1
|
Das S, Kumar P. Exploring the carbonic anhydrase-mimetic [(PMDTA) 2ZnII2(OH -) 2] 2+ for nitric oxide monooxygenation. Dalton Trans 2024; 53:6173-6177. [PMID: 38501600 DOI: 10.1039/d4dt00407h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
In biology, nitrite (NO2-) serves as a storage pool of nitric oxide (NO); however, the formation of NO2- from NO is still under investigation. Here, we report the NO monooxygenation (NOM) reaction of a ZnII-hydroxide complex (1), producing a ZnII-nitrito complex {2, (ZnII-NO2-)} + H2.
Collapse
Affiliation(s)
- Sandip Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| |
Collapse
|
2
|
C S AK, Das S, Kulbir, Bhardwaj P, Sk MP, Kumar P. Mechanistic insights into nitric oxide oxygenation (NOO) reactions of {CrNO} 5 and {CoNO} 8. Dalton Trans 2023; 52:16492-16499. [PMID: 37874255 DOI: 10.1039/d3dt03177b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Here, we report the nitric oxide oxygenation (NOO) reactions of two distinct metal nitrosyls {Co-nitrosyl (S = 0) vs. Cr-nitrosyl (S = 1/2)}. In this regard, we synthesized and characterized [(BPMEN)Co(NO)]2+ ({CoNO}8, 1) to compare its NOO reaction with that of [(BPMEN)Cr(NO)(Cl-)]+ ({CrNO}5, 2), having a similar ligand framework. Kinetic measurements showed that {CrNO}5 is thermally more stable than {CoNO}8. Complexes 1 and 2, upon reaction with the superoxide anion (O2˙-), generate [(BPMEN)CoII(NO2-)2] (CoII-NO2-, 3) and [(BPMEN)CrIII(NO2-)Cl-]+ (CrIII-NO2-, 4), respectively, with O2 evolution. Furthermore, analysis of these NOO reactions and tracking of the N-atom using 15N-labeled NO (15NO) revealed that the N-atoms of 3 (CoII-15NO2-) and 4 (CrIII-15NO2-) derive from the nitrosyl (15NO) moieties of 1 and 2, respectively. This work represents a comparative study of oxidation reactions of {CoNO}8vs. {CrNO}5, showing different rates of the NOO reactions due to different thermal stability. To complete the NOM cycle, we reacted 3 and 4 with NO, and surprisingly, only 3 generated {CoNO}8 species, while 4 was unreactive towards NO. Furthermore, the phenol ring nitration test, performed using 2,4-di-tert-butylphenol (2,4-DTBP), suggested the presence of a proposed peroxynitrite (PN) intermediate in the NOO reactions of 1 and 2.
Collapse
Affiliation(s)
- Akshaya Keerthi C S
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Sandip Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Kulbir
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Prabhakar Bhardwaj
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Md Palashuddin Sk
- Department of Chemistry, Aligarh Muslim University (AMU) Aligarh, Uttar Pradesh 202001, India
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| |
Collapse
|
3
|
He Q, Pu MP, Jiang Z, Wang H, Feng X, Liu X. Asymmetric Epoxidation of Alkenes Catalyzed by a Cobalt Complex. J Am Chem Soc 2023. [PMID: 37406347 DOI: 10.1021/jacs.3c05476] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Asymmetric epoxidation of alkenes catalyzed by nonheme chiral Mn-O and Fe-O catalysts has been well established, but chiral Co-O catalysts for the purpose remain virtually undeveloped due to the oxo wall. Herein is first reported a chiral cobalt complex to realize the enantioselective epoxidation of cyclic and acyclic trisubstituted alkenes by using PhIO as the oxidant in acetone, wherein the tetra-oxygen-based chiral N,N'-dioxide with sterically hindered amide subunits plays a crucial role in supporting the formation of the Co-O intermediate and enantioselective electrophilic oxygen transfer. Mechanistic studies, including HRMS measurements, UV-vis absorption spectroscopy, magnetic susceptibility, as well as DFT calculations, were carried out, confirming the formation of Co-O species as a quartet Co(III)-oxyl tautomer. The mechanism and the origin of enantioselectivity were also elucidated based on control experiments, nonlinear effects, kinetic studies, and DFT calculations.
