1
|
Weng C, Li X, Tang X. Solvent-Dependent Sequence-Controlled Copolymerization of Lactones: Tailoring Material Properties from Robust Plastics to Tough Elastomers. Angew Chem Int Ed Engl 2025; 64:e202415388. [PMID: 39528784 DOI: 10.1002/anie.202415388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Copolymerization stands as a versatile and potent method for tailoring polymer properties by adjusting structural unit composition and sequence distribution. However, achieving sequence-controlled copolymerization in a one-step and one-pot process remains challenging. This study introduces a solvent-dependent sequence-controlled copolymerization strategy to produce block and statistical copolyesters from 4-phenyl-2-oxabicyclo[2.1.1]hexan-3-one (4Ph-BL) and ϵ-caprolactone (ϵ-CL). The distinct kinetics of the two monomers enable the facile synthesis of diblock and triblock copolyesters, PCL-b-P(4Ph-BL) and P(4Ph-BL)-b-PCL-b-P(4Ph-BL), in non-coordinating solvents, such as dichloromethane and toluene. Conversely, coordinating solvents like tetrahydrofuran, 2-methyltetrahydrofuran, 2,5-dimethyltetrahydrofuran, 1,4-dioxane, and 1,2-dimethoxyethane facilitate frequent transesterifications, yielding statistical copolyesters P[CL-stat-(4Ph-BL)] with varying ratios of heterosequences. Density functional theory (DFT) calculations confirmed that coordinating solvents stabilize the transition state for transesterification, thereby validating their role in triggering this process. By varying the microstructures and compositions, the resultant copolyesters display tunable thermal and mechanical properties, evolving from robust plastics with an ultimate tensile strength of up to 46.3±3.1 MPa to tough elastomers with >99.3 % elastic recovery. All the copolyesters exhibit remarkable thermal stability (Td,5%=376 °C) and maintain desirable chemical circularity (>92 %), supporting a closed-loop life cycle for sustainable material economy.
Collapse
Affiliation(s)
- Chaoqun Weng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xiao Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xiaoyan Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Petersen SR, Kohan Marzagão D, Gregory GL, Huang Y, Clifton DA, Williams CK, Siviour CR. Property Prediction of Bio-Derived Block Copolymer Thermoplastic Elastomers Using Graph Kernel Methods. Angew Chem Int Ed Engl 2025; 64:e202411097. [PMID: 39612309 DOI: 10.1002/anie.202411097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/25/2024] [Accepted: 11/29/2024] [Indexed: 12/01/2024]
Abstract
Increasing the diversity of bio-based polymers is needed to address the combined problems of plastic pollution and greenhouse gas emissions. The magnitude of the problems necessitates rapid discovery of new materials; however, identification of appropriate chemistries maybe slow using current iterative methods. Machine learning (ML) methods could significantly expedite new material discovery and property identification. Here, PolyAGM, a ML algorithm using graph kernel methods, is introduced and used to predict the properties of block copolymers and identify the responsible structural 'motifs'. It applies a "fingerprinting" method to convert Graph representations of polymers into numerical vectors. The Graphs explicitly encode the entire copolymer of atoms and bonds such that the sequencing of chemical features and polymer chain length are included, alongside relevant stereochemical information. PolyAGM gives predictions for both thermal and mechanical properties that are in good agreement with experimental measurements. This work focuses on predicting the properties of bio-derived ABA-block polymer thermoplastic elastomers, but the general fingerprinting technique of PolyAGM should be relevant to other application fields.
Collapse
Affiliation(s)
- Shannon R Petersen
- Department of Chemistry, University of Oxford, Mansfield Rd, Oxford, OX1 3TA, UK
| | - David Kohan Marzagão
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Georgina L Gregory
- Department of Chemistry, University of Oxford, Mansfield Rd, Oxford, OX1 3TA, UK
| | - Yichen Huang
- Department of Computer Science, University of Oxford, 7 Parks Road, Oxford, OX1 3QG, UK
| | - David A Clifton
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Charlotte K Williams
- Department of Chemistry, University of Oxford, Mansfield Rd, Oxford, OX1 3TA, UK
| | - Clive R Siviour
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| |
Collapse
|
3
|
Suzuki R, Miwa T, Nunokawa R, Sumi A, Ando M, Takahashi K, Takagi A, Yamamoto T, Tajima K, Li F, Isono T, Satoh T. Polyester Adhesives via One-Pot, One-Step Copolymerization of Cyclic Anhydride, Epoxide, and Lactide. Polymers (Basel) 2024; 16:2767. [PMID: 39408477 PMCID: PMC11479215 DOI: 10.3390/polym16192767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Polyesters (PEs) are sustainable alternatives for conventional polymers owing to their potential degradability, recyclability, and the wide availability of bio-based monomers for their synthesis. Herein, we used a one-pot, one-step self-switchable polymerization linking the ring-opening alternating copolymerization (ROAC) of epoxides/cyclic anhydrides with the ring-opening polymerization (ROP) of L-lactide (LLA) to synthesize PE-based hot-melt adhesives with a high bio-based content. In the cesium pivalate-catalyzed self-switchable polymerization of glutaric anhydride (GA), butylene oxide (BO), and LLA using a diol initiator, the ROAC of GA and BO proceeded whereas the ROP of LLA simultaneously proceeded very slowly, resulting in a copolyester consisting of poly(GA-alt-BO) and poly(L-lactide) (PLLA) segments with tapered regions, that is, PLLA-tapered block-poly(GA-alt-BO)-tapered block-PLLA (PLLA-tb-poly(GA-alt-BO)-tb-PLLA). Additionally, a series of tapered-block or real-block copolyesters consisting of poly(anhydride-alt-epoxide) (A segment) and PLLA (B segment) with AB-, BAB-, (AB)3-, and (AB)4-type architectures of different compositions and molecular weights were synthesized by varying the monomer combinations, alcohol initiators, and initial feed ratios. The lap shear tests of these copolyesters revealed an excellent relationship between the adhesive strength and polymer structural parameters. The (AB)4-type star-block copolyester (poly(GA-alt-BO)-tb-PLLA)4 exhibited the best adhesive strength (6.74 ± 0.64 MPa), comparable to that of commercial products, such as PE-based and poly(vinyl acetate)-based hot-melt adhesives.
Collapse
Affiliation(s)
- Ryota Suzuki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; (R.S.); (T.M.); (R.N.)
| | - Toshiki Miwa
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; (R.S.); (T.M.); (R.N.)
| | - Ryosuke Nunokawa
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; (R.S.); (T.M.); (R.N.)
| | - Ayaka Sumi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan; (A.S.); (T.Y.); (K.T.); (F.L.)
| | - Masaru Ando
- Toagosei Co., Ltd., Nagoya 455-0026, Japan; (M.A.); (K.T.); (A.T.)
| | | | - Akira Takagi
- Toagosei Co., Ltd., Nagoya 455-0026, Japan; (M.A.); (K.T.); (A.T.)
| | - Takuya Yamamoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan; (A.S.); (T.Y.); (K.T.); (F.L.)
| | - Kenji Tajima
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan; (A.S.); (T.Y.); (K.T.); (F.L.)
| | - Feng Li
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan; (A.S.); (T.Y.); (K.T.); (F.L.)
| | - Takuya Isono
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan; (A.S.); (T.Y.); (K.T.); (F.L.)
| | - Toshifumi Satoh
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan; (A.S.); (T.Y.); (K.T.); (F.L.)
- List Sustainable Digital Transformation Catalyst Collaboration Research Platform (ICReDD List-PF), Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo 001-0021, Japan
- Department of Chemical & Materials Engineering, National Central University, Taoyuan 320317, Taiwan
| |
Collapse
|
4
|
Xia YY, Yang X, Zhang W, Fu Y, Cai Z, Cao P, Zhu JB. A Facile Approach to Construct Novel Polyesters as Soft Midblock for Thermoplastic Elastomers. Chemistry 2024; 30:e202401727. [PMID: 38979891 DOI: 10.1002/chem.202401727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
The development of innovative synthetic strategies to create functional polycaprolactones is highly demanded for advanced material applications. In this contribution, we reported a facile synthetic strategy to prepare a class of CL-based monomers (R-TO) derived from epoxides. They readily polymerize via well-controlled ring-opening polymerization (ROP) to afford a series of polyesters P(R-TO) with high molecular weight (Mn up to 350 kDa). Sequential addition copolymerization of MTO and L-lactide (L-LA) allowed to access of a series of ABA triblock copolymers with composition-dependent mechanical properties. Notably, P(L-LA)100-b-P(MTO)500-b-P(L-LA)100 containing the amorphous P(MTO) segment as a soft midblock and crystalline P(L-LA) domain as hard end block behaved as an excellent thermoplastic elastomer (TPE) with high elongation at break (1438±204 %), tensile strength (23.5±1.7 MPa), and outstanding elastic recovery (>88 %).
