1
|
Zhao L, Yin Y, Xiao S, Qiu Y, Wang S, Dong Y. A dual-mode aptasensor based on rolling circle amplification enriched G-quadruplex for highly sensitive IFN-γ detection. Anal Chim Acta 2024; 1329:343254. [PMID: 39396313 DOI: 10.1016/j.aca.2024.343254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Aptasensors have been extensively utilized in target detection due to their advantages of high sensitivity and fast response. However, the reliability of the detection results of the single-mode aptasensor cannot be verified in time. Developing efficient detection methods with cross-validation capability is beneficial to achieving highly reliable detection. This study aims to design a colorimetric and fluorescent dual-mode aptasensor by skillfully engineering G-quadruplex assembly and rolling circle amplification for highly reliable IFN-γ detection. RESULTS The complexes of anti-IFN-γ aptamers and complement sequences (cDNA) were modified on the magnetic beads. In the presence of IFN-γ, the preferential combination of aptamers with IFN-γ resulted in the release of cDNAs. The cDNAs were collected by magnetic separation and then used as primers to trigger rolling circle amplification reaction to generate enriched G-quadruplexes. The G-quadruplex could be utilized to combine with hemin to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine for colormetric mode or to couple with the fluorogenic dye Thioflavin T for fluorescent mode. The developed dual-mode aptasensor displayed a linear range of 1-10000 pM with a detection limit of 0.406 pM for the colormetric mode and a range of 0.1-10000 pM with a detection limit of 0.037 pM for the fluorescent mode. Further, the designed aptasensor was applied to IFN-γ detection in serum samples and achieved satisfactory recoveries. SIGNIFICANCE This innovative dual-mode detection strategy skillfully leverages the effective target-binding ability of aptamer, dual-function of the G-quadruplex and the signal amplifying ability of rolling circle amplification. This approach not only provides a reliable testing tool for the detection of IFN-γ, but also promotes the development of multimode sensing platforms.
Collapse
Affiliation(s)
- Lianhui Zhao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yingai Yin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuqi Xiao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yinghua Qiu
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, 19102, USA
| | - Sai Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China
| | - Yiyang Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
2
|
Raj G, Ghosh T, D S V, P H, Kumar DB, Prasad J, V B A, S M A, Varghese R. G 4-Hemin-loaded 2D nanosheets for combined and targeted chemo-photodynamic cancer therapy. NANOSCALE 2024; 16:16195-16203. [PMID: 39140185 DOI: 10.1039/d4nr01494d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Synergetic combination therapy is emerging as one of the most promising approaches for cancer treatment. Among the various therapeutic approaches, PDT has received particular attention due to its non-invasive nature. However, the therapeutic performance of PDT is severely affected by tumour hypoxia. Herein, we report a supramolecular strategy for the fabrication of a PDT-active 2D nanosheet loaded with a POD mimicking DNAzyme for the synergetic combination of PDT and CDT for targeted cancer therapy. Assembly of biotin-functionalized BODIPY (1) and cationic β-cyclodextrin (β-CD+) leads to the formation of a 1/β-CD+ nanosheet with positively charged β-CD+ on the surface of the sheet. The cationic face of the 1/β-CD+ sheet was then loaded with a POD-mimicking Hem-loaded G-quadruplex aptamer (Hem/DNA1) via electrostatic interactions (1/β-CD+/Hem/DNA1). Cellular internalization of the 1/β-CD+/Hem/DNA1 nanosheet occurs via a receptor-mediated endocytic pathway, which then undergoes lysosomal escape. Subsequently, Hem/DNA1 on the surface of 1/β-CD+/Hem/DNA1 reacts with endogenous H2O2via the Fenton pathway to produce ˙OH and O2. Moreover, under cellular conditions, Hem inside the 1/β-CD+/Hem/DNA1 nanosheet produces Fe2+, which then undergoes another Fenton reaction to produce ˙OH and O2. The Fe3+ generated after the Fenton reaction is then reduced in situ to Fe2+ by glutathione for the next Fenton cycle. At the same time, photoirradiation of the 1/β-CD+ nanosheet using a 635 nm laser produces 1O2via the PDT pathway by using endogenous O2. The most remarkable feature of the present nanoformulation is the cooperativity in its therapeutic action, wherein O2 produced during the CDT pathway was used by the 1/β-CD+ sheet for improving its PDT efficacy in the hypoxic tumor microenvironment. This work represents a unique combination of CDT and PDT for targeted cancer therapy, wherein the CDT action of the nanoagent enhances the PDT efficacy and we strongly believe that this approach would encourage researchers to design similar combination therapy for advancements in the treatment of cancer.