Collapse
Affiliation(s)
- Qianwen He
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Mao-Ping Pu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zheng Jiang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hongyu Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
4
|
Keerthi C S A, Beegam S, Das S, Bhardwaj P, Ansari M, Singh K, Kumar P. Nitric Oxide Oxygenation Reactions of Cobalt-Peroxo and Cobalt-Nitrosyl Complexes. Inorg Chem 2023; 62:7385-7392. [PMID: 37126425 DOI: 10.1021/acs.inorgchem.3c00639] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Here, we report a comparative study of nitric oxide oxidation (NOO) reactions of CoIII-peroxo (CoIII-O22-) and Co-nitrosyl ({CoNO}8) complexes bearing the same N4-donor ligand (HMTETA) framework. In this regard, we prepared and characterized two new [(HMTETA)CoIII(O22-)]+ (2, S = 2) and [(HMTETA)Co(NO)]2+ (3, S = 1) complexes from [(HMTETA)CoII(CH3CN)2]2+ (1). Both complexes (2 and 3) are characterized by different spectroscopic measurements, including their DFT-optimized structures. Complex 2 produces CoII-nitrato [(HMTETA)CoII(NO3-)]+ (CoII-NO3-, 4) complex in the presence of NO. In contrast, when 3 reacted with a superoxide (O2•-) anion, it generated CoII-nitrito [(HMTETA)CoII(NO2-)]+ (CoII-NO2-, 5) with O2 evolution. Experiments performed using 18/16O-labeled superoxide (18O2•-/16O2•-) showed that O2 originated from the O2•- anion. Both the NOO reactions are believed to proceed via a presumed peroxynitrite (PN) intermediate. Although we did not get direct spectral evidence for the proposed PN species, the mechanistic investigation using 2,4-di-tert-butylphenol indirectly suggests the formation of a PN intermediate. Furthermore, tracking the source of the N-atom in the above NOO reactions using 15N-labeled nitrogen (15NO) revealed N-atoms in 4 (CoII-15NO3-) and 5 (CoII-15NO2-) derived from the 15NO moiety.
Collapse
Affiliation(s)
- Akshaya Keerthi C S
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| | - Sulthana Beegam
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| | - Sandip Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| | - Prabhakar Bhardwaj
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| | - Mursaleem Ansari
- Department of Chemistry, Indian Institute of Technology (IIT), Bombay 400076, India
| | - Kuldeep Singh
- Department of Applied Chemistry, Amity University, Gwalior 474005, India
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| |
Collapse
|
5
|
Kulbir, Das S, Devi T, Ghosh S, Chandra Sahoo S, Kumar P. Acid-induced nitrite reduction of nonheme iron(ii)-nitrite: mimicking biological Fe-NiR reactions. Chem Sci 2023; 14:2935-2942. [PMID: 36937601 PMCID: PMC10016336 DOI: 10.1039/d2sc06704h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Nitrite reductase (NiR) catalyzes nitrite (NO2 -) to nitric oxide (NO) transformation in the presence of an acid (H+ ions/pH) and serves as a critical step in NO biosynthesis. In addition to the NiR enzyme, NO synthases (NOSs) participate in NO production. The chemistry involved in the catalytic reduction of NO2 -, in the presence of H+, generates NO with a H2O molecule utilizing two H+ + one electron from cytochromes and is believed to be affected by the pH. Here, to understand the effect of H+ ions on NO2 - reduction, we report the acid-induced NO2 - reduction chemistry of a nonheme FeII-nitrito complex, [(12TMC)FeII(NO2 -)]+ (FeII-NO2 -, 2), with variable amounts of H+. FeII-NO2 - upon reaction with one-equiv. of acid (H+) generates [(12TMC)Fe(NO)]2+, {FeNO}7 (3) with H2O2 rather than H2O. However, the amount of H2O2 decreases with increasing equivalents of H+ and entirely disappears when H+ reaches ≅ two-equiv. and shows H2O formation. Furthermore, we have spectroscopically characterized and followed the formation of H2O2 (H+ = one-equiv.) and H2O (H+ ≅ two-equiv.) and explained why bio-driven NiR reactions end with NO and H2O. Mechanistic investigations, using 15N-labeled-15NO2 - and 2H-labeled-CF3SO3D (D+ source), revealed that the N atom in the {Fe14/15NO}7 is derived from the NO2 - ligand and the H atom in H2O or H2O2 is derived from the H+ source, respectively.