Collapse
Affiliation(s)
- Yun-Yun Xia
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Xing Yang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University
| | - Wei Zhang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China
| | - Yang Fu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Zhongzheng Cai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University
| | - Peng Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Jian-Bo Zhu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University
| |
Collapse
|
5
|
Ma K, An HY, Nam J, Reilly LT, Zhang YL, Chen EYX, Xu TQ. Fully recyclable and tough thermoplastic elastomers from simple bio-sourced δ-valerolactones. Nat Commun 2024; 15:7904. [PMID: 39256412 PMCID: PMC11387789 DOI: 10.1038/s41467-024-52229-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
While a large number of chemically recyclable thermoplastics have been developed in recent years, technologically important thermoplastic elastomers (TPEs) that are not only bio-based and fully recyclable but also exhibit mechanical properties that can rival or even exceed those petroleum-based, non-recyclable polyolefin TPEs are critically lacking. The key challenge in developing chemically circular, bio-based, high-performance TPEs rests on the complexity of TPE's block copolymer (BCP) structure involving block segments of different suitable monomers required to induce self-assembled morphologies responsible for performance as well as the control and monomer compatibility in their synthesis and the selectivity in their depolymerization. Here we demonstrate the utilization of bio-sourced δ-valerolactone (δVL) and its simple α-alkyl-substituted derivatives to produce all δVL-based polyester tri-BCP TPEs, which exhibit not only complete (closed-loop) chemical recyclability but also excellent toughness that is 2.5-3.8 times higher than commercial polyolefin-based TPEs. The visualized cylindrical morphology formed via crystallization-driven self-assembly in the new all δVL tri-BCP is postulated to contribute to the excellent TPE property.
Collapse
Affiliation(s)
- Kai Ma
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Hai-Yan An
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Jiyun Nam
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA
| | - Liam T Reilly
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA
| | - Yi-Lin Zhang
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA
| | - Tie-Qi Xu
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
6
|
Yuan X, Zhu W, Yang Z, He N, Chen F, Han X, Zhou K. Recent Advances in 3D Printing of Smart Scaffolds for Bone Tissue Engineering and Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403641. [PMID: 38861754 DOI: 10.1002/adma.202403641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Indexed: 06/13/2024]
Abstract
The repair and functional reconstruction of bone defects resulting from severe trauma, surgical resection, degenerative disease, and congenital malformation pose significant clinical challenges. Bone tissue engineering (BTE) holds immense potential in treating these severe bone defects, without incurring prevalent complications associated with conventional autologous or allogeneic bone grafts. 3D printing technology enables control over architectural structures at multiple length scales and has been extensively employed to process biomimetic scaffolds for BTE. In contrast to inert and functional bone grafts, next-generation smart scaffolds possess a remarkable ability to mimic the dynamic nature of native extracellular matrix (ECM), thereby facilitating bone repair and regeneration. Additionally, they can generate tailored and controllable therapeutic effects, such as antibacterial or antitumor properties, in response to exogenous and/or endogenous stimuli. This review provides a comprehensive assessment of the progress of 3D-printed smart scaffolds for BTE applications. It begins with an introduction to bone physiology, followed by an overview of 3D printing technologies utilized for smart scaffolds. Notable advances in various stimuli-responsive strategies, therapeutic efficacy, and applications of 3D-printed smart scaffolds are discussed. Finally, the review highlights the existing challenges in the development and clinical implementation of smart scaffolds, as well as emerging technologies in this field.
Collapse
Affiliation(s)
- Xun Yuan
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Wei Zhu
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Zhongyuan Yang
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Ning He
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Feng Chen
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Xiaoxiao Han
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
7
|
Kerr RWF, Craze AR, Williams CK. Cyclic ether and anhydride ring opening copolymerisation delivering new ABB sequences in poly(ester- alt-ethers). Chem Sci 2024; 15:11617-11625. [PMID: 39055022 PMCID: PMC11268503 DOI: 10.1039/d4sc02051k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
Poly(ester-alt-ethers) are interesting as they combine the ester linkage rigidity and potential for hydrolysis with ether linkage flexibility. This work describes a generally applicable route to their synthesis applying commercial monomers and yielding poly(ester-alt-ethers) with variable compositions and structures. The ring-opening copolymerisation of anhydrides (A), epoxides (B) and cyclic ethers (C), using a Zr(iv) catalyst, produces either ABB or ABC type poly(ester-alt-ethers). The catalysis is effective using a range of commercial anhydrides (A), including those featuring aromatic, unsaturated or tricyclic monomers, and with different alkylene oxides (epoxides, B), including those featuring aliphatic, alkene or ether substituents. The range of effective cyclic ethers (C) includes tetrahydrofuran, 2,5-dihydrofuran (DHF) or 1,4-bicyclic ether (OBH). In these investigations, the catalyst:anhydride loadings are generally held constant and deliver copolymers with degrees of copolymerisation of 25, with molar mass values from 4 to 11 kg mol-1 and mostly with narrow dispersity molar mass distributions. All the new copolymers are amorphous, they show the onset of thermal decomposition between 270 and 344 °C and variable glass transition temperatures (-50 to 48 °C), depending on their compositions. Several of the new poly(ester-alt-ethers) feature alkene substituents which are reacted with mercaptoethanol, by thiol-ene processes, to install hydroxyl substituents along the copolymer chain. This strategy affords poly(ether-alt-esters) featuring 30, 70 and 100% hydroxyl substituents (defined as % of monomer repeat units featuring a hydroxyl group) which moderate physical properties such as hydrophilicity, as quantified by water contact angles. Overall, the new sequence selective copolymerisation catalysis is shown to be generally applicable to a range of anhydrides, epoxides and cyclic ethers to produce new families of poly(ester-alt-ethers). In future these copolymers should be explored for applications in liquid formulations, electrolytes, surfactants, plasticizers and as components in adhesives, coatings, elastomers and foams.
Collapse
Affiliation(s)
- Ryan W F Kerr
- Department of Chemistry, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Alexander R Craze
- Department of Chemistry, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Charlotte K Williams
- Department of Chemistry, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
8
|
Stakem KG, Leslie FJ, Gregory GL. Polymer design for solid-state batteries and wearable electronics. Chem Sci 2024; 15:10281-10307. [PMID: 38994435 PMCID: PMC11234879 DOI: 10.1039/d4sc02501f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Solid-state batteries are increasingly centre-stage for delivering more energy-dense, safer batteries to follow current lithium-ion rechargeable technologies. At the same time, wearable electronics powered by flexible batteries have experienced rapid technological growth. This perspective discusses the role that polymer design plays in their use as solid polymer electrolytes (SPEs) and as binders, coatings and interlayers to address issues in solid-state batteries with inorganic solid electrolytes (ISEs). We also consider the value of tunable polymer flexibility, added capacity, skin compatibility and end-of-use degradability of polymeric materials in wearable technologies such as smartwatches and health monitoring devices. While many years have been spent on SPE development for batteries, delivering competitive performances to liquid and ISEs requires a deeper understanding of the fundamentals of ion transport in solid polymers. Advanced polymer design, including controlled (de)polymerisation strategies, precision dynamic chemistry and digital learning tools, might help identify these missing fundamental gaps towards faster, more selective ion transport. Regardless of the intended use as an electrolyte, composite electrode binder or bulk component in flexible electrodes, many parallels can be drawn between the various intrinsic polymer properties. These include mechanical performances, namely elasticity and flexibility; electrochemical stability, particularly against higher-voltage electrode materials; durable adhesive/cohesive properties; ionic and/or electronic conductivity; and ultimately, processability and fabrication into the battery. With this, we assess the latest developments, providing our views on the prospects of polymers in batteries and wearables, the challenges they might address, and emerging polymer chemistries that are still relatively under-utilised in this area.
Collapse
Affiliation(s)
- Kieran G Stakem
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Freddie J Leslie
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Georgina L Gregory
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
9
|
Cater HL, Allen MJ, Linnell MI, Rylski AK, Wu Y, Lien HM, Mangolini F, Freeman BD, Page ZA. Supersoft Norbornene-Based Thermoplastic Elastomers with High Strength and Upper Service Temperature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402431. [PMID: 38718377 DOI: 10.1002/adma.202402431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/06/2024] [Indexed: 05/23/2024]
Abstract
With over 6 million tons produced annually, thermoplastic elastomers (TPEs) have become ubiquitous in modern society, due to their unique combination of elasticity, toughness, and reprocessability. Nevertheless, industrial TPEs display a tradeoff between softness and strength, along with low upper service temperatures, typically ≤100 °C. This limits their utility, such as in bio-interfacial applications where supersoft deformation is required in tandem with strength, in addition to applications that require thermal stability (e.g., encapsulation of electronics, seals/joints for aeronautics, protective clothing for firefighting, and biomedical devices that can be subjected to steam sterilization). Thus, combining softness, strength, and high thermal resistance into a single versatile TPE has remained an unmet opportunity. Through de novo design and synthesis of novel norbornene-based ABA triblock copolymers, this gap is filled. Ring-opening metathesis polymerization is employed to prepare TPEs with an unprecedented combination of properties, including skin-like moduli (<100 kPa), strength competitive with commercial TPEs (>5 MPa), and upper service temperatures akin to high-performance plastics (≈260 °C). Furthermore, the materials are elastic, tough, reprocessable, and shelf stable (≥2 months) without incorporation of plasticizer. Structure-property relationships identified herein inform development of next-generation TPEs that are both biologically soft yet thermomechanically durable.
