1
|
Wang J, Tang M, Gu W, Huang S, Xie LG. Synthesis of Pyrrole via Formal Cycloaddition of Allyl Ketone and Amine under Metal-Free Conditions. J Org Chem 2022; 87:12482-12490. [PMID: 36053128 DOI: 10.1021/acs.joc.2c01565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new metal-free synthesis of pyrrole from allyl ketone and amine has been established. The reaction proceeds via an thiolative activation of the C-C double bond with dimethyl(methylthio)sulfonium trifluoromethanesulfonate, followed by a nucleophilic ring-opening addition of primary amine to the generated episulfonium intermediate, and then an internal condensation and aromatization. This mild procedure provides a novel strategy to the construction of substituted pyrroles through a formal [4 + 1] cycloaddition reaction.
Collapse
Affiliation(s)
- Jinli Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Meizhong Tang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Weijin Gu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lan-Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
2
|
Shi T, Yin G, Wang X, Xiong Y, Peng Y, Li S, Zeng Y, Wang Z. Recent advances in the syntheses of pyrroles. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
3
|
Frye CW, Egger DT, Kounalis E, Pearce AJ, Cheng Y, Tonks IA. α-Diimine synthesis via titanium-mediated multicomponent diimination of alkynes with C-nitrosos. Chem Sci 2022; 13:1469-1477. [PMID: 35222931 PMCID: PMC8809399 DOI: 10.1039/d1sc06111a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/26/2021] [Indexed: 01/04/2023] Open
Abstract
α-Diimines are commonly used as supporting ligands for a variety of transition metal-catalyzed processes, most notably in α-olefin polymerization. They are also precursors to valuable synthetic targets, such as chiral 1,2-diamines. Their synthesis is usually performed through acid-catalyzed condensation of amines with α-diketones. Despite the simplicity of this approach, accessing unsymmetrical α-diimines is challenging. Herein, we report the Ti-mediated intermolecular diimination of alkynes to afford a variety of symmetrical and unsymmetrical α-diimines through the reaction of diazatitanacyclohexadiene intermediates with C-nitrosos. These diazatitanacycles can be readily accessed in situ via the multicomponent coupling of Ti[triple bond, length as m-dash]NR imidos with alkynes and nitriles. The formation of α-diimines is achieved through formal [4 + 2]-cycloaddition of the C-nitroso to the Ti and γ-carbon of the diazatitanacyclohexadiene followed by two subsequent cycloreversion steps to eliminate nitrile and afford the α-diimine and a Ti oxo.
Collapse
Affiliation(s)
- Connor W Frye
- Department of Chemistry, University of Minnesota - Twin Cities 207 Pleasant St SE Minneapolis Minnesota 55455 USA
| | - Dominic T Egger
- Department of Chemistry, University of Minnesota - Twin Cities 207 Pleasant St SE Minneapolis Minnesota 55455 USA
| | - Errikos Kounalis
- Department of Chemistry, University of Minnesota - Twin Cities 207 Pleasant St SE Minneapolis Minnesota 55455 USA
| | - Adam J Pearce
- Department of Chemistry, University of Minnesota - Twin Cities 207 Pleasant St SE Minneapolis Minnesota 55455 USA
| | - Yukun Cheng
- Department of Chemistry, University of Minnesota - Twin Cities 207 Pleasant St SE Minneapolis Minnesota 55455 USA
| | - Ian A Tonks
- Department of Chemistry, University of Minnesota - Twin Cities 207 Pleasant St SE Minneapolis Minnesota 55455 USA
| |
Collapse
|
4
|
Muthumanickam S, Thennila M, Yuvaraj P, Lingam KAP, Selvakumar K. An Efficient Synthesis of Heterogeneous and Hard Bound Ti
IV
‐MCM‐41 Catalyzed Mannich Bases and π‐Conjugated Imines. ChemistrySelect 2021. [DOI: 10.1002/slct.202103547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Muthukumar Thennila
- Department of Physics Sethu Institute of Technology Virudhunagar 626115 . Tamilnadu India
| | - Paneerselvam Yuvaraj
- CSIR-North East Institute of Science & Technology Branch Laboratory Lamphelpat Imphal Manipur 795004 India
| | | | | |
Collapse
|
5
|
Hao H, Schafer LL. Titanium-Catalyzed Hydroamination of an Organometallic Acetylide to Access Copper Enamides. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Han Hao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T1Z1
| | - Laurel L. Schafer
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T1Z1
| |
Collapse
|
6
|
Abstract
Titanium is an attractive metal for catalytic reaction development: it is earth-abundant, inexpensive, and generally nontoxic. However-like most early transition metals-catalytic redox reactions with Ti are difficult because of the stability of the high-valent TiIV state. Understanding the fundamental mechanisms behind Ti redox processes is key for making progress toward potential catalytic applications. This Account details recent progress in Ti-catalyzed (and -mediated) oxidative amination reactions that proceed through formally TiII/TiIV catalytic cycles.This class of reactions is built on our initial discovery of Ti-catalyzed [2 + 2 + 1] pyrrole synthesis from alkynes and azobenzene, where detailed mechanistic studies have revealed important factors that allow for catalytic turnover despite the inherent difficulty of Ti redox. Two important conclusions from mechanistic studies are that (1) low-valent Ti intermediates in catalysis can be stabilized through coordination of π-acceptor substrates or products, where they can act as "redox-noninnocent" ligands through