. The adsorption capacity increased with the increasing temperature due to the chemisorptive nature of the adsorption process. The capacity increased with the increasing bed loading and decreasing flow rate due to the improved SO2 retention time. The elemental mapping confirmed the uniform distribution of sulfur species over the oxide surface. X-ray diffraction showed the absence of metal sulfate nanoparticles in the SO2-exposed samples. The X-ray photoelectron analysis confirmed the formation of surface sulfate and bisulfate. The formation of oxidized sulfur species was mediated by hydroxyl groups over NMO and lattice oxygen over NCO. Thus, the work demonstrated here is the first such report on the use of NaMxOy-type materials for SO2 mineralization.
Collapse
Affiliation(s)
- Nishesh Kumar Gupta
- University of Science and Technology (UST), Daejeon, Republic of Korea; Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, Republic of Korea
| | - Jiyeol Bae
- University of Science and Technology (UST), Daejeon, Republic of Korea; Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, Republic of Korea
| | - Soyoung Baek
- Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, Republic of Korea
| | - Kwang Soo Kim
- University of Science and Technology (UST), Daejeon, Republic of Korea; Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, Republic of Korea.
| |
Collapse
|
19
|
Gupta NK, Bae J, Baek S, Kim KS. Sulfur dioxide gas adsorption over ZnO/Zn-based metal-organic framework nanocomposites. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Salunkhe G, Sengupta A, Boda A, Paz R, Gupta NK, Leyva C, Chauhan RS, Ali SM. Application of hybrid MOF composite in extraction of f-block elements: Experimental and computational investigation. CHEMOSPHERE 2022; 287:132232. [PMID: 34562706 DOI: 10.1016/j.chemosphere.2021.132232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
An attempt was made to understand the sorption behaviour of UO22+, Th4+ and Eu3+ on novel hybrid metal-organic framework composites, FeBDC@CoBDC. The XRD pattern revealed the composite nature of the hybrid MOF materials, while FTIR and Raman spectroscopic analyses evidenced the presence of different functional moieties. The thermal stability of the hybrid MOF composites was investigated through thermogravimetric analysis. The sorption predominantly followed Langmuir isotherm with sorption capacity of 189 mg g-1, 224 mg g-1 and 205 mg g-1 for UO22+, Th4+ and Eu3+ respectively. The sorption proceeded through chemisorption following pseudo 2nd order rate kinetics. The processes were found to be thermodynamically favourable and endothermic in nature. However, they were entropically driven. Multiple contacts of complexing agents were necessary for quantitative elution of f-elements from loaded MOF. The MOF showed moderate stability towards radiation exposure. DFT calculation was used for the optimization of structures, estimation of bond length and estimation of binding energy. In hybrid MOF composites, the Fe atom was having six coordination with 4 O atoms of BDC moieties and 2 O atoms of -OH groups. The O atoms of BDC and -OH groups were coordinated to Eu, Th and U atoms during their sorption.
Collapse
Affiliation(s)
- Gauri Salunkhe
- Departmentof Chemistry, K.J.Somaiya College of Science and Commerce, Vidya-vihar, Mumbai, 400077, India
| | - Arijit Sengupta
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Mumbai, India.
| | - Anil Boda
- Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Roxana Paz
- InstitutoPolitécnico Nacional, Centro de InvestigaciónenCienciaAplicada y TecnologíaAvanzada, CDMX, Mexico
| | - Nishesh Kumar Gupta
- University of Science and Technology (UST), Daejeon, Republic of Korea; Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, Republic of Korea
| | - Carolina Leyva
- InstitutoPolitécnico Nacional, Centro de InvestigaciónenCienciaAplicada y TecnologíaAvanzada, CDMX, Mexico
| | - Rohit Singh Chauhan
- Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Sk Musharaf Ali
- Homi Bhabha National Institute, Mumbai, India; Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| |
Collapse
|
21
|
Balamurugan R, Shalini SS, Velmathi S, Bose AC. One-Pot Synthesis of Porous Crystal Structured Nanosponge-Like Pristine Copper Metal-Organic Framework for Hybrid Supercapacitor Application. NEW J CHEM 2022. [DOI: 10.1039/d2nj02043b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybrid supercapacitors are promising energy storage devices where high-power delivery is needed in continuous supply (like e-vehicles, cranes, industrialized machines, etc.). Metal-Organic Frameworks (MOFs) are the leading porous materials, and...