Collapse
Affiliation(s)
- Henry L Cater
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Marshall J Allen
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Mark I Linnell
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Adrian K Rylski
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yudian Wu
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hsu-Ming Lien
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Filippo Mangolini
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Benny D Freeman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Zachariah A Page
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
10
|
Abdul Rahman M, Neal TJ, Garden JA. Cooperative heterometallic catalysts: balancing activity and control in PCL- block-PLA copolymer synthesis. Chem Commun (Camb) 2024; 60:5530-5533. [PMID: 38695674 DOI: 10.1039/d4cc01664e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Heterometallic cooperativity is gaining momentum in cyclic ester ring-opening polymerisation, yet remains surprisingly underexplored in their block copolymerisations. Here, we report the first homogeneous heterometallic "ate" catalysts for poly(ε-caprolactone)-poly(lactic acid) block copolymers, showcasing the substantial differences in the polymer structures observed upon exchanging Zn for Mg or Ca.
Collapse
Affiliation(s)
| | - Thomas J Neal
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| | - Jennifer A Garden
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
11
|
Shi C, Quinn EC, Diment WT, Chen EYX. Recyclable and (Bio)degradable Polyesters in a Circular Plastics Economy. Chem Rev 2024; 124:4393-4478. [PMID: 38518259 DOI: 10.1021/acs.chemrev.3c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Polyesters carrying polar main-chain ester linkages exhibit distinct material properties for diverse applications and thus play an important role in today's plastics economy. It is anticipated that they will play an even greater role in tomorrow's circular plastics economy that focuses on sustainability, thanks to the abundant availability of their biosourced building blocks and the presence of the main-chain ester bonds that can be chemically or biologically cleaved on demand by multiple methods and thus bring about more desired end-of-life plastic waste management options. Because of this potential and promise, there have been intense research activities directed at addressing recycling, upcycling or biodegradation of existing legacy polyesters, designing their biorenewable alternatives, and redesigning future polyesters with intrinsic chemical recyclability and tailored performance that can rival today's commodity plastics that are either petroleum based and/or hard to recycle. This review captures these exciting recent developments and outlines future challenges and opportunities. Case studies on the legacy polyesters, poly(lactic acid), poly(3-hydroxyalkanoate)s, poly(ethylene terephthalate), poly(butylene succinate), and poly(butylene-adipate terephthalate), are presented, and emerging chemically recyclable polyesters are comprehensively reviewed.
Collapse
Affiliation(s)
- Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ethan C Quinn
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Wilfred T Diment
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
12
|
Deane O, Mandrelier P, Musa OM, Jamali M, Fielding LA, Armes SP. Synthesis and Characterization of All-Acrylic Tetrablock Copolymer Nanoparticles: Waterborne Thermoplastic Elastomers via One-Pot RAFT Aqueous Emulsion Polymerization. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:2061-2075. [PMID: 38435050 PMCID: PMC10902817 DOI: 10.1021/acs.chemmater.3c03115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerization is used to prepare well-defined ABCB tetrablock copolymer nanoparticles via sequential monomer addition at 30 °C. The A block comprises water-soluble poly(2-(N-acryloyloxy)ethyl pyrrolidone) (PNAEP), while the B and C blocks comprise poly(t-butyl acrylate) (PtBA) and poly(n-butyl acrylate) (PnBA), respectively. High conversions are achieved at each stage, and the final sterically stabilized spherical nanoparticles can be obtained at 20% w/w solids at pH 3 and at up to 40% w/w solids at pH 7. A relatively long PnBA block is targeted to ensure that the final tetrablock copolymer nanoparticles form highly transparent films on drying such aqueous dispersions at ambient temperature. The kinetics of polymerization and particle growth are studied using 1H nuclear magnetic resonance spectroscopy, dynamic light scattering, and transmission electron microscopy, while gel permeation chromatography analysis confirmed a high blocking efficiency for each stage of the polymerization. Differential scanning calorimetry and small-angle X-ray scattering studies confirm microphase separation between the hard PtBA and soft PnBA blocks, and preliminary mechanical property measurements indicate that such tetrablock copolymer films exhibit promising thermoplastic elastomeric behavior. Finally, it is emphasized that targeting an overall degree of polymerization of more than 1000 for such tetrablock copolymers mitigates the cost, color, and malodor conferred by the RAFT agent.
Collapse
Affiliation(s)
- Oliver
J. Deane
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Pierre Mandrelier
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Osama M. Musa
- Ashland
Specialty Ingredients, 1005 US 202/206, Bridgewater, New Jersey 08807, United States
| | - Mohammed Jamali
- Department
of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Lee A. Fielding
- Department
of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| |
Collapse
|
13
|
Yeo H, Gregory GL, Gao H, Yiamsawat K, Rees GJ, McGuire T, Pasta M, Bruce PG, Williams CK. Alternatives to fluorinated binders: recyclable copolyester/carbonate electrolytes for high-capacity solid composite cathodes. Chem Sci 2024; 15:2371-2379. [PMID: 38362415 PMCID: PMC10866336 DOI: 10.1039/d3sc05105f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/18/2023] [Indexed: 02/17/2024] Open
Abstract
Optimising the composite cathode for next-generation, safe solid-state batteries with inorganic solid electrolytes remains a key challenge towards commercialisation and cell performance. Tackling this issue requires the design of suitable polymer binders for electrode processability and long-term solid-solid interfacial stability. Here, block-polyester/carbonates are systematically designed as Li-ion conducting, high-voltage stable binders for cathode composites comprising of single-crystal LiNi0.8Mn0.1Co0.1O2 cathodes, Li6PS5Cl solid electrolyte and carbon nanofibres. Compared to traditional fluorinated polymer binders, improved discharge capacities (186 mA h g-1) and capacity retention (96.7% over 200 cycles) are achieved. The nature of the new binder electrolytes also enables its separation and complete recycling after use. ABA- and AB-polymeric architectures are compared where the A-blocks are mechanical modifiers, and the B-block facilitates Li-ion transport. This reveals that the conductivity and mechanical properties of the ABA-type are more suited for binder application. Further, catalysed switching between CO2/epoxide A-polycarbonate (PC) synthesis and B-poly(carbonate-r-ester) formation employing caprolactone (CL) and trimethylene carbonate (TMC) identifies an optimal molar mass (50 kg mol-1) and composition (wPC 0.35). This polymer electrolyte binder shows impressive oxidative stability (5.2 V), suitable ionic conductivity (2.2 × 10-4 S cm-1 at 60 °C), and compliant viscoelastic properties for fabrication into high-performance solid composite cathodes. This work presents an attractive route to optimising polymer binder properties using controlled polymerisation strategies combining cyclic monomer (CL, TMC) ring-opening polymerisation and epoxide/CO2 ring-opening copolymerisation. It should also prompt further examination of polycarbonate/ester-based materials with today's most relevant yet demanding high-voltage cathodes and sensitive sulfide-based solid electrolytes.
Collapse
Affiliation(s)
- Holly Yeo
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Georgina L Gregory
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Hui Gao
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
- Department of Materials, University of Oxford Oxford OX1 3PH UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus Didcot OX11 0RA UK
| | - Kanyapat Yiamsawat
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Gregory J Rees
- Department of Materials, University of Oxford Oxford OX1 3PH UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus Didcot OX11 0RA UK
| | - Thomas McGuire
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Mauro Pasta
- Department of Materials, University of Oxford Oxford OX1 3PH UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus Didcot OX11 0RA UK
| | - Peter G Bruce
- Department of Materials, University of Oxford Oxford OX1 3PH UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus Didcot OX11 0RA UK
| | - Charlotte K Williams
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
14
|
Liu J, Blosch SE, Volokhova AS, Crater ER, Gallin CF, Moore RB, Matson JB, Byers JA. Using Redox-Switchable Polymerization Catalysis to Synthesize a Chemically Recyclable Thermoplastic Elastomer. Angew Chem Int Ed Engl 2024; 63:e202317699. [PMID: 38168073 PMCID: PMC10873474 DOI: 10.1002/anie.202317699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Indexed: 01/05/2024]
Abstract
In an effort to synthesize chemically recyclable thermoplastic elastomers, a redox-switchable catalytic system was developed to synthesize triblock copolymers containing stiff poly(lactic acid) (PLA) end blocks and a flexible poly(tetrahydrofuran-co-cyclohexene oxide) (poly(THF-co-CHO) copolymer as the mid-block. The orthogonal reactivity induced by changing the oxidation state of the iron-based catalyst enabled the synthesis of the triblock copolymers in a single reaction flask from a mixture of monomers. The triblock copolymers demonstrated improved flexibility compared to poly(l-lactic acid) (PLLA) and thermomechanical properties that resemble thermoplastic elastomers, including a rubbery plateau in the range of -60 to 40 °C. The triblock copolymers containing a higher percentage of THF versus CHO were more flexible, and a blend of triblock copolymers containing PLLA and poly(d-lactic acid) (PDLA) end-blocks resulted in a stereocomplex that further increased polymer flexibility. Besides the low cost of lactide and THF, the sustainability of this new class of triblock copolymers was also supported by their depolymerization, which was achieved by exposing the copolymers sequentially to FeCl3 and ZnCl2 /PEG under reactive distillation conditions.
