1
|
Heussman D, Enkhbaatar L, Sorour MI, Kistler KA, von Hippel PH, Matsika S, Marcus AH. Using transition density models to interpret experimental optical spectra of exciton-coupled cyanine (iCy3)2 dimer probes of local DNA conformations at or near functional protein binding sites. Nucleic Acids Res 2024; 52:1272-1289. [PMID: 38050987 PMCID: PMC10853810 DOI: 10.1093/nar/gkad1163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/07/2023] Open
Abstract
Exciton-coupled chromophore dimers are an emerging class of optical probes for studies of site-specific biomolecular interactions. Applying accurate theoretical models for the electrostatic coupling of a molecular dimer probe is a key step for simulating its optical properties and analyzing spectroscopic data. In this work, we compare experimental absorbance and circular dichroism (CD) spectra of 'internally-labeled' (iCy3)2 dimer probes inserted site-specifically into DNA fork constructs to theoretical calculations of the structure and geometry of these exciton-coupled dimers. We compare transition density models of varying levels of approximation to determine conformational parameters of the (iCy3)2 dimer-labeled DNA fork constructs. By applying an atomistically detailed transition charge (TQ) model, we can distinguish between dimer conformations in which the stacking and tilt angles between planar iCy3 monomers are varied. A major strength of this approach is that the local conformations of the (iCy3)2 dimer probes that we determined can be used to infer information about the structures of the DNA framework immediately surrounding the probes at various positions within the constructs, both deep in the duplex DNA sequences and at sites at or near the DNA fork junctions where protein complexes bind to discharge their biological functions.
Collapse
Affiliation(s)
- Dylan Heussman
- Center for Optical, Molecular and Quantum Science, Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, and University of Oregon, Eugene, OR 97403, USA
| | - Lulu Enkhbaatar
- Center for Optical, Molecular and Quantum Science, Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, and University of Oregon, Eugene, OR 97403, USA
| | - Mohammed I Sorour
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - Kurt A Kistler
- Department of Chemistry, Brandywine Campus, The Pennsylvania State University, Media, PA 19063, USA
| | - Peter H von Hippel
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, and University of Oregon, Eugene, OR 97403, USA
| | | | - Andrew H Marcus
- Center for Optical, Molecular and Quantum Science, Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, and University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
2
|
Rolczynski BS, Díaz SA, Goldman ER, Medintz IL, Melinger JS. Investigating the dissipation of heat and quantum information from DNA-scaffolded chromophore networks. J Chem Phys 2024; 160:034105. [PMID: 38230810 DOI: 10.1063/5.0181034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024] Open
Abstract
Scaffolded molecular networks are important building blocks in biological pigment-protein complexes, and DNA nanotechnology allows analogous systems to be designed and synthesized. System-environment interactions in these systems are responsible for important processes, such as the dissipation of heat and quantum information. This study investigates the role of nanoscale molecular parameters in tuning these vibronic system-environment dynamics. Here, genetic algorithm methods are used to obtain nanoscale parameters for a DNA-scaffolded chromophore network based on comparisons between its calculated and measured optical spectra. These parameters include the positions, orientations, and energy level characteristics within the network. This information is then used to compute the dynamics, including the vibronic population dynamics and system-environment heat currents, using the hierarchical equations of motion. The dissipation of quantum information is identified by the system's transient change in entropy, which is proportional to the heat currents according to the second law of thermodynamics. These results indicate that the dissipation of quantum information is highly dependent on the particular nanoscale characteristics of the molecular network, which is a necessary first step before gleaning the systematic optimization rules. Subsequently, the I-concurrence dynamics are calculated to understand the evolution of the vibronic system's quantum entanglement, which are found to be long-lived compared to these system-bath dissipation processes.
Collapse
Affiliation(s)
- Brian S Rolczynski
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, USA
| | - Ellen R Goldman
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, USA
| |
Collapse
|
3
|
Qi L, Tian Y, Li N, Mao M, Fang X, Han D. Engineering Circular Aptamer Assemblies with Tunable Selectivity to Cell Membrane Antigens In Vitro and In Vivo. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12822-12830. [PMID: 36856721 DOI: 10.1021/acsami.2c22820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The strategy of enhancing molecular recognition by improving the binding affinity of drug molecules against targets has generated a lot of successful therapeutic applications. However, one critical consequence of such affinity improvement, generally called "on-target, off-tumor" toxicity, emerged as a major obstacle limiting their clinical usage. Herein, we provide a modular assembly strategy that affords affinity-tunable DNA nanostructures allowing for immobilizing multiple aptamers that bind to the example antigen of EpCAM with different affinities. We develop a theoretical model proving that the apparent affinity of aptamer assemblies to target cells varies with antigen density as well as aptamer valency. More importantly, we demonstrate experimentally that the theoretical model can be used to predict the least valency required for discrimination between EpCAMhigh and EpCAMlow cells in vitro and in vivo. We believe that our strategy will have broad applications in an engineering nucleic acid-based delivery platform for targeted and cell therapy.