Collapse
Affiliation(s)
- Gowtham Raj
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | - Tamraparni Ghosh
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | - Vasudev D S
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | - Harsha P
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | - Devu B Kumar
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India
| | - Justin Prasad
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | - Athul V B
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India
| | - Abhimanyu S M
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India
| | - Reji Varghese
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| |
Collapse
|
3
|
Raj G, Vasantha AP, Sreekumar VD, Beena AV, Dommeti VKK, Perozhy H, Jose AT, Khurana S, Varghese R. Bimetallic DNAsome Decorated with G 4-DNA as a Nanozyme for Targeted and Enhanced Chemo/Chemodynamic Cancer Therapy. Adv Healthc Mater 2024; 13:e2400256. [PMID: 38669674 DOI: 10.1002/adhm.202400256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Cancer is indisputably one of the major threats to mankind, and hence the design of new approaches for the improvement of existing therapeutic strategies is always wanted. Herein, the design of a tumor microenvironment-responsive, DNA-based chemodynamic therapy (CDT) nanoagent with dual Fenton reaction centers for targeted cancer therapy is reported. Self-assembly of DNA amphiphile containing copper complex as the hydrophobic Fenton reaction center results in the formation of CDT-active DNAsome with Cu2+-based Fenton catalytic site as the hydrophobic core and hydrophilic ssDNA protrude on the surface. DNA-based surface addressability of the DNAsome is then used for the integration of second Fenton reaction center, which is a peroxidase-mimicking DNAzyme noncovalently loaded with Hemin and Doxorubicin, via DNA hybridization to give a CDT agent having dual Fenton reaction centers. Targeted internalization of the CDT nanoagent and selective generation of •OH inside HeLa cell are also shown. Excellent therapeutic efficiency is observed for the CDT nanoagent both in vitro and in vivo, and the enhanced efficacy is attributed to the combined and synergetic action of CDT and chemotherapy.
Collapse
Affiliation(s)
- Gowtham Raj
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, India
| | - Anu P Vasantha
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, India
| | - Vasudev D Sreekumar
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, India
| | - Athul V Beena
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, India
| | - Viswa Kalyan Kumar Dommeti
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, India
| | - Harsha Perozhy
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, India
| | - Alwin T Jose
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, India
| | - Satish Khurana
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, India
| | - Reji Varghese
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, India
| |
Collapse
|
4
|
Wang M, Liu Z, Liu C, He W, Qin D, You M. DNAzyme-based ultrasensitive immunoassay: Recent advances and emerging trends. Biosens Bioelectron 2024; 251:116122. [PMID: 38382271 DOI: 10.1016/j.bios.2024.116122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Immunoassay, as the most commonly used method for protein detection, is simple to operate and highly specific. Sensitivity improvement is always the thrust of immunoassays, especially for the detection of trace quantities. The emergence of artificial enzyme, i.e., DNAzyme, provides a novel approach to improve the detection sensitivity of immunoassay. Simultaneously, its advantages of simple synthesis and high stability enable low cost, broad applicability and long shelf life for immunoassay. In this review, we summarized the recent advances in DNAzyme-based immunoassay. First, we summarized the existing different DNAzymes based on their catalytic activities. Next, the common signal amplification strategies used for DNAzyme-based immunoassays were reviewed to cater to diverse detection requirements. Following, the wide applications in disease diagnosis, environmental monitoring and food safety were discussed. Finally, the current challenges and perspectives on the future development of DNAzyme-based immunoassays were also provided.
Collapse
Affiliation(s)
- Meng Wang
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Zhe Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Chang Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Wanghong He
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, PR China
| | - Dui Qin
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, PR China.