Collapse
Affiliation(s)
- Jiangwei Liu
- Department of Chemistry, Boston College, Eugene F. Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Sarah E Blosch
- Department of Chemistry, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Anastasia S Volokhova
- Department of Chemistry, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Erin R Crater
- Department of Chemistry, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Connor F Gallin
- Department of Chemistry, Boston College, Eugene F. Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Robert B Moore
- Department of Chemistry, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - John B Matson
- Department of Chemistry, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jeffery A Byers
- Department of Chemistry, Boston College, Eugene F. Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| |
Collapse
|
15
|
Lindeboom W, Deacy AC, Phanopoulos A, Buchard A, Williams CK. Correlating Metal Redox Potentials to Co(III)K(I) Catalyst Performances in Carbon Dioxide and Propene Oxide Ring Opening Copolymerization. Angew Chem Int Ed Engl 2023; 62:e202308378. [PMID: 37409487 PMCID: PMC10952574 DOI: 10.1002/anie.202308378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
Carbon dioxide copolymerization is a front-runner CO2 utilization strategy but its viability depends on improving the catalysis. So far, catalyst structure-performance correlations have not been straightforward, limiting the ability to predict how to improve both catalytic activity and selectivity. Here, a simple measure of a catalyst ground-state parameter, metal reduction potential, directly correlates with both polymerization activity and selectivity. It is applied to compare performances of 6 new heterodinuclear Co(III)K(I) catalysts for propene oxide (PO)/CO2 ring opening copolymerization (ROCOP) producing poly(propene carbonate) (PPC). The best catalyst shows an excellent turnover frequency of 389 h-1 and high PPC selectivity of >99 % (50 °C, 20 bar, 0.025 mol% catalyst). As demonstration of its utility, neither DFT calculations nor ligand Hammett parameter analyses are viable predictors. It is proposed that the cobalt redox potential informs upon the active site electron density with a more electron rich cobalt centre showing better performances. The method may be widely applicable and is recommended to guide future catalyst discovery for other (co)polymerizations and carbon dioxide utilizations.
Collapse
Affiliation(s)
- Wouter Lindeboom
- Department ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Arron C. Deacy
- Department ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Andreas Phanopoulos
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 OBZUK
| | - Antoine Buchard
- Department of ChemistryInstitute for SustainabilityUniversity of BathBathBA2 7AYUK
| | - Charlotte K. Williams
- Department ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
16
|
Poon KC, Gregory GL, Sulley GS, Vidal F, Williams CK. Toughening CO 2 -Derived Copolymer Elastomers Through Ionomer Networking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302825. [PMID: 37201907 DOI: 10.1002/adma.202302825] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/04/2023] [Indexed: 05/20/2023]
Abstract
Utilizing carbon dioxide (CO2 ) to make polycarbonates through the ring-opening copolymerization (ROCOP) of CO2 and epoxides valorizes and recycles CO2 and reduces pollution in polymer manufacturing. Recent developments in catalysis provide access to polycarbonates with well-defined structures and allow for copolymerization with biomass-derived monomers; however, the resulting material properties are underinvestigated. Here, new types of CO2 -derived thermoplastic elastomers (TPEs) are described together with a generally applicable method to augment tensile mechanical strength and Young's modulus without requiring material re-design. These TPEs combine high glass transition temperature (Tg ) amorphous blocks comprising CO2 -derived poly(carbonates) (A-block), with low Tg poly(ε-decalactone), from castor oil, (B-block) in ABA structures. The poly(carbonate) blocks are selectively functionalized with metal-carboxylates where the metals are Na(I), Mg(II), Ca(II), Zn(II) and Al(III). The colorless polymers, featuring <1 wt% metal, show tunable thermal (Tg ), and mechanical (elongation at break, elasticity, creep-resistance) properties. The best elastomers show >50-fold higher Young's modulus and 21-times greater tensile strength, without compromise to elastic recovery, compared with the starting block polymers. They have wide operating temperatures (-20 to 200 °C), high creep-resistance and yet remain recyclable. In the future, these materials may substitute high-volume petrochemical elastomers and be utilized in high-growth fields like medicine, robotics, and electronics.
Collapse
Affiliation(s)
- Kam C Poon
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Georgina L Gregory
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Gregory S Sulley
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Fernando Vidal
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Charlotte K Williams
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| |
Collapse
|
17
|
Vidal F, Smith S, Williams CK. Ring Opening Copolymerization of Boron-Containing Anhydride with Epoxides as a Controlled Platform to Functional Polyesters. J Am Chem Soc 2023. [PMID: 37311063 DOI: 10.1021/jacs.3c03261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Boron-functionalized polymers are used in opto-electronics, biology, and medicine. Methods to produce boron-functionalized and degradable polyesters remain exceedingly rare but relevant where (bio)dissipation is required, for example, in self-assembled nanostructures, dynamic polymer networks, and bio-imaging. Here, a boronic ester-phthalic anhydride and various epoxides (cyclohexene oxide, vinyl-cyclohexene oxide, propene oxide, allyl glycidyl ether) undergo controlled ring-opening copolymerization (ROCOP), catalyzed by organometallic complexes [Zn(II)Mg(II) or Al(III)K(I)] or a phosphazene organobase. The polymerizations are well controlled allowing for the modulation of the polyester structures (e.g., by epoxide selection, AB, or ABA blocks), molar masses (9.4 < Mn < 40 kg/mol), and uptake of boron functionalities (esters, acids, "ates", boroxines, and fluorescent groups) in the polymer. The boronic ester-functionalized polymers are amorphous, with high glass transition temperatures (81 < Tg < 224 °C) and good thermal stability (285 < Td < 322 °C). The boronic ester-polyesters are deprotected to yield boronic acid- and borate-polyesters; the ionic polymers are water soluble and degradable under alkaline conditions. Using a hydrophilic macro-initiator in alternating epoxide/anhydride ROCOP, and lactone ring opening polymerization, produces amphiphilic AB and ABC copolyesters. Alternatively, the boron-functionalities are subjected to Pd(II)-catalyzed cross-couplings to install fluorescent groups (BODIPY). The utility of this new monomer as a platform to construct specialized polyesters materials is exemplified here in the synthesis of fluorescent spherical nanoparticles that self-assemble in water (Dh = 40 nm). The selective copolymerization, variable structural composition, and adjustable boron loading represent a versatile technology for future explorations of degradable, well-defined, and functional polymers.
Collapse
Affiliation(s)
- Fernando Vidal
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Sevven Smith
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Charlotte K Williams
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
18
|
Kang F, Yang Y, Wang W, Li Z. Preparation of degradable aliphatic polyester elastomers with tunable strength and elasticity via photo‐crosslinking. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Feifei Kang
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| | - Yan Yang
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| | - Wenpin Wang
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| |
Collapse
|
19
|
Gregory GL, Sulley GS, Kimpel J, Łagodzińska M, Häfele L, Carrodeguas LP, Williams CK. Block Poly(carbonate-ester) Ionomers as High-Performance and Recyclable Thermoplastic Elastomers. Angew Chem Int Ed Engl 2022; 61:e202210748. [PMID: 36178774 PMCID: PMC9828403 DOI: 10.1002/anie.202210748] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 01/12/2023]
Abstract
Thermoplastic elastomers based on polyesters/carbonates have the potential to maximize recyclability, degradability and renewable resource use. However, they often underperform and suffer from the familiar trade-off between strength and extensibility. Herein, we report well-defined reprocessable poly(ester-b-carbonate-b-ester) elastomers with impressive tensile strengths (60 MPa), elasticity (>800 %) and recovery (95 %). Plus, the ester/carbonate linkages are fully degradable and enable chemical recycling. The superior performances are attributed to three features: (1) Highly entangled soft segments; (2) Fully reversible strain-induced crystallization and (3) Precisely placed ZnII -carboxylates dynamically crosslinking the hard domains. The one-pot synthesis couples controlled cyclic monomer ring-opening polymerization and alternating epoxide/anhydride ring-opening copolymerization. Efficient convresion to ionomers is achieved by reacting vinyl-epoxides to install ZnII -carboxylates.
Collapse
Affiliation(s)
- Georgina L. Gregory
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Gregory S. Sulley
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Joost Kimpel
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Matylda Łagodzińska
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Lisa Häfele
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | | | | |
Collapse
|
20
|
Zhou Y, Gao Z, Hu C, Meng S, Duan R, Sun Z, Pang X. Facile Synthesis of Gradient Polycarbonate–Polyester Terpolymers from Monomer Mixtures Mediated by an Asymmetric Chromium Complex. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yanchuan Zhou
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Zan Gao
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, P. R. China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Shuaiming Meng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ranlong Duan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Zhiqiang Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
21
|
Diment WT, Lindeboom W, Fiorentini F, Deacy AC, Williams CK. Synergic Heterodinuclear Catalysts for the Ring-Opening Copolymerization (ROCOP) of Epoxides, Carbon Dioxide, and Anhydrides. Acc Chem Res 2022; 55:1997-2010. [PMID: 35863044 PMCID: PMC9350912 DOI: 10.1021/acs.accounts.2c00197] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The development of sustainable
plastic materials is an essential
target of chemistry in the 21st century. Key objectives toward this
goal include utilizing sustainable monomers and the development of
polymers that can be chemically recycled/degraded. Polycarbonates
synthesized from the ring-opening copolymerization (ROCOP) of epoxides
and CO2, and polyesters synthesized from the ROCOP of epoxides
and anhydrides, meet these criteria. Despite this, designing efficient
catalysts for these processes remains challenging. Typical issues
include the requirement for high catalyst loading; low catalytic activities
in comparison with other commercialized polymerizations; and the requirement
of costly, toxic cocatalysts. The development of efficient catalysts
for both types of ROCOP is highly desirable. This Account details
our work on the development of catalysts for these two related polymerizations
and, in particular, focuses on dinuclear complexes, which are typically
applied without any cocatalyst. We have developed mechanistic hypotheses
in tandem with our catalysts, and throughout the Account, we describe
the kinetic, computational, and structure–activity studies
that underpin the performance of these catalysts. Our initial research
on homodinuclear M(II)M(II) complexes for cyclohexene oxide (CHO)/CO2 ROCOP provided data to support a chain shuttling catalytic
mechanism, which implied different roles for the two metals in the
catalysis. This mechanistic hypothesis inspired the development of
mixed-metal, heterodinuclear catalysts. The first of this class of
catalysts was a heterodinuclear Zn(II)Mg(II) complex, which showed
higher rates than either of the homodinuclear [Zn(II)Zn(II) and Mg(II)Mg(II)]
analogues for CHO/CO2 ROCOP. Expanding on this finding,
we subsequently developed a Co(II)Mg(II) complex that showed field
leading rates for CHO/CO2 ROCOP and allowed for unique
insight into the role of the two metals in this complex, where it
was established that the Mg(II) center reduced transition state entropy
and the Co(II) center reduced transition state enthalpy. Following
these discoveries, we subsequently developed a range of heterodinuclear
M(III)M(I) catalysts that were capable of catalyzing a broad range
of copolymerizations, including the ring-opening copolymerization
of CHO/CO2, propylene oxide (PO)/CO2, and CHO/phthalic
anhydride (PA). Catalysts featuring Co(III)K(I) and Al(III)K(I) were
found to be exceptionally effective for PO/CO2 and CHO/PA
ROCOP, respectively. Such M(III)M(I) complexes operate through a dinuclear
metalate mechanism, where the M(III) binds and activates monomers
while the M(I) species binds the polymer change in close proximity
to allow for insertion into the activated monomer. Our research illustrates
how careful catalyst design can yield highly efficient systems and
how the development of mechanistic understanding aids this process.