Collapse
Affiliation(s)
- Liqing Qi
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, School of Medicine, Shanghai Jiao Tong University, Renji Hospital, Institute of Molecular Medicine, Shanghai 200127, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yuan Tian
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, School of Medicine, Shanghai Jiao Tong University, Renji Hospital, Institute of Molecular Medicine, Shanghai 200127, China
| | - Na Li
- National Genomics Data Center, China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Menghan Mao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, School of Medicine, Shanghai Jiao Tong University, Renji Hospital, Institute of Molecular Medicine, Shanghai 200127, China
| | - Xiaohong Fang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Da Han
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, School of Medicine, Shanghai Jiao Tong University, Renji Hospital, Institute of Molecular Medicine, Shanghai 200127, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
4
|
Zakutauskaitė K, Mačernis M, Nguyen HH, Ogilvie JP, Abramavičius D. Extracting the excitonic Hamiltonian of a chlorophyll dimer from broadband two-dimensional electronic spectroscopy. J Chem Phys 2023; 158:015103. [PMID: 36610982 DOI: 10.1063/5.0108166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We apply Frenkel exciton theory to model the entire Q-band of a tightly bound chlorophyll dimer inspired by the photosynthetic reaction center of photosystem II. The potential of broadband two-dimensional electronic spectroscopy experiment spanning the Qx and Qy regions to extract the parameters of the model dimer Hamiltonian is examined through theoretical simulations of the experiment. We find that the local nature of Qx excitation enables identification of molecular properties of the delocalized Qy excitons. Specifically, we demonstrate that the cross-peak region, where excitation energy is resonant with Qy while detection is at Qx, contains specific spectral signatures that can reveal the full real-space molecular Hamiltonian, a task that is impossible by considering the Qy transitions alone. System-bath coupling and site energy disorder in realistic systems may limit the resolution of these spectral signatures due to spectral congestion.
Collapse
Affiliation(s)
- Kristina Zakutauskaitė
- Institute of Chemical Physics, Vilnius University, Sauletekio al. 9-III, Vilnius, Lithuania
| | - Mindaugas Mačernis
- Institute of Chemical Physics, Vilnius University, Sauletekio al. 9-III, Vilnius, Lithuania
| | - Hoang H Nguyen
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Darius Abramavičius
- Institute of Chemical Physics, Vilnius University, Sauletekio al. 9-III, Vilnius, Lithuania
| |
Collapse
|
5
|
Mass OA, Basu S, Patten LK, Terpetschnig EA, Krivoshey AI, Tatarets AL, Pensack RD, Yurke B, Knowlton WB, Lee J. Exciton Chirality Inversion in Dye Dimers Templated by DNA Holliday Junction. J Phys Chem Lett 2022; 13:10688-10696. [PMID: 36355575 PMCID: PMC9706552 DOI: 10.1021/acs.jpclett.2c02721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
While only one enantiomer of chiral biomolecules performs a biological function, access to both enantiomers (or enantiomorphs) proved to be advantageous for technology. Using dye covalent attachment to a DNA Holliday junction (HJ), we created two pairs of dimers of bis(chloroindolenine)squaraine dye that enabled strongly coupled molecular excitons of opposite chirality in solution. The exciton chirality inversion was achieved by interchanging single covalent linkers of unequal length tethering the dyes of each dimer to the HJ core. Dimers in each pair exhibited profound exciton-coupled circular dichroism (CD) couplets of opposite signs. Dimer geometries, modeled by simultaneous fitting absorption and CD spectra, were related in each pair as nonsuperimposable and nearly exact mirror images. The origin of observed exciton chirality inversion was explained in the view of isomerization of the stacked Holliday junction. This study will open new opportunities for creating excitonic DNA-based materials that rely on programmable system chirality.
Collapse
Affiliation(s)
- Olga A. Mass
- Micron
School of Materials Science & Engineering, Department of Electrical
& Computer Engineering, and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Shibani Basu
- Micron
School of Materials Science & Engineering, Department of Electrical
& Computer Engineering, and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Lance K. Patten
- Micron
School of Materials Science & Engineering, Department of Electrical
& Computer Engineering, and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Ewald A. Terpetschnig
- SETA
BioMedicals, LLC, 2014
Silver Court East, Urbana, Illinois 61801, United
States
| | - Alexander I. Krivoshey
- SSI
“Institute for Single Crystals” of the National Academy
of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
| | - Anatoliy L. Tatarets
- SSI
“Institute for Single Crystals” of the National Academy
of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
| | - Ryan D. Pensack
- Micron
School of Materials Science & Engineering, Department of Electrical
& Computer Engineering, and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Bernard Yurke
- Micron
School of Materials Science & Engineering, Department of Electrical
& Computer Engineering, and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - William B. Knowlton
- Micron
School of Materials Science & Engineering, Department of Electrical
& Computer Engineering, and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Jeunghoon Lee
- Micron
School of Materials Science & Engineering, Department of Electrical
& Computer Engineering, and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| |
Collapse
|
6
|
