1
|
Li W, Wang F, Shi Y, Yu L. Polyaniline-supported tungsten-catalyzed oxidative deoximation reaction with high catalyst turnover number. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Zeng Y, Chen T, Zhang X, Chen Y, Zhou H, Yu L. Mesoporous Mn‐Se/Al
2
O
3
: A Recyclable and Reusable Catalyst for Selective Oxidation of Alcohols. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yan Zeng
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| | - Tian Chen
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| | - Xu Zhang
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| | - Ying Chen
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
- College of Biological, Chemical Sciences and Engineering Jiaxing University Jiaxing China
| | - Hongwei Zhou
- College of Biological, Chemical Sciences and Engineering Jiaxing University Jiaxing China
| | - Lei Yu
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| |
Collapse
|
3
|
Zhou W, Xiao X, Liu Y, Zhang X. Magnetic Se/Fe/PCN-Catalyzed Oxidative Cracking Alkenes in O 2. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202201023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
4
|
Hong'en C, Peizi L, Xiaobi J, Hongwei Z. Selective Epoxidation of β-Ionone Catalyzed by Iron-Doped Se/C. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Wang L, Wang S, Tang J, Espinoza VB, Loredo A, Tian Z, Weisman RB, Xiao H. Oxime as a general photocage for the design of visible light photo-activatable fluorophores. Chem Sci 2021; 12:15572-15580. [PMID: 35003586 PMCID: PMC8654061 DOI: 10.1039/d1sc05351e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/21/2021] [Indexed: 12/18/2022] Open
Abstract
Photoactivatable fluorophores have been widely used for tracking molecular and cellular dynamics with subdiffraction resolution. In this work, we have prepared a series of photoactivatable probes using the oxime moiety as a new class of photolabile caging group in which the photoactivation process is mediated by a highly efficient photodeoximation reaction. Incorporation of the oxime caging group into fluorophores results in loss of fluorescence. Upon light irradiation in the presence of air, the oxime-caged fluorophores are oxidized to their carbonyl derivatives, restoring strong fluorophore fluorescence. To demonstrate the utility of these oxime-caged fluorophores, we have created probes that target different organelles for live-cell confocal imaging. We also carried out photoactivated localization microscopy (PALM) imaging under physiological conditions using low-power light activation in the absence of cytotoxic additives. Our studies show that oximes represent a new class of visible-light photocages that can be widely used for cellular imaging, sensing, and photo-controlled molecular release.
Collapse
Affiliation(s)
- Lushun Wang
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - Shichao Wang
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - Juan Tang
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - Vanessa B Espinoza
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - Axel Loredo
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - Zeru Tian
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - R Bruce Weisman
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - Han Xiao
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
- Department of Biosciences, Rice University 6100 Main Street Houston Texas 77005 USA
- Department of Bioengineering, Rice University 6100 Main Street Houston Texas 77005 USA
| |
Collapse
|
6
|
Wang F, Yang C, Shi Y, Yu L. PhSe(O)OH/NHPI-catalyzed oxidative deoximation reaction using air as oxidant. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Sun H, Shi Y, Fu W, Yu L. Polyaniline‐Supported Tungsten‐Catalyzed Green and Selective Oxidation of Alcohols. ChemistrySelect 2021. [DOI: 10.1002/slct.202101934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Hong Sun
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 China
| | - Yaocheng Shi
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 China
| | - Weijun Fu
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Fuction-Oriented Porous Materials Luoyang Normal University Luoyang Henan 471934 P. R. China
| | - Lei Yu
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 China
| |
Collapse
|
8
|
Piao W, Li Z, Li C, Park JS, Lee JH, Li Z, Kim KY, Jin LY, Kim JM, Jin M. Efficient and reusable ordered mesoporous WO x/SnO 2 catalyst for oxidative desulfurization of dibenzothiophene. RSC Adv 2021; 11:27453-27460. [PMID: 35480669 PMCID: PMC9037815 DOI: 10.1039/d1ra04957g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