Avenues of future research are also discussed, including the applicability
of these heterodinuclear catalysts in the synthesis of sustainable
materials.
Collapse
Affiliation(s)
- Wilfred T Diment
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Wouter Lindeboom
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Francesca Fiorentini
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Arron C Deacy
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Charlotte K Williams
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
22
|
Loop and Bridge Conformations of ABA Triblock Comb Copolymers: A Conformational Assessment for Molecular Composites. Polymers (Basel) 2022; 14:polym14112301. [PMID: 35683973 PMCID: PMC9183157 DOI: 10.3390/polym14112301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
We computationally investigate the conformational behavior, “bridging” chain, between different the phase-separated domains vs “looping” chain on the same domain, for two chain architectures of ABA triblock copolymers, one with a linear architecture (L-TBC) and the other with comb architecture (C-TBC) at various segregation regimes using dissipative particle dynamics (DPD) simulations. The power-law relation between the bridge fraction (Φ) and the interaction parameter (χ) for C-TBC is found to be Φ∼χ−1.6 in the vicinity of the order-disorder transition (χODT), indicating a drastic conversion from the bridge to the loop conformation. When χ further increases, the bridge-loop conversions slow down to have the power law, Φ∼χ−0.18, approaching the theoretical power law Φ∼χ−1/9 predicted in the strong segregation limit. The conformational assessment conducted in the present study can provide a strategy of designing optimal material and processing conditions for triblock copolymer either with linear or comb architecture to be used for thermoplastic elastomer or molecular nanocomposites.
Collapse
|
23
|
Zenati A. Triblock Azo copolymers: RAFT synthesis, properties, thin film self-assembly and applications. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.2015779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Athmen Zenati
- Refining and Petrochemistry, Division of Method and Operation, Sonatrach, Arzew, Algeria
- Central Directorate of Research and Development, Sonatrach, Boumerdes, Algeria
| |
Collapse
|
24
|
Deralia PK, Sonker AK, Lund A, Larsson A, Ström A, Westman G. Side chains affect the melt processing and stretchability of arabinoxylan biomass-based thermoplastic films. CHEMOSPHERE 2022; 294:133618. [PMID: 35066072 DOI: 10.1016/j.chemosphere.2022.133618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/03/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Hydrophobization of hemicellulose causes melt processing and makes them stretchable thermoplastics. Understanding how native and/or appended side chains in various hemicelluloses after chemical modification affect melt processing and material properties can help in the development of products for film packaging and substrates for stretchable electronics applications. Herein, we describe a one-step and two-step strategy for the fabrication of flexible and stretchable thermoplastics prepared by compression molding of two structurally different arabinoxylans (AX). For one-step synthesis, the n-butyl glycidyl ether epoxide ring was opened to the hydroxyl group, resulting in the introduction of alkoxide side chains. The first step in the two-step synthesis was periodate oxidation. Because the melt processability for AXs having low arabinose to xylose ratio (araf/xylp<0.5) have been limited, two structurally distinct AXs extracted from wheat bran (AXWB, araf/xylp = 3/4) and barley husk (AXBH, araf/xylp = 1/4) were used to investigate the effect of araf/xylp and hydrophobization on the melt processability and properties of the final material. Melt compression processability was achieved in AXBH derived samples. DSC and DMA confirmed that the thermoplastics derived from AXWB and AXBH had dual and single glass transition (Tg) characteristics, respectively, but the thermoplastics derived from AXBH had lower stretchability (maximum 160%) compared to the AXWB samples (maximum 300%). Higher araf/xylp values, and thus longer alkoxide side chains in AXWB-derived thermoplastics, explain the stretchability differences.
Collapse
Affiliation(s)
- Parveen Kumar Deralia
- Chemistry and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden.
| | - Amit Kumar Sonker
- Chemistry and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
| | - Anja Lund
- Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
| | - Anette Larsson
- Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
| | - Anna Ström
- Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
| | - Gunnar Westman
- Chemistry and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden.
| |
Collapse
|
25
|
Petersen SR, Prydderch H, Worch JC, Stubbs CJ, Wang Z, Yu J, Arno MC, Dobrynin AV, Becker ML, Dove AP. Ultra-Tough Elastomers from Stereochemistry-Directed Hydrogen Bonding in Isosorbide-Based Polymers. Angew Chem Int Ed Engl 2022; 61:e202115904. [PMID: 35167725 PMCID: PMC9311410 DOI: 10.1002/anie.202115904] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Indexed: 02/02/2023]
Abstract
The remarkable elasticity and tensile strength found in natural elastomers are challenging to mimic. Synthetic elastomers typically feature covalently cross-linked networks (rubbers), but this hinders their reprocessability. Physical cross-linking via hydrogen bonding or ordered crystallite domains can afford reprocessable elastomers, but often at the cost of performance. Herein, we report the synthesis of ultra-tough, reprocessable elastomers based on linear alternating polymers. The incorporation of a rigid isohexide adjacent to urethane moieties affords elastomers with exceptional strain hardening, strain rate dependent behavior, and high optical clarity. Distinct differences were observed between isomannide and isosorbide-based elastomers where the latter displays superior tensile strength and strain recovery. These phenomena are attributed to the regiochemical irregularities in the polymers arising from their distinct stereochemistry and respective inter-chain hydrogen bonding.
Collapse
Affiliation(s)
| | | | - Joshua C. Worch
- School of ChemistryUniversity of BirminghamBirminghamB15 2TTUK
| | | | - Zilu Wang
- Department of ChemistryUniversity of North Carolina Chapel HillChapel HillNC, 27599USA
| | - Jiayi Yu
- Department of Polymer ScienceThe University of AkronAkronOH 44224USA
| | - Maria C. Arno
- School of ChemistryUniversity of BirminghamBirminghamB15 2TTUK
| | - Andrey V. Dobrynin
- Department of ChemistryUniversity of North Carolina Chapel HillChapel HillNC, 27599USA
| | - Matthew L. Becker
- Department of Chemistry, Mechanical Engineering and Materials ScienceBiomedical Engineering and Orthopedic SurgeryDuke UniversityDurhamNC, 20899USA
| | - Andrew P. Dove
- School of ChemistryUniversity of BirminghamBirminghamB15 2TTUK
| |
Collapse
|
26
|
Wang Y, Wang M, Shi Y, Chen X, Song D, Li Y, Wang B. Switchable Copolymerization of Maleic Anhydride/Epoxides/Lactide Mixtures: A Straightforward Approach to Block Copolymers with Unsaturated Polyester Sequences. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yu‐Bo Wang
- Tianjin Key Laboratory of Composite & Functional Materials School of Materials Science and Engineering, Tianjin University Tianjin 300350
| | - Ming‐Qian Wang
- Tianjin Key Laboratory of Composite & Functional Materials School of Materials Science and Engineering, Tianjin University Tianjin 300350
| | - Yi‐Bo Shi
- Tianjin Key Laboratory of Composite & Functional Materials School of Materials Science and Engineering, Tianjin University Tianjin 300350
| | - Xiao‐Lu Chen
- Tianjin Key Laboratory of Composite & Functional Materials School of Materials Science and Engineering, Tianjin University Tianjin 300350
| | - Dong‐Po Song
- Tianjin Key Laboratory of Composite & Functional Materials School of Materials Science and Engineering, Tianjin University Tianjin 300350
| | - Yue‐Sheng Li
- Tianjin Key Laboratory of Composite & Functional Materials School of Materials Science and Engineering, Tianjin University Tianjin 300350
| | - Bin Wang
- Tianjin Key Laboratory of Composite & Functional Materials School of Materials Science and Engineering, Tianjin University Tianjin 300350
| |
Collapse
|
27
|
Li C, Wang L, Yan Q, Liu F, Shen Y, Li Z. Rapid and Controlled Polymerization of Bio-sourced δ-Caprolactone toward Fully Recyclable Polyesters and Thermoplastic Elastomers. Angew Chem Int Ed Engl 2022; 61:e202201407. [PMID: 35150037 DOI: 10.1002/anie.202201407] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 12/29/2022]
Abstract
The development of chemically recyclable polymers presents the most appealing solution to address the plastics' end-of-use problem. Despite the recent advancements, it is highly desirable to develop chemically recyclable polymers from commercially available monomers to avoid the costly and time-consuming commercialization. In this contribution, we achieve the controlled ring-opening polymerization (ROP) of bio-sourced δ-caprolactone (δCL) using strong base/urea binary catalysts. The obtained PδCL is capable of chemical recycling to δCL in an almost quantitative yield by thermolysis. Sequential ROP of δCL and l-lactide (l-LA) affords well-defined PLLA-b-PδCL-b-PLLA triblock copolymers, which behave as thermoplastic elastomers with excellent elastic recovery, tensile strength and ultimate elongation. The upcycling of PLLA-b-PδCL-b-PLLA to recover ethyl lactate and δCL with high yields is achieved by refluxing with ethanol and then distillation under reduced pressure.