Biaggne A, Kim YC, Melinger JS, Knowlton WB, Yurke B, Li L. Molecular dynamics simulations of cyanine dimers attached to DNA Holliday junctions. RSC Adv 2022; 12:28063-28078. [PMID: 36320263 PMCID: PMC9530999 DOI: 10.1039/d2ra05045e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
Dye aggregates and their excitonic properties are of interest for their applications to organic photovoltaics, non-linear optics, and quantum information systems. DNA scaffolding has been shown to be effective at promoting the aggregation of dyes in a controllable manner. Specifically, isolated DNA Holliday junctions have been used to achieve strongly coupled cyanine dye dimers. However, the structural properties of the dimers and the DNA, as well as the role of Holliday junction isomerization are not fully understood. To study the dynamics of cyanine dimers in DNA, molecular dynamics simulations were carried out for adjacent and transverse dimers attached to Holliday junctions in two different isomers. It was found that dyes attached to adjacent strands in the junction exhibit stronger dye-DNA interactions and larger inter-dye separations compared to transversely attached dimers, as well as end-to-end arrangements. Transverse dimers exhibit lower inter-dye separations and more stacked configurations. Furthermore, differences in Holliday junction isomer are analyzed and compared to dye orientations. For transverse dyes exhibiting the smaller inter-dye separations, excitonic couplings were calculated and shown to be in agreement with experiment. Our results suggested that dye attachment locations on DNA Holliday junctions affect dye-DNA interactions, dye dynamics, and resultant dye orientations which can guide the design of DNA-templated cyanine dimers with desired properties. Molecular dynamics simulations reveal dye attachment and DNA Holliday junction isomer effects on dye dimer orientations and excitonic couplings. These simulations can guide synthesis and experiments of dye-DNA structures for excitonic applications.![]()
Collapse
Affiliation(s)
- Austin Biaggne
- Micron School of Materials Science and Engineering, Boise State UniversityBoiseID 83725USA
| | - Young C. Kim
- Materials Science and Technology Division, U.S. Naval Research LaboratoryWashingtonDC20375USA
| | - Joseph. S. Melinger
- Electronics Science and Technology Division, U.S. Naval Research LaboratoryWashingtonDC20375USA
| | - William B. Knowlton
- Micron School of Materials Science and Engineering, Boise State UniversityBoiseID 83725USA,Department of Electrical and Computer Engineering, Boise State UniversityBoiseID 83725USA
| | - Bernard Yurke
- Micron School of Materials Science and Engineering, Boise State UniversityBoiseID 83725USA,Department of Electrical and Computer Engineering, Boise State UniversityBoiseID 83725USA
| | - Lan Li
- Micron School of Materials Science and Engineering, Boise State UniversityBoiseID 83725USA,Center for Advanced Energy StudiesIdaho FallsID 83401USA
| |
Collapse
|
7
|
Basu S, Cervantes-Salguero K, Yurke B, Knowlton WB, Lee J, Mass OA. Photocrosslinking Probes Proximity of Thymine Modifiers Tethering Excitonically Coupled Dye Aggregates to DNA Holliday Junction. Molecules 2022; 27:4006. [PMID: 35807250 PMCID: PMC9268628 DOI: 10.3390/molecules27134006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 12/04/2022] Open
Abstract
A DNA Holliday junction (HJ) has been used as a versatile scaffold to create a variety of covalently templated molecular dye aggregates exhibiting strong excitonic coupling. In these dye-DNA constructs, one way to attach dyes to DNA is to tether them via single long linkers to thymine modifiers incorporated in the core of the HJ. Here, using photoinduced [2 + 2] cycloaddition (photocrosslinking) between thymines, we investigated the relative positions of squaraine-labeled thymine modifiers in the core of the HJ, and whether the proximity of thymine modifiers correlated with the excitonic coupling strength in squaraine dimers. Photocrosslinking between squaraine-labeled thymine modifiers was carried out in two distinct types of configurations: adjacent dimer and transverse dimer. The outcomes of the reactions in terms of relative photocrosslinking yields were evaluated by denaturing polyacrylamide electrophoresis. We found that for photocrosslinking to occur at a high yield, a synergetic combination of three parameters was necessary: adjacent dimer configuration, strong attractive dye-dye interactions that led to excitonic coupling, and an A-T neighboring base pair. The insight into the proximity of dye-labeled thymines in adjacent and transverse configurations correlated with the strength of excitonic coupling in the corresponding dimers. To demonstrate a utility of photocrosslinking, we created a squaraine tetramer templated by a doubly crosslinked HJ with increased thermal stability. These findings provide guidance for the design of HJ-templated dye aggregates exhibiting strong excitonic coupling for exciton-based applications such as organic optoelectronics and quantum computing.
Collapse
Affiliation(s)
- Shibani Basu
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA; (S.B.); (K.C.-S.); (B.Y.); (W.B.K.)
| | - Keitel Cervantes-Salguero
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA; (S.B.); (K.C.-S.); (B.Y.); (W.B.K.)
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA; (S.B.); (K.C.-S.); (B.Y.); (W.B.K.)
- Department of Electrical & Computer Engineering, Boise State University, Boise, ID 83725, USA
| | - William B. Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA; (S.B.); (K.C.-S.); (B.Y.); (W.B.K.)
- Department of Electrical & Computer Engineering, Boise State University, Boise, ID 83725, USA
| | - Jeunghoon Lee
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA; (S.B.); (K.C.-S.); (B.Y.); (W.B.K.)