The oxidative desulfurization (ODS) of organic sulfur compounds over tungsten oxide supported on highly ordered mesoporous SnO2 (WOx/meso-SnO2) was investigated. A series of WOx/meso-SnO2 with WOx contents from 10 wt% to 30 wt%, were prepared by conventional wet impregnation. The physico-chemical properties of the WOx/meso-SnO2 catalysts were characterized by X-ray diffraction (XRD), N2 adsorption–desorption isotherms, electron microscopy, Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, and the temperature-programmed reduction of hydrogen (H2-TPR). The characterization results indicated that these catalysts possessed mesoporous structures with uniform pores, high specific surface areas, and well-dispersed polyoxotungstate species on the surface of meso-SnO2 support. The ODS performances were evaluated in a biphasic system (model oil/acetonitrile, Sinitial = 2000 ppm), using H2O2 as an oxidant, and acetonitrile as an extractant. Dibenzothiophene (DBT) in the model oil was removed completely within 60 min at 50 °C using 20 wt% WOx/meso-SnO2 catalyst. Additionally, the effect of reaction temperature, H2O2/DBT molar ratio, amount of catalyst and different sulfur-containing substrates on the catalytic performances were also investigated in detail. More importantly, the 20 wt% WOx/meso-SnO2 catalyst exhibited 100% surfur-removal efficiency without any regeneration process, even after six times recycling. The highly ordered mesoporous WOx/meso-SnO2 showed excellent catalytic activity and reusability in removing dibenzothiophene (DBT).![]()
Collapse
Affiliation(s)
- Wenxiang Piao
- Department of Chemistry, Park Road 977, Yanji City, Jilin Province 133002, P. R. China
| | - Zhenghua Li
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Chengbin Li
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Jin Seo Park
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Jung-ho Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Zhengyang Li
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Ki Yeong Kim
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Long Yi Jin
- Department of Chemistry, Park Road 977, Yanji City, Jilin Province 133002, P. R. China
| | - Ji Man Kim
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Mingshi Jin
- Department of Chemistry, Park Road 977, Yanji City, Jilin Province 133002, P. R. China
| |
Collapse
|
9
|
Li P, Cao K, Jing X, Liu Y, Yu L. Catalytic epoxidation of β-ionone with molecular oxygen using selenium-doped silica materials. NEW J CHEM 2021. [DOI: 10.1039/d1nj03311e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Se-doped silica could catalyze the β-ionone epoxidation reaction. Interestingly, by doping with fluorine in the catalyst, the reaction selectivity was significantly enhanced. The metal-free process is suitable for pharmaceutical synthesis.
Collapse
Affiliation(s)
- Peizi Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Kuanhong Cao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
- Guangling College, Yangzhou University, Yangzhou 225000, China
| | - Xiaobi Jing
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yonghong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Lei Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
10
|
Verma P, Wanchoo RK, Toor AP. A green and energy-efficient photocatalytic process for the accelerated synthesis of lactic acid esters using functionalized quantum dots. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00017a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sulphonated-grafted-titania quantum dot catalyzed green and energy-efficient photochemical process for the synthesis of valuable lactic acid esters at ambient temperature.
Collapse
Affiliation(s)
- Priyanka Verma
- Dr. SSB University Institute of Chemical Engineering and Technology
- Panjab University
- Chandigarh
- India
| | - Ravinder Kumar Wanchoo
- Dr. SSB University Institute of Chemical Engineering and Technology
- Panjab University
- Chandigarh
- India
| | - Amrit Pal Toor
- Dr. SSB University Institute of Chemical Engineering and Technology
- Panjab University
- Chandigarh
- India
- Energy Research Centre
| |
Collapse
|
11
|
Varaprasad B, Bharat Kumar K, Siddaiah V, Shyamala P, Chinnari L. Copper-catalyzed efficient access to 2,4,6-triphenyl pyridines via oxidative decarboxylative coupling of aryl acetic acids with oxime acetates. NEW J CHEM 2021. [DOI: 10.1039/d1nj01987b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A simple and efficient strategy for the synthesis of 2,4,6- triphenyl pyridines has been developed through copper-catalysed oxidative decarboxylative coupling of C(sp3) aryl acetic acids with oxime acetates using oxygen as a sole terminal oxidant.
Collapse
Affiliation(s)
- Bodala Varaprasad
- Department of Organic Chemistry & FDW, Andhra University, Visakhapatnam, 530003, India
- Department of Physical Nuclear and Chemical Oceanography, Andhra University, Visakhapatnam, 530003, India
| | - Karasala Bharat Kumar
- Department of Organic Chemistry & FDW, Andhra University, Visakhapatnam, 530003, India
| | - Vidavalur Siddaiah
- Department of Organic Chemistry & FDW, Andhra University, Visakhapatnam, 530003, India
| | - Pulipaka Shyamala
- Department of Physical Nuclear and Chemical Oceanography, Andhra University, Visakhapatnam, 530003, India
| | - Lekkala Chinnari
- Department of Organic Chemistry & FDW, Andhra University, Visakhapatnam, 530003, India
| |
Collapse
|