Collapse
Affiliation(s)
- Kulbir
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Sandip Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Tarali Devi
- Humboldt-Universität zu Berlin, Institut für Chemie Brook-Taylor-Straße 2 D-12489 Berlin Germany
| | - Somnath Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | | | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| |
Collapse
|
6
|
Gupta S, Vijayan S, Bertke JA, Kundu S. NO Generation from the Cross-Talks between Ene-diol Antioxidants and Nitrite at Metal Sites. Inorg Chem 2022; 61:8477-8483. [PMID: 35612531 DOI: 10.1021/acs.inorgchem.2c00364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The one-electron reduction of nitrite (NO2-) to nitric oxide (NO) and ene-diol oxidation are two important biochemical transformations. Employing mononuclear cobalt-nitrite complexes with CoIII and CoII oxidation states, [(Bz3Tren)CoIII(nitrite)2](ClO4) (1) and [(Bz3Tren)CoII(nitrite)](ClO4) (2), this report illustrates NO release coupled to stepwise oxidation of ene-diol antioxidants such as l-ascorbic acid (AH2) and catechol. Analysis of the AH2 end-product reveals that the reaction with complex 1 affords dehydroascorbic acid. Intriguingly, a controlled oxidation of AH2 with complex 2 results in a [CoII]-bound ascorbyl radical-anion (8). Finally, NO release with the concomitant generation of metal-bound 3,5-di-tert-butyl-semiquinone radical anion from the reactions of 3,5-di-tert-butyl-catechol and [(Bz3Tren)MII(nitrite)](ClO4) (2, M = Co; 4, M = Zn) provides mechanistic insights into the cross-talk between nitrite and ene-diols at the metal sites.
Collapse
Affiliation(s)
- Shourya Gupta
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram 695551, India
| | - Swathy Vijayan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram 695551, India
| | - Jeffery A Bertke
- Department of Chemistry, Georgetown University, Box 571227-1227, Washington, District of Columbia 20057, United States
| | - Subrata Kundu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram 695551, India
| |
Collapse
|
7
|
Das S, Ray S, Devi T, Ghosh S, Harmalkar SS, Dhuri SN, Mondal P, Kumar P. Why Intermolecular Nitric Oxide (NO) Transfer? Exploring the Factors and Mechanistic Aspects of NO Transfer Reaction. Chem Sci 2022; 13:1706-1714. [PMID: 35282634 PMCID: PMC8827119 DOI: 10.1039/d1sc06803b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022] Open
Abstract
Small molecule activation & their transfer reactions in biological or catalytic reactions are greatly influenced by the metal-centers and the ligand frameworks. Here, we report the metal-directed nitric oxide (NO)...
Collapse
Affiliation(s)
- Sandip Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Soumyadip Ray
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Tarali Devi
- Humboldt-Universität zu Berlin, Institut für Chemie Brook-Taylor-Straße 2 D-12489 Berlin Germany
| | - Somnath Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | | | - Sunder N Dhuri
- School of Chemical Sciences, Goa University Goa-403206 India
| | - Padmabati Mondal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| |
Collapse
|
8
|
Kulbir, Das S, Devi T, Goswami M, Yenuganti M, Bhardwaj P, Ghosh S, Chandra Sahoo S, Kumar P. Oxygen atom transfer promoted nitrate to nitric oxide transformation: a step-wise reduction of nitrate → nitrite → nitric oxide. Chem Sci 2021; 12:10605-10612. [PMID: 35003574 PMCID: PMC8666158 DOI: 10.1039/d1sc00803j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/01/2021] [Indexed: 12/22/2022] Open
Abstract
Nitrate reductases (NRs) are molybdoenzymes that reduce nitrate (NO3−) to nitrite (NO2−) in both mammals and plants. In mammals, the salival microbes take part in the generation of the NO2− from NO3−, which further produces nitric oxide (NO) either in acid-induced NO2− reduction or in the presence of nitrite reductases (NiRs). Here, we report a new approach of VCl3 (V3+ ion source) induced step-wise reduction of NO3− in a CoII-nitrato complex, [(12-TMC)CoII(NO3−)]+ (2,{CoII–NO3−}), to a CoIII–nitrosyl complex, [(12-TMC)CoIII(NO)]2+ (4,{CoNO}8), bearing an N-tetramethylated cyclam (TMC) ligand. The VCl3 inspired reduction of NO3− to NO is believed to occur in two consecutive oxygen atom transfer (OAT) reactions, i.e., OAT-1 = NO3− → NO2− (r1) and OAT-2 = NO2− → NO (r2). In these OAT reactions, VCl3 functions as an O-atom abstracting species, and the reaction of 2 with VCl3 produces a CoIII-nitrosyl ({CoNO}8) with VV-Oxo ({VV