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA
| | - Olga A. Mass
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA; (S.B.); (K.C.-S.); (B.Y.); (W.B.K.)
| |
Collapse
|
8
|
Higgins JS, Dardia AR, Ndife CJ, Lloyd LT, Bain EM, Engel GS. Leveraging Dynamical Symmetries in Two-Dimensional Electronic Spectra to Extract Population Transfer Pathways. J Phys Chem A 2022; 126:3594-3603. [PMID: 35621698 DOI: 10.1021/acs.jpca.2c01993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We present a method to deterministically isolate population transfer kinetics from two-dimensional electronic spectroscopic signals. Central to this analysis is the characterization of how all possible subensembles of excited state systems evolve through the population time. When these dynamics are diagrammatically mapped by using double-sided Feynman pathways where population time dynamics are included, a useful symmetry emerges between excited state absorption and ground state bleach recovery dynamics of diagonal and below diagonal cross-peak signals. This symmetry allows removal of pathways from the spectra to isolate signals that evolve according to energy transfer kinetics. We describe a regression procedure to fit to energy transfer time constants and characterize the accuracy of the method in a variety of complex excited state systems using simulated two-dimensional spectra. Our results show that the method is robust for extracting ultrafast energy transfer in multistate excitonic systems, systems containing dark states that affect the signal kinetics, and systems with interfering vibrational relaxation pathways. This procedure can be used to accurately extract energy transfer kinetics from a wide variety of condensed phase systems.
Collapse
Affiliation(s)
- Jacob S Higgins
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Anna R Dardia
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Chidera J Ndife
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Lawson T Lloyd
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Elizabeth M Bain
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory S Engel
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
9
|
Zhou X, Lin S, Yan H. Interfacing DNA nanotechnology and biomimetic photonic complexes: advances and prospects in energy and biomedicine. J Nanobiotechnology 2022; 20:257. [PMID: 35658974 PMCID: PMC9164479 DOI: 10.1186/s12951-022-01449-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Self-assembled photonic systems with well-organized spatial arrangement and engineered optical properties can be used as efficient energy materials and as effective biomedical agents. The lessons learned from natural light-harvesting antennas have inspired the design and synthesis of a series of biomimetic photonic complexes, including those containing strongly coupled dye aggregates with dense molecular packing and unique spectroscopic features. These photoactive components provide excellent features that could be coupled to multiple applications including light-harvesting, energy transfer, biosensing, bioimaging, and cancer therapy. Meanwhile, nanoscale DNA assemblies have been employed as programmable and addressable templates to guide the formation of DNA-directed multi-pigment complexes, which can be used to enhance the complexity and precision of artificial photonic systems and show the potential for energy and biomedical applications. This review focuses on the interface of DNA nanotechnology and biomimetic photonic systems. We summarized the recent progress in the design, synthesis, and applications of bioinspired photonic systems, highlighted the advantages of the utilization of DNA nanostructures, and discussed the challenges and opportunities they provide.
Collapse
Affiliation(s)
- Xu Zhou
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Su Lin
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Hao Yan
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA. .,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
10
|
Zhou X, Liu H, Djutanta F, Satyabola D, Jiang S, Qi X, Yu L, Lin S, Hariadi RF, Liu Y, Woodbury NW, Yan H. DNA-templated programmable excitonic wires for micron-scale exciton transport. Chem 2022. [DOI: 10.1016/j.chempr.2022.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Hart SM, Wang X, Guo J, Bathe M, Schlau-Cohen GS. Tuning Optical Absorption and Emission Using Strongly Coupled Dimers in Programmable DNA Scaffolds. J Phys Chem Lett 2022; 13:1863-1871. [PMID: 35175058 DOI: 10.1021/acs.jpclett.1c03848] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Molecular materials for light harvesting, computing, and fluorescence imaging require nanoscale integration of electronically active subunits. Variation in the optical absorption and emission properties of the subunits has primarily been achieved through modifications to the chemical structure, which is often synthetically challenging. Here, we introduce a facile method for varying optical absorption and emission properties by changing the geometry of a strongly coupled Cy3 dimer on a double-crossover (DX) DNA tile. Leveraging the versatility and programmability of DNA, we tune the length of the complementary strand so that it "pushes" or "pulls" the dimer, inducing dramatic changes in the photophysics including lifetime differences observable at the ensemble and single-molecule level. The separable lifetimes, along with environmental sensitivity also observed in the photophysics, suggest that the Cy3-DX tile constructs could serve as fluorescence probes for multiplexed imaging. More generally, these constructs establish a framework for easily controllable photophysics via geometric changes to coupled chromophores, which could be applied in light-harvesting devices and molecular electronics.