Collapse
|
22
|
A lightweight, mechanically strong, and shapeable copper-benzenedicarboxylate/cellulose aerogel for dye degradation and antibacterial applications. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Gupta N, Bae J, Kim KS. From MOF-199 Microrods to CuO Nanoparticles for Room-Temperature Desulfurization: Regeneration and Repurposing Spent Adsorbents as Sustainable Approaches. ACS OMEGA 2021; 6:25631-25641. [PMID: 34632219 PMCID: PMC8495871 DOI: 10.1021/acsomega.1c03712] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 06/13/2023]
Abstract
MOF-199 is one of the well-studied metal-organic frameworks (MOFs) for the capture of small gas molecules. In this study, we have investigated the thermal transformation of MOF-199 microrods to CuO nanoparticles by various microscopic and spectroscopic techniques. The growth of oxide was initiated by the formation of ∼2.5 nm particles at 200 °C, which ended up as CuO nanoparticles of ∼100-250 nm size at 550 °C. An intermediate presence of Cu2O along with CuO was recorded at 280 °C. The MOF and calcined products were tested for the room-temperature desulfurization process. MOF-199 showed the maximum adsorption capacity for H2S gas (77.1 mg g-1) among all adsorbents studied. Also, MOF-199 showed a better regeneration efficiency than the derived oxide. For a sustainable process, the exhausted adsorbents were used for the photocatalytic degradation of methylene blue. The exhausted materials showed better degradation efficiencies than the fresh materials. This study reports new sustainable approaches for MOF-199 application in air and water decontamination.
Collapse
Affiliation(s)
- Nishesh
Kumar Gupta
- University
of Science and Technology (UST), Daejeon 34113, Republic
of Korea
- Department
of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang 10223, Republic of Korea
| | - Jiyeol Bae
- University
of Science and Technology (UST), Daejeon 34113, Republic
of Korea
- Department
of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang 10223, Republic of Korea
| | - Kwang Soo Kim
- University
of Science and Technology (UST), Daejeon 34113, Republic
of Korea
- Department
of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang 10223, Republic of Korea
| |
Collapse
|
24
|
Gupta NK, Bae J, Kim KS. A novel one-step synthesis of Ce/Mn/Fe mixed metal oxide nanocomposites for oxidative removal of hydrogen sulfide at room temperature. RSC Adv 2021; 11:26739-26749. [PMID: 35479990 PMCID: PMC9037696 DOI: 10.1039/d1ra03309c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/28/2021] [Indexed: 11/21/2022] Open
Abstract
In this study, CeO2/Fe2O3, CeO2/Mn2O3, and CeO2/Mn2O3/Fe2O3 nanocomposites were synthesized by the calcination of molten salt solutions. The microscopic images confirmed polyhedral nanocrystals of 10–20 nm size, clustered to form nanospheres. The elemental mapping confirmed the uniform distribution of transition metal oxides in the CeO2 matrix. The X-ray diffraction analysis confirmed the phase purity of metal oxides in nanocomposites. The surface area of nanocomposites was in the range of 16–21 m2 g−1. X-ray photoelectron spectroscopy confirmed 25–28% of Ce3+ ions in the CeO2 of nanocomposites. These nanocomposites were tested for the removal of hydrogen sulfide gas at room temperature. The maximum adsorption capacity of 28.3 mg g−1 was recorded for CeO2/Mn2O3/Fe2O3 with 500 ppm of H2S gas and 0.2 L min−1 of flow rate. The adsorption mechanism probed by X-ray photoelectron spectroscopy showed the presence of sulfate as the only species formed from the oxidation of H2S, which was further confirmed by ion chromatography. Thus, the study reports room-temperature oxidation of H2S over mixed metal composites, which were synthesized by a novel one-step approach. In this study, CeO2/Fe2O3, CeO2/Mn2O3, and CeO2/Mn2O3/Fe2O3 nanocomposites were synthesized by the calcination of molten salt solutions.![]()
Collapse
Affiliation(s)
- Nishesh Kumar Gupta
- University of Science and Technology (UST) Daejeon Republic of Korea.,Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT) Goyang Republic of Korea
| | - Jiyeol Bae
- University of Science and Technology (UST) Daejeon Republic of Korea.,Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT) Goyang Republic of Korea
| | - Kwang Soo Kim
- University of Science and Technology (UST) Daejeon Republic of Korea.,Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT) Goyang Republic of Korea
| |
Collapse
|
25
|
Gupta NK, Bae J, Kim KS. Metal organic framework derived NaCo xO y for room temperature hydrogen sulfide removal. Sci Rep 2021; 11:14740. [PMID: 34282220 PMCID: PMC8290053 DOI: 10.1038/s41598-021-94265-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/16/2021] [Indexed: 12/02/2022] Open
Abstract
Novel NaCoxOy adsorbents were fabricated by air calcination of (Na,Co)-organic frameworks at 700 °C. The NaCoxOy crystallized as hexagonal microsheets of 100-200 nm thickness with the presence of some polyhedral nanocrystals. The surface area was in the range of 1.15-1.90 m2 g-1. X-ray photoelectron spectroscopy (XPS) analysis confirmed Co2+ and Co3+ sites in MOFs, which were preserved in NaCoxOy. The synthesized adsorbents were studied for room-temperature H2S removal in both dry and moist conditions. NaCoxOy adsorbents were found ~ 80 times better than the MOF precursors. The maximum adsorption capacity of 168.2 mg g-1 was recorded for a 500 ppm H2S concentration flowing at a rate of 0.1 L min-1. The adsorption capacity decreased in the moist condition due to the competitive nature of water molecules for the H2S-binding sites. The PXRD analysis predicted Co3S4, CoSO4, Co3O4, and Co(OH)2 in the H2S-exposed sample. The XPS analysis confirmed the formation of sulfide, sulfur, and sulfate as the products of H2S oxidation at room temperature. The work reported here is the first study on the use of NaCoxOy type materials for H2S remediation.