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O}3+) species, via a proposed CoII-nitrito (3, {CoII–NO2−}) intermediate species. Further, in a separate experiment, we explored the reaction of isolated complex 3 with VCl3, which showed the generation of 4 with VV-Oxo, validating our proposed reaction sequences of OAT reactions. We ensured and characterized 3 using VCl3 as a limiting reagent, as the second-order rate constant of OAT-2 (k2/) is found to be ∼1420 times faster than that of the OAT-1 (k2) reaction. Binding constant (Kb) calculations also support our proposition of NO3− to NO transformation in two successive OAT reactions, as Kb(CoII–NO2−) is higher than Kb(CoII–NO3−), hence the reaction moves in the forward direction (OAT-1). However, Kb(CoII–NO2−) is comparable to Kb{CoNO}8, and therefore sequenced the second OAT reaction (OAT-2). Mechanistic investigations of these reactions using 15N-labeled-15NO3− and 15NO2− revealed that the N-atom in the {CoNO}8 is derived from NO3− ligand. This work highlights the first-ever report of VCl3 induced step-wise NO3− reduction (NRs activity) followed by the OAT induced NO2− reduction and then the generation of Co-nitrosyl species {CoNO}8. Single metal-induced reduction of NO3− → {NO2−} → NO via oxygen atom transfer reaction.![]()
Collapse
Affiliation(s)
- Kulbir
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Sandip Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Tarali Devi
- Humboldt-Universität zu Berlin, Institut für Chemie Brook-Taylor-Straße 2 D-12489 Berlin Germany
| | - Mrigaraj Goswami
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Mahesh Yenuganti
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Prabhakar Bhardwaj
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Somnath Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | | | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| |
Collapse
|
9
|
Narulkar DD, Ansari A, Vardhaman AK, Harmalkar SS, Lingamallu G, Dhavale VM, Sankaralingam M, Das S, Kumar P, Dhuri SN. A side-on Mn(III)-peroxo supported by a non-heme pentadentate N 3Py 2 ligand: synthesis, characterization and reactivity studies. Dalton Trans 2021; 50:2824-2831. [PMID: 33533342 DOI: 10.1039/d0dt03706k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A mononuclear manganese(iii)-peroxo complex [MnIII(N3Py2)(O2)]+ (1a) bearing a non-heme N,N'-dimethyl-N-(2-(methyl(pyridin-2-ylmethyl)amino)ethyl)-N'-(pyridin-2-ylmethyl)ethane-1,2-diamine (N3Py2) ligand was synthesized by the reaction of [Mn(N3Py2)(H2O)](ClO4)2 (1) with hydrogen peroxide and triethylamine in CH3CN at 25 °C. The reactivity of 1a in aldehyde deformylation using 2-phenyl propionaldehyde (2-PPA) was studied and the reaction kinetics was monitored by UV-visible spectroscopy. A kinetic isotope effect (KIE) = 1.7 was obtained in the reaction of 1a with 2-PPA and α-[D1]-PPA, suggesting nucleophilic character of 1a. The activation parameters ΔH‡ and ΔS‡ were determined using the Eyring plot while Ea was obtained from the Arrhenius equation by performing the reaction between 288 and 303 K. Hammett constants (σp) of para-substituted benzaldehydes p-X-Ph-CHO (X = Cl, F, H, and Me) were linear with a slope (ρ) = 3.0. Computational study suggested that the side-on structure of 1a is more favored over the end-on structure and facilitates the reactivity of 1a.
Collapse
Affiliation(s)
- Dattaprasad D Narulkar
- School of Chemical Sciences, Goa University, Goa-403206, India. and Department of Chemistry, Dnyanprassarak Mandal's College and Research Centre, Assagao, Goa-403507, India
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India
| | - Anil Kumar Vardhaman
- Polymers & Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, India
| | | | - Giribabu Lingamallu
- Polymers & Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, India
| | - Vishal M Dhavale
- CSIR-Central Electrochemical Research Institute, CSIR Madras Complex, Taramani, Chennai-600 113, India
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Sandip Das
- Indian Institute of Science Education and Research (IISER), Tirupati-517507, India
| | - Pankaj Kumar
- Indian Institute of Science Education and Research (IISER), Tirupati-517507, India
| | - Sunder N Dhuri
- School of Chemical Sciences, Goa University, Goa-403206, India.
| |
Collapse
|
10
|
Yenuganti M, Das S, Kulbir, Ghosh S, Bhardwaj P, Pawar SS, Sahoo SC, Kumar P. Nitric oxide dioxygenation (NOD) reactions of CoIII-peroxo and NiIII-peroxo complexes: NODversusNO activation. Inorg Chem Front 2020. [DOI: 10.1039/d0qi01023e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A comparative study of “nitric oxide dioxygenationversusdioxygen or nitric oxide activation”.
Collapse
Affiliation(s)
- Mahesh Yenuganti
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Tirupati 517507
- India
| | - Sandip Das
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Tirupati 517507
- India
| | - Kulbir
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Tirupati 517507
- India
| | - Somnath Ghosh
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Tirupati 517507
- India
| | - Prabhakar Bhardwaj
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Tirupati 517507
- India
| | - Sonali Shivaji Pawar
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Tirupati 517507
- India
| | | | - Pankaj Kumar
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Tirupati 517507
- India
| |
Collapse
|