Collapse
Affiliation(s)
- Stephanie M Hart
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiao Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jiajia Guo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gabriela S Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Mass OA, Wilson CK, Barcenas G, Terpetschnig EA, Obukhova OM, Kolosova OS, Tatarets AL, Li L, Yurke B, Knowlton WB, Pensack RD, Lee J. Influence of Hydrophobicity on Excitonic Coupling in DNA-Templated Indolenine Squaraine Dye Aggregates. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:3475-3488. [PMID: 35242270 PMCID: PMC8883467 DOI: 10.1021/acs.jpcc.1c08981] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/15/2022] [Indexed: 06/01/2023]
Abstract
Control over the strength of excitonic coupling in molecular dye aggregates is a substantial factor for the development of technologies such as light harvesting, optoelectronics, and quantum computing. According to the molecular exciton model, the strength of excitonic coupling is inversely proportional to the distance between dyes. Covalent DNA templating was proved to be a versatile tool to control dye spacing on a subnanometer scale. To further expand our ability to control photophysical properties of excitons, here, we investigated the influence of dye hydrophobicity on the strength of excitonic coupling in squaraine aggregates covalently templated by DNA Holliday Junction (DNA HJ). Indolenine squaraines were chosen for their excellent spectral properties, stability, and diversity of chemical modifications. Six squaraines of varying hydrophobicity from highly hydrophobic to highly hydrophilic were assembled in two dimer configurations and a tetramer. In general, the examined squaraines demonstrated a propensity toward face-to-face aggregation behavior observed via steady-state absorption, fluorescence, and circular dichroism spectroscopies. Modeling based on the Kühn-Renger-May approach quantified the strength of excitonic coupling in the squaraine aggregates. The strength of excitonic coupling strongly correlated with squaraine hydrophobic region. Dimer aggregates of dichloroindolenine squaraine were found to exhibit the strongest coupling strength of 132 meV (1065 cm-1). In addition, we identified the sites for dye attachment in the DNA HJ that promote the closest spacing between the dyes in their dimers. The extracted aggregate geometries, and the role of electrostatic and steric effects in squaraine aggregation are also discussed. Taken together, these findings provide a deeper insight into how dye structures influence excitonic coupling in dye aggregates covalently templated via DNA, and guidance in design rules for exciton-based materials and devices.
Collapse
Affiliation(s)
- Olga A. Mass
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Christopher K. Wilson
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - German Barcenas
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | | | - Olena M. Obukhova
- State
Scientific Institution “Institute for Single Crystals”
of National Academy of Sciences of Ukraine, Kharkiv 61072, Ukraine
| | - Olga S. Kolosova
- State
Scientific Institution “Institute for Single Crystals”
of National Academy of Sciences of Ukraine, Kharkiv 61072, Ukraine
| | - Anatoliy L. Tatarets
- State
Scientific Institution “Institute for Single Crystals”
of National Academy of Sciences of Ukraine, Kharkiv 61072, Ukraine
| | - Lan Li
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
- Center
for Advanced Energy Studies, Idaho
Falls, Idaho 83401, United States
| | - Bernard Yurke
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
- Department
of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - William B. Knowlton
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
- Department
of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Ryan. D. Pensack
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Jeunghoon Lee
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
- Department
of Chemistry and Biochemistry, Boise State
University, Boise, Idaho 83725, United
States
| |
Collapse
|
13
|
Dietzsch J, Bialas D, Bandorf J, Würthner F, Höbartner C. Tuning Exciton Coupling of Merocyanine Nucleoside Dimers by RNA, DNA and GNA Double Helix Conformations. Angew Chem Int Ed Engl 2022; 61:e202116783. [PMID: 34937127 PMCID: PMC9302137 DOI: 10.1002/anie.202116783] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Indexed: 12/02/2022]
Abstract
Exciton coupling between two or more chromophores in a specific environment is a key mechanism associated with color tuning and modulation of absorption energies. This concept is well exemplified by natural photosynthetic proteins, and can also be achieved in synthetic nucleic acid nanostructures. Here we report the coupling of barbituric acid merocyanine (BAM) nucleoside analogues and show that exciton coupling can be tuned by the double helix conformation. BAM is a nucleobase mimic that was incorporated in the phosphodiester backbone of RNA, DNA and GNA oligonucleotides. Duplexes with different backbone constitutions and geometries afforded different mutual dye arrangements, leading to distinct optical signatures due to competing modes of chromophore organization via electrostatic, dipolar, π-π-stacking and hydrogen-bonding interactions. The realized supramolecular motifs include hydrogen-bonded BAM-adenine base pairs and antiparallel as well as rotationally stacked BAM dimer aggregates with distinct absorption, CD and fluorescence properties.
Collapse
Affiliation(s)
- Julia Dietzsch
- Institute of Organic ChemistryUniversity of WürzburgGermany
| | - David Bialas
- Institute of Organic ChemistryUniversity of WürzburgGermany
- Center for Nanosystems ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| | | | - Frank Würthner
- Institute of Organic ChemistryUniversity of WürzburgGermany
- Center for Nanosystems ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Claudia Höbartner
- Institute of Organic ChemistryUniversity of WürzburgGermany
- Center for Nanosystems ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
14
|
Dietzsch J, Bialas D, Bandorf J, Würthner F, Höbartner C. Tuning Exciton Coupling of Merocyanine Nucleoside Dimers by RNA, DNA and GNA Double Helix Conformations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Julia Dietzsch
- Institute of Organic Chemistry University of Würzburg Germany
| | - David Bialas
- Institute of Organic Chemistry University of Würzburg Germany
- Center for Nanosystems Chemistry University of Würzburg Am Hubland 97074 Würzburg Germany
| | | | - Frank Würthner
- Institute of Organic Chemistry University of Würzburg Germany
- Center for Nanosystems Chemistry University of Würzburg Am Hubland 97074 Würzburg Germany
| | - Claudia Höbartner
- Institute of Organic Chemistry University of Würzburg Germany
- Center for Nanosystems Chemistry University of Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
15
|
Roy S, Mass OA, Kellis DL, Wilson CK, Hall JA, Yurke B, Knowlton WB. Exciton Delocalization and Scaffold Stability in Bridged Nucleotide-Substituted, DNA Duplex-Templated Cyanine Aggregates. J Phys Chem B 2021; 125:13670-13684. [PMID: 34894675 PMCID: PMC8713290 DOI: 10.1021/acs.jpcb.1c07602] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/04/2021] [Indexed: 11/28/2022]
Abstract
Molecular excitons play a foundational role in chromophore aggregates found in light-harvesting systems and offer potential applications in engineered excitonic systems. Controlled aggregation of chromophores to promote exciton delocalization has been achieved by covalently tethering chromophores to deoxyribonucleic acid (DNA) scaffolds. Although many studies have documented changes in the optical properties of chromophores upon aggregation using DNA scaffolds, more limited work has investigated how structural modifications of DNA via bridged nucleotides and chromophore covalent attachment impact scaffold stability as well as the configuration and optical behavior of attached aggregates. Here we investigated the impact of two types of bridged nucleotides, LNA and BNA, as a structural modification of duplex DNA-templated cyanine (Cy5) aggregates. The bridged nucleotides were incorporated in the domain of one to four Cy5 chromophores attached between adjacent bases of a DNA duplex. We found that bridged nucleotides increase the stability of DNA scaffolds carrying Cy5 aggregates in comparison with natural nucleotides in analogous constructs. Exciton coupling strength and delocalization in Cy5 aggregates were evaluated via steady-state absorption, circular dichroism, and theoretical modeling. Replacing natural nucleotides with bridged nucleotides resulted in a noticeable increase in the coupling strength (≥10 meV) between chromophores and increased H-like stacking behavior (i.e., more face-to-face stacking). Our results suggest that bridged nucleotides may be useful for increasing scaffold stability and coupling between DNA templated chromophores.