metal-to-ligand π back-donation, and (2) reductive elimination processes with Ti proceed through π-type electrocyclic (or pericyclic) reaction mechanisms rather than direct σ-bond coupling.The key reactive species in Ti-catalyzed oxidative amination reactions are Ti imidos (Ti≡NR), which can be generated from either aryl diazenes (RN═NR) or organic azides (RN3). These Ti imidos can then undergo [2 + 2] cycloadditions with alkynes, resulting in intermediates that can be coupled to an array of other unsaturated functional groups, including alkynes, alkenes, nitriles, and nitrosos. This basic reactivity pattern has been extended into a broad range of catalytic and stoichiometric oxidative multicomponent coupling reactions of alkynes and other reactive small molecules, leading to multicomponent syntheses of various heterocycles and aminated building blocks.For example, catalytic oxidative coupling of Ti imidos with two different alkynes leads to pyrroles, while stoichiometric oxidative coupling with alkynes and nitriles leads to pyrazoles. These heterocycle syntheses often yield substitution patterns that are complementary to those of classical condensation routes and provide access to new electron-rich, highly substituted heteroaromatic scaffolds. Furthermore, catalytic oxidative alkyne carboamination reactions can be accomplished via reaction of Ti imidos with alkynes and alkenes, yielding α,β-unsaturated imine or cyclopropylimine building blocks. New catalytic and stoichiometric oxidative amination methods such as alkyne α-diimination, isocyanide imination, and ring-opening oxidative amination of strained alkenes are continuously emerging as a result of better mechanistic understanding of Ti redox catalysis.Ultimately, these Ti-catalyzed and -mediated oxidative amination methods demonstrate the importance of examining often-overlooked elements like the early transition metals through the lens of modern catalysis: rather than a lack of utility, these elements frequently have undiscovered potential for new transformations with orthogonal or complementary selectivity to their late transition metal counterparts.
Collapse
Affiliation(s)
- Ian A. Tonks
- Department of Chemistry, University of Minnesota—Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Kuramochi A, Komine N, Kiyota S, Hirano M. Ru(0)-Catalyzed Synthesis of Borylated-Conjugated Triene Building Blocks by Cross-Dimerization and Their Use in Cross-Coupling Reactions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ayumi Kuramochi
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Nobuyuki Komine
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Sayori Kiyota
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Masafumi Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
8
|
Huh DN, Cheng Y, Frye CW, Egger DT, Tonks IA. Multicomponent syntheses of 5- and 6-membered aromatic heterocycles using group 4-8 transition metal catalysts. Chem Sci 2021; 12:9574-9590. [PMID: 34349931 PMCID: PMC8293814 DOI: 10.1039/d1sc03037j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
In this Perspective, we discuss recent syntheses of 5- and 6-membered aromatic heterocycles via multicomponent reactions (MCRs) that are catalyzed by group 4-8 transition metals. These MCRs can be categorized based on the substrate components used to generate the cyclized product, as well as on common mechanistic features between the catalyst systems. These particular groupings are intended to highlight mechanistic and strategic similarities between otherwise disparate transition metals and to encourage future work exploring related systems with otherwise-overlooked elements. Importantly, in many cases these early- to mid-transition metal catalysts have been shown to be as effective for heterocycle syntheses as the later (and more commonly implemented) group 9-11 metals.
Collapse
|
9
|
Ye C, Jiao Y, Chiou MF, Li Y, Bao H. Direct synthesis of pentasubstituted pyrroles and hexasubstituted pyrrolines from propargyl sulfonylamides and allenamides. Chem Sci 2021; 12:9162-9167. [PMID: 34276946 PMCID: PMC8261710 DOI: 10.1039/d1sc02090k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/05/2021] [Indexed: 11/21/2022] Open
Abstract
Multisubstituted pyrroles are important fragments that appear in many bioactive small molecule scaffolds. Efficient synthesis of multisubstituted pyrroles with different substituents from easily accessible starting materials is challenging. Herein, we describe a metal-free method for the preparation of pentasubstituted pyrroles and hexasubstituted pyrrolines with different substituents and a free amino group by a base-promoted cascade addition-cyclization of propargylamides or allenamides with trimethylsilyl cyanide. This method would complement previous methods and support expansion of the toolbox for the synthesis of valuable, but previously inaccessible, highly substituted pyrroles and pyrrolines. Mechanistic studies to elucidate the reaction pathway have been conducted.
Collapse
Affiliation(s)
- Changqing Ye
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 People's Republic of China
| | - Yihang Jiao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 People's Republic of China
| | - Mong-Feng Chiou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 People's Republic of China
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 People's Republic of China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| |
Collapse
|