Collapse
Affiliation(s)
- Changjian Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Liying Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qin Yan
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Fusheng Liu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yong Shen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhibo Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.,Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
28
|
Kerr RWF, Williams CK. Zr(IV) Catalyst for the Ring-Opening Copolymerization of Anhydrides (A) with Epoxides (B), Oxetane (B), and Tetrahydrofurans (C) to Make ABB- and/or ABC-Poly(ester- alt-ethers). J Am Chem Soc 2022; 144:6882-6893. [PMID: 35388696 PMCID: PMC9084548 DOI: 10.1021/jacs.2c01225] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(ester-alt-ethers) can combine beneficial ether linkage flexibility and polarity with ester linkage hydrolysability, furnishing fully degradable polymers. Despite their promising properties, this class of polymers remains underexplored, in part due to difficulties in polymer synthesis. Here, a catalyzed copolymerization using commercially available monomers, butylene oxide (BO)/oxetane (OX), tetrahydrofuran (THF), and phthalic anhydride (PA), accesses a series of well-defined poly(ester-alt-ethers). A Zr(IV) catalyst is reported that yields polymer repeat units comprising a ring-opened PA (A), followed by two ring-opened cyclic ethers (B/C) (-ABB- or -ABC-). It operates with high polymerization control, good rate, and successfully enchains epoxides, oxetane, and/or tetrahydrofurans, providing a straightforward means to moderate the distance between ester linkages. Kinetic analysis of PA/BO copolymerization, with/without THF, reveals an overall second-order rate law: first order in both catalyst and butylene oxide concentrations but zero order in phthalic anhydride and, where it is present, zero order in THF. Poly(ester-alt-ethers) have lower glass-transition temperatures (-16 °C < Tg < 12 °C) than the analogous alternating polyesters, consistent with the greater backbone flexibility. They also show faster ester hydrolysis rates compared with the analogous AB polymers. The Zr(IV) catalyst furnishes poly(ester-alt-ethers) from a range of commercially available epoxides and anhydride; it presents a straightforward method to moderate degradable polymers' properties.
Collapse
Affiliation(s)
- Ryan W F Kerr
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | | |
Collapse
|
29
|
Hancox E, Derry MJ, Greenall MJ, Huband S, Al-Shok L, Town JS, Topham PD, Haddleton DM. Heterotelechelic homopolymers mimicking high χ - ultralow N block copolymers with sub-2 nm domain size. Chem Sci 2022; 13:4019-4028. [PMID: 35440978 PMCID: PMC8985574 DOI: 10.1039/d2sc00720g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/13/2022] [Indexed: 12/16/2022] Open
Abstract
Three fluorinated, hydrophobic initiators have been utilised for the synthesis of low molecular mass fluoro-poly(acrylic acid) heterotelechelic homopolymers to mimic high chi (χ)-low N diblock copolymers with ultrafine domains of sub-2 nm length scale. Polymers were obtained by a simple photoinduced copper(ii)-mediated reversible-deactivation radical polymerisation (Cu-RDRP) affording low molecular mass (<3 kDa) and low dispersity (Đ = 1.04-1.21) homopolymers. Heating/cooling ramps were performed on bulk samples (ca. 250 μm thick) to obtain thermodynamically stable nanomorpologies of lamellar (LAM) or hexagonally packed cylinders (HEX), as deduced by small-angle X-ray scattering (SAXS). Construction of the experimental phase diagram alongside a detailed theoretical model demonstrated typical rod-coil block copolymer phase behaviour for these fluoro-poly(acrylic acid) homopolymers, where the fluorinated initiator-derived segment acts as a rod and the poly(acrylic acid) as a coil. This work reveals that these telechelic homopolymers mimic high χ-ultralow N diblock copolymers and enables reproducible targeting of nanomorphologies with incredibly small, tunable domain size.
Collapse
Affiliation(s)
- E Hancox
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - M J Derry
- Aston Institute of Materials Research, Aston University Birmingham B4 7ET UK
| | - M J Greenall
- School of Mathematics and Physics, University of Lincoln Brayford Pool Lincoln LN6 7TS UK
| | - S Huband
- Department of Physics, University of Warwick Coventry CV4 7AL UK
| | - L Al-Shok
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - J S Town
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - P D Topham
- Aston Institute of Materials Research, Aston University Birmingham B4 7ET UK
| | - D M Haddleton
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
30
|
Reis NV, Deacy AC, Rosetto G, Durr CB, Williams CK. Heterodinuclear Mg(II)M(II) (M=Cr, Mn, Fe, Co, Ni, Cu and Zn) Complexes for the Ring Opening Copolymerization of Carbon Dioxide/Epoxide and Anhydride/Epoxide. Chemistry 2022; 28:e202104198. [PMID: 35114048 PMCID: PMC9306976 DOI: 10.1002/chem.202104198] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Indexed: 11/07/2022]
Abstract
The catalysed ring opening copolymerizations (ROCOP) of carbon dioxide/epoxide or anhydride/epoxide are controlled polymerizations that access useful polycarbonates and polyesters. Here, a systematic investigation of a series of heterodinuclear Mg(II)M(II) complexes reveals which metal combinations are most effective. The complexes combine different first row transition metals (M(II)) from Cr(II) to Zn(II), with Mg(II); all complexes are coordinated by the same macrocyclic ancillary ligand and by two acetate co-ligands. The complex syntheses and characterization data, as well as the polymerization data, for both carbon dioxide/cyclohexene oxide (CHO) and endo-norbornene anhydride (NA)/cyclohexene oxide, are reported. The fastest catalyst for both polymerizations is Mg(II)Co(II) which shows propagation rate constants (kp ) of 34.7 mM-1 s-1 (CO2 ) and 75.3 mM-1 s-1 (NA) (100 °C). The Mg(II)Fe(II) catalyst also shows excellent performances with equivalent rates for CO2 /CHO ROCOP (kp =34.7 mM-1 s-1 ) and may be preferable in terms of metallic abundance, low cost and low toxicity. Polymerization kinetics analyses reveal that the two lead catalysts show overall second order rate laws, with zeroth order dependencies in CO2 or anhydride concentrations and first order dependencies in both catalyst and epoxide concentrations. Compared to the homodinuclear Mg(II)Mg(II) complex, nearly all the transition metal heterodinuclear complexes show synergic rate enhancements whilst maintaining high selectivity and polymerization control. These findings are relevant to the future design and optimization of copolymerization catalysts and should stimulate broader investigations of synergic heterodinuclear main group/transition metal catalysts.
Collapse
Affiliation(s)
- Natalia V Reis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford, OX1 3TA, UK
| | - Arron C Deacy
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford, OX1 3TA, UK
| | - Gloria Rosetto
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford, OX1 3TA, UK
| | - Christopher B Durr
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford, OX1 3TA, UK
| | - Charlotte K Williams
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford, OX1 3TA, UK
| |
Collapse
|
31
|
Petersen SR, Prydderch H, Worch JC, Stubbs CJ, Wang Z, Yu J, Arno MC, Dobrynin AV, Becker ML, Dove AP. Ultra‐Tough Elastomers from Stereochemistry‐Directed Hydrogen Bonding in Isosorbide‐Based Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Hannah Prydderch
- School of Chemistry University of Birmingham Birmingham B15 2TT UK
| | - Joshua C. Worch
- School of Chemistry University of Birmingham Birmingham B15 2TT UK
| | - Connor J. Stubbs
- School of Chemistry University of Birmingham Birmingham B15 2TT UK
| | - Zilu Wang
- Department of Chemistry University of North Carolina Chapel Hill Chapel Hill NC, 27599 USA
| | - Jiayi Yu
- Department of Polymer Science The University of Akron Akron OH 44224 USA
| | - Maria C. Arno
- School of Chemistry University of Birmingham Birmingham B15 2TT UK
| | - Andrey V. Dobrynin
- Department of Chemistry University of North Carolina Chapel Hill Chapel Hill NC, 27599 USA
| | - Matthew L. Becker
- Department of Chemistry, Mechanical Engineering and Materials Science Biomedical Engineering and Orthopedic Surgery Duke University Durham NC, 20899 USA
| | - Andrew P. Dove
- School of Chemistry University of Birmingham Birmingham B15 2TT UK
| |
Collapse
|
32
|
Gregory GL, Williams CK. Exploiting Sodium Coordination in Alternating Monomer Sequences to Toughen Degradable Block Polyester Thermoplastic Elastomers. Macromolecules 2022; 55:2290-2299. [PMID: 35558439 PMCID: PMC9084597 DOI: 10.1021/acs.macromol.2c00068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/14/2022] [Indexed: 01/26/2023]
Abstract
![]()
Thermoplastic
elastomers (TPEs) that are closed-loop recyclable
are needed in a circular material economy, but many current materials
degrade during recycling, and almost all are pervasive hydrocarbons.