Collapse
Affiliation(s)
- Simon
K. Roy
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Olga A. Mass
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Donald L. Kellis
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Christopher K. Wilson
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - John A. Hall
- Division
of Research and Economic Development, Boise
State University, Boise, Idaho 83725, United States
| | - Bernard Yurke
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
- Department
of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - William B. Knowlton
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
- Department
of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| |
Collapse
|
16
|
Rolczynski BS, Díaz SA, Kim YC, Medintz IL, Cunningham PD, Melinger JS. Understanding Disorder, Vibronic Structure, and Delocalization in Electronically Coupled Dimers on DNA Duplexes. J Phys Chem A 2021; 125:9632-9644. [PMID: 34709821 DOI: 10.1021/acs.jpca.1c07205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Structural DNA nanotechnology is a promising approach to create chromophore networks with modular structures and Hamiltonians to control the material's functions. The functional behaviors of these systems depend on the interactions of the chromophores' vibronic states, as well as interactions with their environment. To optimize their functions, it is necessary to characterize the chromophore network's structural and energetic properties, including the electronic delocalization in some cases. In this study, parameters of interest are deduced in DNA-scaffolded Cyanine 3 and Cyanine 5 dimers. The methods include steady-state optical measurements, physical modeling, and a genetic algorithm approach. The parameters include the chromophore network's vibronic Hamiltonian, molecular positions, transition dipole orientations, and environmentally induced energy broadening. Additionally, the study uses temperature-dependent optical measurements to characterize the spectral broadening further. These combined results reveal the quantum mechanical delocalization, which is important for functions like coherent energy transport and quantum information applications.
Collapse
Affiliation(s)
- Brian S Rolczynski
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Young C Kim
- Materials Science and Technology Division, Code 6300, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Paul D Cunningham
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Joseph S Melinger
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
17
|
Trapani M, Castriciano MA, Collini E, Bella G, Cordaro M. Supramolecular BODIPY based dimers: synthesis, computational and spectroscopic studies. Org Biomol Chem 2021; 19:8118-8127. [PMID: 34473180 DOI: 10.1039/d1ob01433a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthetic procedures for the preparation of supramolecular BODIPY dimers decorated with complementary patterns able to induce the formation of a triple hydrogen bond through mutual interactions are here reported. The BODIPY and styryl-equipped BODIPY species have been suitably functionalized in meso position with 2,6-diacetamido-4-pyridyl and 1-butyl-6-uracyl moieties. Dimers and monomers have been subjected to computational and photophysical investigations in solvent media. Various peculiarities concerning the effects of the interaction geometry on the stability of the H-bonded systems have also been investigated. The combination of modelling and experimental data provides a paradigm for improving and refining the BODIPY synthetic pathway to have chromophoric architectures with a programmable supramolecular identity. Furthermore, the possibility of assembling dimers of different dyes through H-bonds could be appealing for a systematic investigation of the principal factors affecting the dynamics of the energy migration and possibly driving coherent transfer mechanisms. Our work highlights how the chemical versatility of these dyes can be exploited to design new BODIPY-based supramolecular architectures.