Collapse
Affiliation(s)
- Nishesh Kumar Gupta
- University of Science and Technology (UST), Daejeon, Republic of Korea
- Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, Republic of Korea
| | - Jiyeol Bae
- University of Science and Technology (UST), Daejeon, Republic of Korea.
- Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, Republic of Korea.
| | - Kwang Soo Kim
- University of Science and Technology (UST), Daejeon, Republic of Korea
- Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, Republic of Korea
| |
Collapse
|
26
|
Gupta NK, Bae J, Kim S, Kim KS. Terephthalate and trimesate metal-organic frameworks of Mn, Co, and Ni: exploring photostability by spectroscopy. RSC Adv 2021; 11:8951-8962. [PMID: 35423377 PMCID: PMC8695328 DOI: 10.1039/d1ra00181g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 07/22/2021] [Accepted: 02/20/2021] [Indexed: 12/12/2022] Open
Abstract
We report a rapid synthesis for the fabrication of terephthalate and trimesate metal-organic frameworks (MOFs) of Mn, Co, and Ni by ultrasonication of organic linkers with freshly prepared metal hydroxides. The MOFs were characterized by various microscopic and spectroscopic techniques to understand their structural, functional, and optical properties. MOFs with low bandgap energy (1.88-2.73 eV) showed strong absorbance in the UV-visible range. MOFs were exposed to UV irradiation for 40 h to understand their photostability. The MOFs showed decreased surface area and porosity with CoBTC as an exception. PXRD was less convincing for exploring functional changes in the UV-irradiated MOFs. XPS predicted changes in the oxidation states of metal nodes, the degradation of the organic linkers, and decarboxylation process in many of the transition MOFs. The study predicted terephthalate-based MOFs as more photostable than corresponding trimesate-based MOFs. This study is one of the first attempts in exploring photostability of MOFs with Mn, Co, and Ni as nodes.
Collapse
Affiliation(s)
- Nishesh Kumar Gupta
- University of Science and Technology (UST) Daejeon Republic of Korea
- Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT) Goyang Republic of Korea
| | - Jiyeol Bae
- Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT) Goyang Republic of Korea
| | - Suho Kim
- University of Science and Technology (UST) Daejeon Republic of Korea
- Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT) Goyang Republic of Korea
| | - Kwang Soo Kim
- University of Science and Technology (UST) Daejeon Republic of Korea
- Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT) Goyang Republic of Korea
| |
Collapse
|
27
|
Gupta NK, Bae J, Kim KS. Bimetallic Ag–Cu-trimesate metal–organic framework for hydrogen sulfide removal. NEW J CHEM 2021. [DOI: 10.1039/d1nj04601b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bimetallic Ag-Cu-trimesate metal-organic framework was fabricated for H2S mineralization. The MOF was partially regenerated using H2O2 solution for five cycles.
Collapse
Affiliation(s)
- Nishesh Kumar Gupta
- University of Science and Technology (UST), Daejeon, Republic of Korea
- Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, Republic of Korea
| | - Jiyeol Bae
- University of Science and Technology (UST), Daejeon, Republic of Korea
- Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, Republic of Korea
| | - Kwang Soo Kim
- University of Science and Technology (UST), Daejeon, Republic of Korea
- Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, Republic of Korea
| |
Collapse
|