Here, well-controlled block polyester TPEs featuring regularly placed
sodium/lithium carboxylate side chains are described. They show significantly
higher tensile strengths than unfunctionalized analogues, with high
elasticity and elastic recovery. The materials are prepared using
controlled polymerizations, exploiting a single catalyst that switches
between different polymerization cycles. ABA block polyesters of high
molar mass (60–100 kg mol–1; 21 wt % A-block)
are constructed using the ring-opening polymerization of ε-decalactone
(derived from castor oil; B-block), followed by the alternating ring-opening
copolymerization of phthalic anhydride with 4-vinyl-cyclohexene oxide
(A-blocks). The polyesters undergo efficient functionalization to
install regularly placed carboxylic acids onto the A blocks. Reacting
the polymers with sodium or lithium hydroxide controls the extent
of ionization (0–100%); ionized polymers show a higher tensile
strength (20 MPa), elasticity (>2000%), and elastic recovery (>80%).
In one case, sodium functionalization results in 35× higher stress
at break than the carboxylic acid polymer; in all cases, changing
the quantity of sodium tunes the properties. A leading sample, 2-COONa75 (Mn 100 kg mol–1, 75% sodium), shows a wide operating temperature range (−52
to 129 °C) and is recycled (×3) by hot-pressing at 200 °C,
without the loss of mechanical properties. Both the efficient synthesis
of ABA block polymers and precision ionization in perfectly alternating
monomer sequences are concepts that can be generalized to many other
monomers, functional groups, and metals. These materials are partly
bioderived and have degradable ester backbone chemistries, deliver
useful properties, and allow for thermal reprocessing; these features
are attractive as future sustainable TPEs.
Collapse
Affiliation(s)
- Georgina L. Gregory
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Charlotte K. Williams
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
33
|
Mundil R, Zhigunov A, Uchman M. Metal-free synthesis and self-assembly of poly(ethylene glycol) methyl ether-block-poly(ε-decalactone)-block-poly(methyl methacrylate) triblock terpolymers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Li C, Wang L, Yan Q, Liu F, Shen Y, Li Z. Rapid and Controlled Polymerization of Bio‐sourced δ‐Caprolactone toward Fully Recyclable Polyesters and Thermoplastic Elastomers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Changjian Li
- Qingdao University of Science and Technology College of Chemical Engineering CHINA
| | - Liying Wang
- Qingdao University of Science and Technology College of Chemical Engineering CHINA
| | - Qin Yan
- Qingdao University of Science and Technology College of Polymer Science and Engineering CHINA
| | - Fusheng Liu
- Qingdao University of Science and Technology College of Chemical Engineering CHINA
| | - Yong Shen
- Qingdao University of Science and Technology College of Chemical Engineering CHINA
| | - Zhibo Li
- Qingdao University of Science and Technology College of Polymer Science and Engineering #53 Zhengzhou RoadCCE Building 1101 266042 Qingdao CHINA
| |
Collapse
|
35
|
Chen XL, Wang B, Song DP, Pan L, Li YS. One-Step Synthesis of Sequence-Controlled Polyester-block-Poly(ester-alt-thioester) by Chemoselective Multicomponent Polymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiao-Lu Chen
- Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bin Wang
- Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Dong-Po Song
- Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Li Pan
- Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yue-Sheng Li
- Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
36
|
Plajer AJ, Williams CK. Heterocycle/Heteroallene Ring-Opening Copolymerization: Selective Catalysis Delivering Alternating Copolymers. Angew Chem Int Ed Engl 2022; 61:e202104495. [PMID: 34015162 PMCID: PMC9298364 DOI: 10.1002/anie.202104495] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 11/29/2022]
Abstract
Heteroatom-containing polymers have strong potential as sustainable replacements for petrochemicals, show controllable monomer-polymer equilibria and properties spanning plastics, elastomers, fibres, resins, foams, coatings, adhesives, and self-assembled nanostructures. Their current and future applications span packaging, house-hold goods, clothing, automotive components, electronics, optical materials, sensors, and medical products. An interesting route to these polymers is the catalysed ring-opening copolymerisation (ROCOP) of heterocycles and heteroallenes. It is a living polymerization, occurs with high atom economy, and creates precise, new polymer structures inaccessible by traditional methods. In the last decade there has been a renaissance in research and increasing examples of commercial products made using ROCOP. It is better known in the production of polycarbonates and polyesters, but is also a powerful route to make N-, S-, and other heteroatom-containing polymers, including polyamides, polycarbamates, and polythioesters. This Review presents an overview of the different catalysts, monomer combinations, and polymer classes that can be accessed by heterocycle/heteroallene ROCOP.
Collapse
Affiliation(s)
- Alex J. Plajer
- Oxford ChemistryChemical Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | | |
Collapse
|
37
|
Plajer AJ, Williams CK. Heterocycle/Heteroallene Ring‐Opening Copolymerization: Selective Catalysis Delivering Alternating Copolymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202104495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alex J. Plajer
- Oxford Chemistry Chemical Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | | |
Collapse
|
38
|
Shaw M, Bates M, Jones MD, Ward BD. Metallocene catalysts for the ring-opening co-polymerisation of epoxides and cyclic anhydrides. Polym Chem 2022. [DOI: 10.1039/d2py00335j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ring-opening co-polymerization (ROCOP) of epoxides and cyclic anhydrides is a versatile route to new polyesters. The vast number of monomers that are readily available means that an effectively limitless...
Collapse
|
39
|
Diment WT, Williams CK. Chain end-group selectivity using an organometallic Al( iii)/K( i) ring-opening copolymerization catalyst delivers high molar mass, monodisperse polyesters. Chem Sci 2022; 13:8543-8549. [PMID: 35974772 PMCID: PMC9337735 DOI: 10.1039/d2sc02752f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/10/2022] [Indexed: 11/21/2022] Open
Abstract
Polyesters are important plastics, elastomers and fibres; efficient and selective polymerizations making predictable, high molar mass polymers are required. Here, a new type of catalyst for the ring-opening polymerization (ROCOP) of epoxides and anhydrides combines unusually high chain end-group selectivity, fast rates, and good molar mass control. The organometallic heterodinuclear Al(iii)/K(i) complex, applied with a diol, is tolerant to a range of epoxides/phthalic anhydride and produces only α,ω-hydroxyl telechelic polyesters with molar masses from 6–91 kg mol−1, in all cases with monomodal distributions. As proof of its potential, high molar mass poly(vinyl cyclohexene oxide-alt-phthalic anhydride) (91 kg mol−1) shows 5× greater flexural strain at break (εb = 3.7%) and 9× higher maximum flexural stress (σf = 72.3 MPa) than the previously accessed medium molar mass samples (24 kg mol−1). It is also enchains phthalic anhydride, vinyl cyclohexene oxide and ε-decalactone, via switchable catalysis, to make high molar mass triblock polyesters (81 kg mol−1, Đ = 1.04). This selective catalyst should be used in the future to qualify the properties of these ROCOP polyesters and to tune (multi)block polymer structures. A heterodinuclear Al(iii)/K(i) organometallic ring-opening copolymerization catalyst shows exceptional rates, end-group selectivity and good loading tolerance to deliver monodisperse polyesters with molar masses up to 91 kg mol−1.![]()
Collapse
Affiliation(s)
- Wilfred T. Diment
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Charlotte K. Williams
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
40
|
KAYSER F, Fleury G, thongkham S, Navarro C, Martin-Vaca B, Bourissou D. Reducing the crystallinity of PCL chains by copolymerization with substituted δ/ε-lactones and its impact on the phase separation of PCL-based block copolymers. Polym Chem 2022. [DOI: 10.1039/d2py00101b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various substituted δ/ε-lactones have been copolymerized with ε-caprolactone (ε-CL) with the aim to inhibit the crystallization of polycaprolactone (PCL). Among the studied co-monomers, the best results were obtained with the...