Collapse
Affiliation(s)
- Mariachiara Trapani
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, V.le F. Stagno D'Alcontres 31, 98166, University of Messina, Messina, Italy
| | - Maria Angela Castriciano
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, V.le F. Stagno D'Alcontres 31, 98166, University of Messina, Messina, Italy
| | - Elisabetta Collini
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Giovanni Bella
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, V.le F. Stagno D'Alcontres 31, 98166, University of Messina, Messina, Italy.
| | - Massimiliano Cordaro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, V.le F. Stagno D'Alcontres 31, 98166, University of Messina, Messina, Italy.
| |
Collapse
|
18
|
Huff JS, Turner DB, Mass OA, Patten LK, Wilson CK, Roy SK, Barclay MS, Yurke B, Knowlton WB, Davis PH, Pensack RD. Excited-State Lifetimes of DNA-Templated Cyanine Dimer, Trimer, and Tetramer Aggregates: The Role of Exciton Delocalization, Dye Separation, and DNA Heterogeneity. J Phys Chem B 2021; 125:10240-10259. [PMID: 34473494 PMCID: PMC8450906 DOI: 10.1021/acs.jpcb.1c04517] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
DNA-templated molecular
(dye) aggregates are a novel class of materials
that have garnered attention in a broad range of areas including light
harvesting, sensing, and computing. Using DNA to template dye aggregation
is attractive due to the relative ease with which DNA nanostructures
can be assembled in solution, the diverse array of nanostructures
that can be assembled, and the ability to precisely position dyes
to within a few Angstroms of one another. These factors, combined
with the programmability of DNA, raise the prospect of designer materials
custom tailored for specific applications. Although considerable progress
has been made in characterizing the optical properties and associated
electronic structures of these materials, less is known about their
excited-state dynamics. For example, little is known about how the
excited-state lifetime, a parameter essential to many applications,
is influenced by structural factors, such as the number of dyes within
the aggregate and their spatial arrangement. In this work, we use
a combination of transient absorption spectroscopy and global target
analysis to measure excited-state lifetimes in a series of DNA-templated
cyanine dye aggregates. Specifically, we investigate six distinct
dimer, trimer, and tetramer aggregates—based on the ubiquitous
cyanine dye Cy5—templated using both duplex and Holliday junction
DNA nanostructures. We find that these DNA-templated Cy5 aggregates
all exhibit significantly reduced excited-state lifetimes, some by
more than 2 orders of magnitude, and observe considerable variation
among the lifetimes. We attribute the reduced excited-state lifetimes
to enhanced nonradiative decay and proceed to discuss various structural
factors, including exciton delocalization, dye separation, and DNA
heterogeneity, that may contribute to the observed reduction and variability
of excited-state lifetimes. Guided by insights from structural modeling,
we find that the reduced lifetimes and enhanced nonradiative decay
are most strongly correlated with the distance between the dyes. These
results inform potential tradeoffs between dye separation, excitonic
coupling strength, and excited-state lifetime that motivate deeper
mechanistic understanding, potentially via further dye and dye template
design.
Collapse
Affiliation(s)
- Jonathan S Huff
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Daniel B Turner
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Olga A Mass
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Lance K Patten
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Christopher K Wilson
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Simon K Roy
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Matthew S Barclay
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States.,Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States.,Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Paul H Davis
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| |
Collapse
|
19
|
Le DV, de la Perrelle JM, Do TN, Leng X, Tapping PC, Scholes GD, Kee TW, Tan HS. Characterization of the ultrafast spectral diffusion and vibronic coherence of TIPS-pentacene using 2D electronic spectroscopy. J Chem Phys 2021; 155:014302. [PMID: 34241376 DOI: 10.1063/5.0055528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
TIPS-pentacene is a small-molecule organic semiconductor that is widely used in optoelectronic devices. It has been studied intensely owing to its ability to undergo singlet fission. In this study, we aim to develop further understanding of the coupling between the electronic and nuclear degrees of freedom of TIPS-pentacene (TIPS-Pn). We measured and analyzed the 2D electronic spectra of TIPS-Pn in solutions. Using center line slope (CLS) analysis, we characterized the frequency-fluctuation correlation function of the 0-0 vibronic transition. Strong oscillations in the CLS values were observed for up to 5 ps with a frequency of 264 cm-1, which are attributable to a large vibronic coupling with the TIPS-Pn ring-breathing vibrational mode. In addition, detailed analysis of the CLS values allowed us to retrieve two spectral diffusion lifetimes, which are attributed to the inertial and diffusive dynamics of solvent molecules. Amplitude beating analysis also uncovered couplings with another vibrational mode at 1173 cm-1. The experimental results can be described using the displaced harmonic oscillator model. By comparing the CLS values of the simulated data with the experimental CLS values, we estimated a Huang-Rhys factor of 0.1 for the ring-breathing vibrational mode. The results demonstrated how CLS analysis can be a useful method for characterizing the strength of vibronic coupling.
Collapse
Affiliation(s)
- Duc Viet Le
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | | | - Thanh Nhut Do
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xuan Leng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Patrick C Tapping
- Department of Chemistry, University of Adelaide, Adelaide SA 5005, Australia
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Tak W Kee
- Department of Chemistry, University of Adelaide, Adelaide SA 5005, Australia
| | - Howe-Siang Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
20
|
Collini E. 2D Electronic Spectroscopic Techniques for Quantum Technology Applications. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:13096-13108. [PMID: 34276867 PMCID: PMC8282191 DOI: 10.1021/acs.jpcc.1c02693] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/22/2021] [Indexed: 05/14/2023]
Abstract
2D electronic spectroscopy (2DES) techniques have gained particular interest given their capability of following ultrafast coherent and noncoherent processes in real-time. Although the fame of 2DES is still majorly linked to the investigation of energy and charge transport in biological light-harvesting complexes, 2DES is now starting to be recognized as a particularly valuable tool for studying transport processes in artificial nanomaterials and nanodevices. Particularly meaningful is the possibility of assessing coherent mechanisms active in the transport of excitation energy in these materials toward possible quantum technology applications. The diverse nature of these new target samples poses significant challenges and calls for a critical rethinking of the technique and its different realizations. With the confluence of promising new applications and rapidly developing technical capabilities, the enormous potential of 2DES techniques to impact the field of nanosystems, quantum technologies, and quantum devices is here delineated.