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
5
|
Wang J, Tang Y, Zheng J, Xie Z, Zhou J, Wu Y. DNAzyme-based and smartphone-assisted colorimetric biosensor for ultrasensitive and highly selective detection of histamine in meats. Food Chem 2024; 435:137526. [PMID: 37742463 DOI: 10.1016/j.foodchem.2023.137526] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
Herein, a colorimetric biosensor for histamine detection in meat is first established based on the enhancement of DNAzyme with peroxidase-mimic activity. Histamine can boost the generation of G-quadruplex sequences, and make them more easily bond with hemin to produce many DNAzyme molecules. In addition, histamine increases the affinity of DNAzyme to the substrate 3,3',5,5'-tetramethylbenzidine (TMB). Therefore, the obtained DNAzyme can catalyze H2O2 and dissolved oxygen to produce many reactive oxygen species (ROS), which cause the TMB molecule to lose two electrons and generate yellow products, exhibiting a clear absorption peak at 450 nm. The colorimetric biosensor has excellent sensitivity, and the detection limit is as low as 38 μg·L-1 for histamine. Moreover, the biosensor has high selectivity and anti-interference ability, and exhibits a good recovery rate in actual meats. The above results show that the strategy has potential for application in the detection of trace histamine in meats.
Collapse
Affiliation(s)
- Junjun Wang
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yue Tang
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd, Yibin 644000, Sichuan Province, China
| | - Zhengmin Xie
- Wuliangye Yibin Co., Ltd, Yibin 644000, Sichuan Province, China
| | - Jianli Zhou
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yuangen Wu
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; College of Life Sciences, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
6
|
Guo L, Chen D, Wang H, Meng X, Yan Y, Zhi S, Dai S, Bi S. Dual-mode optical biosensor based on multi-functional DNA structures for detecting bioactive small molecules. Chem Commun (Camb) 2024; 60:2357-2360. [PMID: 38323451 DOI: 10.1039/d3cc06231g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Semiconducting polymer dots and hemin-functionalized DNA nanoflowers with excellent peroxidase-like activity and high fluorescent brightness are prepared for fluorescent/colorimetric dual-mode sensing of dopamine and glutathione as low as nM and μM, respectively. This biosensor is readily applied to the analysis of complicated biological samples with high selectivity and accuracy, which opens up promising prospects in clinical applications.
Collapse
Affiliation(s)
- Li Guo
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266071, P. R. China.
| | - Dandan Chen
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266071, P. R. China.
| | - Huijie Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266071, P. R. China.
| | - Xinzhu Meng
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266071, P. R. China.
| | - Yongcun Yan
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266071, P. R. China.
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Shuangcheng Zhi
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266071, P. R. China.
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Senquan Dai
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266071, P. R. China.
| | - Sai Bi
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266071, P. R. China.
| |
Collapse
|
7
|
Bardales AC, Mills JR, Kolpashchikov DM. DNA Nanostructures as Catalysts: Double Crossover Tile-Assisted 5' to 5' and 3' to 3' Chemical Ligation of Oligonucleotides. Bioconjug Chem 2024; 35:28-33. [PMID: 38135674 DOI: 10.1021/acs.bioconjchem.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Accessibility of synthetic oligonucleotides and the success of DNA nanotechnology open a possibility to use DNA nanostructures for building sophisticated enzyme-like catalytic centers. Here we used a double DNA crossover (DX) tile nanostructure to enhance the rate, the yield, and the specificity of 5'-5' ligation of two oligonucleotides with arbitrary sequences. The ligation product was isolated via a simple procedure. The same strategy was applied for the synthesis of 3'-3' linked oligonucleotides, thus introducing a synthetic route to DNA and RNA with a switched orientation that is affordable by a low-resource laboratory. To emphasize the utility of the ligation products, we synthesized a circular structure formed from intramolecular complementarity that we named "an impossible DNA wheel" since it cannot be built from regular DNA strands by enzymatic reactions. Therefore, DX-tile nanostructures can open a route to producing useful chemical products that are unattainable via enzymatic synthesis. This is the first example of the use of DNA nanostructures as a catalyst. This study advocates for further exploration of DNA nanotechnology for building enzyme-like reactive systems.