Collapse
|
41
|
Wood ZA, Assefa MK, Fieser ME. Simple yttrium salts as highly active and controlled catalysts for the atom-efficient synthesis of high molecular weight polyesters. Chem Sci 2022; 13:10437-10447. [PMID: 36277642 PMCID: PMC9473511 DOI: 10.1039/d2sc02745c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
The ring-opening copolymerization (ROCOP) of epoxides and cyclic anhydrides is a promising route to sustainable aliphatic polyesters with diverse mechanical and thermal properties. Here, simple yttrium chloride salts (YCl3THF3.5 and YCl3·6H2O), in combination with a bis(triphenylphosphoranylidene)ammonium chloride [PPN]Cl cocatalyst, are used as efficient and controlled catalysts for ten epoxide and anhydride combinations. In comparison to past literature, this simple salt system exhibits competitive turn-over frequencies (TOFs) for most monomer pairs. Despite no supporting ligand framework, these salts provide excellent control of dispersity, with suppression of side reactions. Using these catalysts, the highest molecular weight reported to date (302.2 kDa) has been obtained with a monosubstituted epoxide and tricyclic anhydride. These data indicate that excellent molecular weight control and suppression of side reactions for ROCOP of epoxides and cyclic anhydrides can coincide with high activity using a simple catalytic system, warranting further research in working towards industrial viability. Two simple yttrium salts, YCl3THF3.5 and YCl3·6H2O, are highly active and controlled catalysts for the perfectly alternating ring-opening copolymerization of epoxides and cyclic anhydrides.![]()
Collapse
Affiliation(s)
- Zachary A. Wood
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Mikiyas K. Assefa
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Megan E. Fieser
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
- Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, California, 90089, USA
| |
Collapse
|
42
|
Lin L, Chen X, Xiang H, Chang M, Xu Y, Zhao H, Meng Y. Construction of triblock copolyesters via one-step switchable terpolymerization of epoxides, phthalic anhydride and ε-caprolactone using dual urea/organic base catalysts. Polym Chem 2022. [DOI: 10.1039/d1py01390d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A cost-effective and efficient system of ureas/organic bases toward the controlled self-switchable copolymerization of epoxide/PA/CL to obtain well-defined triblock polyesters.
Collapse
Affiliation(s)
- Limiao Lin
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Xin Chen
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Huanxin Xiang
- School of Materials Science & Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Min Chang
- School of Materials Science & Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Yonghang Xu
- School of Materials Science & Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Hongting Zhao
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Yuezhong Meng
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/School of Materials Science and Engineering, Sun Yat-Sen University, 135 Xingang West, Guangzhou, 510275, China
| |
Collapse
|
43
|
Plajer AJ, Williams CK. Heterotrinuclear Ring Opening Copolymerization Catalysis: Structure–activity Relationships. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alex J. Plajer
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Charlotte K. Williams
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
44
|
Diment WT, Gregory GL, Kerr RWF, Phanopoulos A, Buchard A, Williams CK. Catalytic Synergy Using Al(III) and Group 1 Metals to Accelerate Epoxide and Anhydride Ring-Opening Copolymerizations. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wilfred T. Diment
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Georgina L. Gregory
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Ryan W. F. Kerr
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Andreas Phanopoulos
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Antoine Buchard
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Charlotte K. Williams
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
45
|
Driscoll OJ, Stewart JA, McKeown P, Jones MD. Ring-Opening Copolymerization Using Simple Fe(III) Complexes and Metal- and Halide-Free Organic Catalysts. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Oliver J. Driscoll
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Jack A. Stewart
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Paul McKeown
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Matthew D. Jones
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
46
|
Lindeboom W, Fraser DAX, Durr CB, Williams CK. Heterodinuclear Zn(II), Mg(II) or Co(III) with Na(I) Catalysts for Carbon Dioxide and Cyclohexene Oxide Ring Opening Copolymerizations. Chemistry 2021; 27:12224-12231. [PMID: 34133043 PMCID: PMC8456860 DOI: 10.1002/chem.202101140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 12/16/2022]
Abstract
A series heterodinuclear catalysts, operating without co-catalyst, show good performances for the ring opening copolymerization (ROCOP) of cyclohexene oxide and carbon dioxide. The complexes feature a macrocyclic ligand designed to coordinate metals such as Zn(II), Mg(II) or Co(III), in a Schiff base 'pocket', and Na(I) in a modified crown-ether binding 'pocket'. The 11 new catalysts are used to explore the influences of the metal combinations and ligand backbones over catalytic activity and selectivity. The highest performance catalyst features the Co(III)Na(I) combination, [N,N'-bis(3,3'-triethylene glycol salicylidene)-1,2-ethylenediamino cobalt(III) di(acetate)]sodium (7), and it shows both excellent activity and selectivity at 1 bar carbon dioxide pressure (TOF=1590 h-1 , >99 % polymer selectivity, 1 : 10: 4000, 100 °C), as well as high activity at higher carbon dioxide pressure (TOF=4343 h-1 , 20 bar, 1 : 10 : 25000). Its rate law shows a first order dependence on both catalyst and cyclohexene oxide concentrations and a zeroth order for carbon dioxide pressure, over the range 10-40 bar. These new catalysts eliminate any need for ionic or Lewis base co-catalyst and instead exploit the coordination of earth-abundant and inexpensive Na(I) adjacent to a second metal to deliver efficient catalysis. They highlight the potential for well-designed ancillary ligands and inexpensive Group 1 metals to deliver high performance heterodinuclear catalysts for carbon dioxide copolymerizations and, in future, these catalysts may also show promise in other alternating copolymerization and carbon dioxide utilizations.
Collapse
Affiliation(s)
- Wouter Lindeboom
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOxfordUK
| | - Duncan A. X. Fraser
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOxfordUK
| | - Christopher B. Durr
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOxfordUK
| | | |
Collapse
|
47
|
Liao T, Wu J, Tang Z, Su Q, Huang Z, Gu Y, Li Y, Xie J, Lin X, Yi G. Construction of sacrificial network in styrene-ethylene/butadiene-styrene triblock copolymer composites and their mechanical behaviors. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1967170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Tingting Liao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Jianyu Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Zilun Tang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Qiuping Su
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Zhiyi Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Yuxin Gu
- Kinte Material Technology Co., Ltd, Dongguan, China
| | - Yong Li
- Kinte Material Technology Co., Ltd, Dongguan, China
| | - Jing Xie
- Kinte Material Technology Co., Ltd, Dongguan, China
| | - Xiaofeng Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Guobin Yi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
48
|
Degradable Elastomers: Is There a Future in Tyre Compound Formulation? Molecules 2021; 26:molecules26154454. [PMID: 34361606 PMCID: PMC8347236 DOI: 10.3390/molecules26154454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Problems related to non-biodegradable waste coming from vulcanized rubber represent one of the pre-eminent challenges for modern society. End-of-life tyres are an important source of this typology of waste and the increasingly high accumulation in the environment has contributed over the years to enhance land and water pollution. Moreover, the release into the environment of non-degradable micro-plastics and other chemicals as an effect of tyre abrasion is not negligible. Many solutions are currently applied to reuse end-of-life tyres as a raw material resource, such as pyrolysis, thermo-mechanical or chemical de-vulcanisation, and finally crumbing trough different technologies. An interesting approach to reduce the environmental impact of vulcanised rubber wastes is represented by the use of degradable thermoplastic elastomers (TPEs) in tyre compounds. In this thematic review, after a reviewing fossil fuel-based TPEs, an overview of the promising use of degradable TPEs in compound formulation for the tyre industry is presented. Specifically, after describing the properties of degradable elastomers that are favourable for tyres application in comparison to used ones, the real scenario and future perspectives related to the use of degradable polymers for new tyre compounds will be realized.
Collapse
|
49
|
D'Auria I, Santulli F, Ciccone F, Giannattasio A, Mazzeo M, Pappalardo D. Synthesis of Semi‐Aromatic Di‐Block Polyesters by Terpolymerization of Macrolactones, Epoxides, and Anhydrides. ChemCatChem 2021. [DOI: 10.1002/cctc.202100434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ilaria D'Auria
- Department of Chemistry and Biology “A. Zambelli” University of Salerno Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| | - Federica Santulli
- Department of Chemistry and Biology “A. Zambelli” University of Salerno Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| | - Francesca Ciccone
- Department of Chemistry and Biology “A. Zambelli” University of Salerno Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| | - Alessia Giannattasio
- Department of Chemistry and Biology “A. Zambelli” University of Salerno Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| | - Mina Mazzeo
- Department of Chemistry and Biology “A. Zambelli” University of Salerno Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| | - Daniela Pappalardo
- Dipartimento di Scienze e Tecnologie Università del Sannio Via de Sanctis snc 82100 Benevento Italy
| |
Collapse
|
50
|
Yuntawattana N, Gregory GL, Carrodeguas LP, Williams CK. Switchable Polymerization Catalysis Using a Tin(II) Catalyst and Commercial Monomers to Toughen Poly(l-lactide). ACS Macro Lett 2021; 10:774-779. [PMID: 34306820 PMCID: PMC8296665 DOI: 10.1021/acsmacrolett.1c00216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
Sustainable plastics sourced without virgin petrochemicals, that are easily recyclable and with potential for degradation at end of life, are urgently needed. Here, copolymersand blends meeting these criteria are efficiently prepared using a single catalyst and existing commercial monomers l-lactide, propylene oxide, and maleic anhydride. The selective, one-reactor polymerization applies an industry-relevant tin(II) catalyst. Tapered, miscible block polyesters are formed with alkene groups which are postfunctionalized to modulate the polymer glass transition temperature. The polymers are blended at desirable low weight fractions (2 wt %) with commercial poly(l-lactide) (PLLA), increasing toughness, and elongation at break without compromising the elastic modulus, tensile strength, or thermal properties. The selective polymerization catalysis, using commercial monomers and catalyst, provides a straightforward means to improve bioplastics performances.
Collapse
Affiliation(s)
- Nattawut Yuntawattana
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Georgina L. Gregory
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Leticia Peña Carrodeguas
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Charlotte K. Williams
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|