Collapse
Affiliation(s)
- Elisabetta Collini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
21
|
Hart SM, Chen WJ, Banal JL, Bricker WP, Dodin A, Markova L, Vyborna Y, Willard AP, Häner R, Bathe M, Schlau-Cohen GS. Engineering couplings for exciton transport using synthetic DNA scaffolds. Chem 2021. [DOI: 10.1016/j.chempr.2020.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Peralta M, Feijoo S, Varela S, Mujica V, Medina E. Coherence preservation and electron-phonon interaction in electron transfer in DNA. J Chem Phys 2020; 153:165102. [PMID: 33138441 DOI: 10.1063/5.0023775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We analyze the influence of electron-phonon (e-ph) interaction in a model for electron transfer (ET) processes in DNA in terms of the envelope function approach for spinless electrons. We are specifically concerned with the effect of e-ph interaction on the coherence of the ET process and how to model the interaction of DNA with phonon reservoirs of biological relevance. We assume that the electron bearing orbitals are half filled and derive the physics of e-ph coupling in the vicinity in reciprocal space. We find that at half filling, the acoustical modes are decoupled to ET at first order, while optical modes are predominant. The latter are associated with inter-strand vibrational modes in consistency with previous studies involving polaron models of ET. Coupling to acoustic modes depends on electron doping of DNA, while optical modes are always coupled within our model. Our results yield e-ph coupling consistent with estimates in the literature, and we conclude that large polarons are the main result of such e-ph interactions. This scenario will have strong consequences on decoherence of ET under physiological conditions due to relative isolation from thermal equilibration of the ET mechanism.
Collapse
Affiliation(s)
- Mayra Peralta
- Yachay Tech University, School of Physical Sciences and Nanotechnology, 100119 Urcuqui, Ecuador
| | - Steven Feijoo
- Yachay Tech University, School of Physical Sciences and Nanotechnology, 100119 Urcuqui, Ecuador
| | - Solmar Varela
- Yachay Tech University, School of Physical Sciences and Nanotechnology, 100119 Urcuqui, Ecuador
| | - Vladimiro Mujica
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, USA and Ikerbasque Foundation and Donostia International Physics Center (DIPC), Manuel de Lardizabal Pasealekua 4, 20018 Donostia, Euskadi, Spain
| | - Ernesto Medina
- Yachay Tech University, School of Physical Sciences and Nanotechnology, 100119 Urcuqui, Ecuador
| |
Collapse
|
23
|
Lloyd LT, Wood RE, Allodi MA, Sohoni S, Higgins JS, Otto JP, Engel GS. Leveraging scatter in two-dimensional spectroscopy: passive phase drift correction enables a global phasing protocol. OPTICS EXPRESS 2020; 28:32869-32881. [PMID: 33114962 DOI: 10.1364/oe.404601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Phase stability between pulse pairs defining Fourier-transform time delays can limit resolution and complicates development and adoption of multidimensional coherent spectroscopies. We demonstrate a data processing procedure to correct the long-term phase drift of the nonlinear signal during two-dimensional (2D) experiments based on the relative phase between scattered excitation pulses and a global phasing procedure to generate fully absorptive 2D electronic spectra of wafer-scale monolayer MoS2. Our correction results in a ∼30-fold increase in effective long-term signal phase stability, from ∼λ/2 to ∼λ/70 with negligible extra experimental time and no additional optical components. This scatter-based drift correction should be applicable to other interferometric techniques as well, significantly lowering the practical experimental requirements for this class of measurements.
Collapse
|
24
|
Cunningham PD, Díaz SA, Yurke B, Medintz IL, Melinger JS. Delocalized Two-Exciton States in DNA Scaffolded Cyanine Dimers. J Phys Chem B 2020; 124:8042-8049. [PMID: 32706583 DOI: 10.1021/acs.jpcb.0c06732] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The engineering and manipulation of delocalized molecular exciton states is a key component for artificial biomimetic light harvesting complexes as well as alternative circuitry platforms based on exciton propagation. Here we examine the consequences of strong electronic coupling in cyanine homodimers on DNA duplex scaffolds. The most closely spaced dyes, attached to positions directly across the double-helix from one another, exhibit pronounced Davydov splitting due to strong electronic coupling. We demonstrate that the DNA scaffold is sufficiently robust to support observation of the transition from the lowest energy (J-like) one-exciton state to the nonlocal two-exciton state, where each cyanine dye is in the excited state. This transition proceeds via sequential photon absorption and persists for the lifetime of the exciton, establishing this as a controlled method for creating two-exciton states. Our observations suggest that DNA-organized dye networks have potential as platforms for molecular logic gates and entangled photon emission based on delocalized two-exciton states.
Collapse
Affiliation(s)
- Paul D Cunningham
- U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Sebastián A Díaz
- U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Bernard Yurke
- Boise State University, Boise, Idaho 83725, United States
| | - Igor L Medintz
- U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Joseph S Melinger
- U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|