Collapse
Affiliation(s)
- Andrea C Bardales
- Chemistry Department, University of Central Florida, Orlando, Florida 32816, United States
| | - Joseph R Mills
- Chemistry Department, University of Central Florida, Orlando, Florida 32816, United States
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, Orlando, Florida 32816, United States
- National Center for Forensic Science, University of Central Florida, Orlando, Florida 32816, United States
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
8
|
Zhang X, Wang F, Zhi H, Wan P, Feng L. A label-free colorimetric 3D paper-based device for ochratoxin A detection using G-quadruplex/hemin DNAzyme with a smartphone readout. Talanta 2023; 260:124603. [PMID: 37141823 DOI: 10.1016/j.talanta.2023.124603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
The colorimetric sensor usually depends on enzyme-mediated signal amplification to achieve trace analysis of ochratoxin A (OTA) residues in food samples. However, the enzyme labeling and manual addition of reagents steps increased assay time and operation complexity, restricting their application in point-of-care testing (POCT). Herein, we report a label-free colorimetric device integrating a 3D paper-based analytical device and a smartphone as handheld readout for rapid and sensitive detection of OTA. Using vertical-flow design, the paper-based analytical device enables the specific recognition of target and self-assembly of G-quadruplex (G4)/hemin DNAzyme to be performed, then employs DNAzyme for transducing the OTA binding event signal into a colorimetric signal. The design of independent functional units, including biorecognition unit, self-assembly unit and colorimetric units, which can address crowding and disorder of biosensing interfaces and improve the recognition efficiency of aptamer (apta). In addition, we eliminated signal losses and nonuniform coloring by introducing carboxymethyl chitosan (CMCS) to obtain perfectly focused signals on colorimetric unit. On the basis of parameter optimization, the device exhibited a detection range of 0.1-500 ng/mL and a detection limit of 41.9 pg/mL for OTA. Importantly, good results were obtained in spiked real samples, indicating applicability and reliability of developed device.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian, 116600, China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fengya Wang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hui Zhi
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Peng Wan
- Instrumental Analysis Center, Dalian University of Technology, Dalian, 116024, PR China
| | - Liang Feng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.
| |
Collapse
|
9
|
Mei X, Wang Y, Li F, Yang R, Zhao Y, Yang X. Peptide nanotube/hemin composite with enhanced peroxidase activity for the detection of dopamine in food and drug samples. Methods 2022; 208:28-34. [DOI: 10.1016/j.ymeth.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
|
10
|
Chemical transformation and cytotoxicity of iron oxide nanoparticles (IONPs) accumulated in mitochondria. Talanta 2022; 251:123770. [DOI: 10.1016/j.talanta.2022.123770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022]
|
11
|
Cao Y, Li W, Pei R. Exploring the catalytic mechanism of multivalent G-quadruplex/hemin DNAzymes by modulating the position and spatial orientation of connected G-quadruplexes. Anal Chim Acta 2022; 1221:340105. [DOI: 10.1016/j.aca.2022.340105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/06/2022] [Accepted: 06/18/2022] [Indexed: 11/15/2022]
|
12
|
You Y, Liu H, Zhu J, Wang Y, Pu F, Ren J, Qu X. A DNAzyme-augmented bioorthogonal catalysis system for synergistic cancer therapy. Chem Sci 2022; 13:7829-7836. [PMID: 35865897 PMCID: PMC9258401 DOI: 10.1039/d2sc02050e] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
As one of the representative bioorthogonal reactions, the copper-catalyzed click reaction provides a promising approach for in situ prodrug activation in cancer treatment. To solve the issue of inherent toxicity of Cu(i), biocompatible heterogeneous copper nanoparticles (CuNPs) were developed for the Cu-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. However, the unsatisfactory catalytic activity and off-target effect still hindered their application in biological systems. Herein, we constructed a DNAzyme-augmented and targeted bioorthogonal catalyst for synergistic cancer therapy. The system could present specificity to cancer cells and promote the generation of Cu(i) via DNAzyme-induced value state conversion of DNA-templated ultrasmall CuNPs upon exposure to endogenous H2O2, thereby leading to high catalytic activity for in situ drug synthesis. Meanwhile, DNAzyme could produce radical species to damage cancer cells. The synergy of in situ drug synthesis and chemodynamic therapy exhibited excellent anti-cancer effects and minimal side effects. The study offers a simple and novel avenue to develop highly efficient and safe bioorthogonal catalysts for biological applications.
Collapse
Affiliation(s)
- Yawen You
- State Key Laboratory of Rare Earth Resources Utilization, Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Hao Liu
- State Key Laboratory of Rare Earth Resources Utilization, Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Jiawei Zhu
- State Key Laboratory of Rare Earth Resources Utilization, Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Fang Pu
- State Key Laboratory of Rare Earth Resources Utilization, Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resources Utilization, Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resources Utilization, Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| |
Collapse
|
13
|
Chen W, Zhang Y, Di K, Liu C, Xia Y, Ding S, Shen H, Li Z. A Washing-Free and Easy-to-Operate Fluorescent Biosensor for Highly Efficient Detection of Breast Cancer-Derived Exosomes. Front Bioeng Biotechnol 2022; 10:945858. [PMID: 35837545 PMCID: PMC9273779 DOI: 10.3389/fbioe.2022.945858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
Traditional detection methods for protein tumor markers in the early screening of breast cancer are restricted by complicated operation procedures and unstable reproducibility. As one of alternative emerging tumor markers, exosomes play an important role in diagnosing and treating cancers at the early stage due to traceability of their origins and great involvement in occurrence and development of cancers. Herein, a washing-free and efficient fluorescent biosensor has been proposed to realize simple and straightforward analysis of breast cancer cell-derived exosomes based on high affinity aptamers and G quadruplex-hemin (G4-hemin). The whole reaction process can be completed by several simple steps, which realizes washing-free and labor-saving. With simplified operation procedures and high repeatability, the linear detection range for this developed fluorescent biosensing strategy to breast cancer cell-derived exosomes is from 2.5 × 105 to 1.00 × 107 particles/ml, and the limit of detection is down to 0.54 × 105 particles/ml.
Collapse
Affiliation(s)
- Wenqin Chen
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yan Zhang
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Kaili Di
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chang Liu
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yanyan Xia
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- *Correspondence: Shijia Ding, ; Han Shen, ; Zhiyang Li,
| | - Han Shen
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Shijia Ding, ; Han Shen, ; Zhiyang Li,
| | - Zhiyang Li
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Shijia Ding, ; Han Shen, ; Zhiyang Li,
| |
Collapse
|
14
|
Song X, Yang C, Yuan R, Xiang Y. Electrochemical label-free biomolecular logic gates regulated by distinct inputs. Biosens Bioelectron 2022; 202:114000. [DOI: 10.1016/j.bios.2022.114000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
|
15
|
Deng HM, Xiao MJ, Chai YQ, Yuan R, Yuan YL. P3HT-PbS nanocomposites with mimicking enzyme as bi-enhancer for ultrasensitive photocathodic biosensor. Biosens Bioelectron 2022; 197:113806. [PMID: 34808591 DOI: 10.1016/j.bios.2021.113806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/02/2022]
Abstract
Photocathodic biosensor has great capability in anti-interference from reductive substances, however, the low signal intensity of photoactive species with inferior detection sensitivity restricts its wide application. In this work, the P3HT-PbS nanocomposites were synthesized as signal tags, by integrating with target-trigger generated hemin/G-quadruplex nanotail as bi-enhancer to significantly apmplify the photocurrent, an ultrasensitive photocathodic biosensor was proposed for detection of β2-microglobulin (β2-MG). Impressively, P3HT with cathode signal is an attractive polymer consisted of substantial thiophene groups with high absorption coefficient and mobility of photo-generated holes, which could anchor with the PbS dots as sensitizer, providing a high charge mobility and strong photosensitivity. More importantly, target-trigger generated hemin/G-quadruplexes could accept the electron from illuminated photoactive species through the conversion of Fe(III)/Fe(II) in hemin, effectively reducing charge recombination rate as well as accelerating the generation of electron acceptor O2 in the assistant of H2O2. Moreover, hemin/G-quadruplexes inherited the HRP mimicking catalytic capability that further improved the produce of plentiful O2. As a result, PEC cathode signal was significantly enhanced for sensitive analysis of β2-MG protein with a good detection range of 0.1 pg/mL to 100 ng/mL. It would provide a path for establishing PEC platform with excellent anti-interference ability and extend the application of photoelectrochemical (PEC) biosensor in bioanalysis and early disease diagnosis.
Collapse
Affiliation(s)
- Han-Mei Deng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Ming-Jun Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ya-Li Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
16
|
Yang H, Weng B, Liu S, Kang N, Ran J, Deng Z, Wang H, Yang C, Wang F. Acid-improved DNAzyme-based chemiluminescence miRNA assay coupled with enzyme-free concatenated DNA circuit. Biosens Bioelectron 2022; 204:114060. [DOI: 10.1016/j.bios.2022.114060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 02/08/2023]
|
17
|
Cao Y, Li W, Pei R. Manipulating the Assembly of DNA Nanostructures and Their Enzymatic Properties by Incorporating a 5'-5' Polarity of Inversion Site in the G-Tract. ACS Macro Lett 2021; 10:1359-1364. [PMID: 35549016 DOI: 10.1021/acsmacrolett.1c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Supramolecular DNA complexes consisting of both DNA duplexes and tetrameric G-quadruplexes are fabricated successfully by utilizing a single short DNA strand that contains one 5'-5' polarity of inversion site in the middle of G-tract. The resulting DNA supramolecules exhibit significantly high peroxidase activities after interaction with hemin due to the presence of various G-quadruplex-duplex (G4-duplex) interfaces. Significantly, we find that the addition of a C-rich fragment to the designed sequence not only allows the self-assembly of two-dimensional porous DNA nanostructures via the formation of dimeric i-motif structures but also could act as a control element to facilitate the generation of pH-sensitive G4-based DNAzymes. The enhanced catalytic activity obtained from specific sequence modifications as well as the controllable feature of these DNA nanostructures can significantly benefit further applications of DNA functional materials in complex biological systems.
Collapse
Affiliation(s)
- Yanwei Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Wenjing Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
18
|
Yao Y, Xue M, Mao W, Li Y, Zhu A, Chen T, Shen W, Liu C, Chen L, Tang S. Ni/Fe layered double hydroxide nanosheet/G-quadruplex as a new complex DNAzyme with highly enhanced peroxidase-mimic activity. Analyst 2021; 146:6470-6473. [PMID: 34609387 DOI: 10.1039/d1an01405f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel and low-cost DNAzyme, Ni/Fe layered double hydroxide (LDH) nanosheet/G-quadruplex (without hemin) with enhanced peroxidase-mimic activity was designed. The catalytic mechanism was investigated. The detection of Cu(II) in actual serum samples could be realized sensitively via this efficient DNAzyme-based method.
Collapse
Affiliation(s)
- Yao Yao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Mingliang Xue
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Wei Mao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Yana Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Anni Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Tianyu Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Lizhuang Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| |
Collapse
|
19
|
Kosman J, Juskowiak B. Thrombin-Binding Aptamer with Inversion of Polarity Sites (IPS): Effect on DNAzyme Activity and Anticoagulant Properties. Int J Mol Sci 2021; 22:ijms22157902. [PMID: 34360665 PMCID: PMC8347255 DOI: 10.3390/ijms22157902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 01/26/2023] Open
Abstract
In this work we examined the properties of thrombin-binding aptamer (TBA) modified by the introduction of inversion of polarity sites (IPS) in order to assess the effect of modification on the activation of TBA to serve as DNAzyme with peroxidase-like activity. Two oligonucleotides were designed to possess one (IPS1) or three (IPS2) inversion sites. TBA typically forms antiparallel G-quadruplexes with two G-tetrads, which exhibits very low DNAzyme peroxidise activity. DNAzyme activity is generally attributed to parallel G-quadruplexes. Hence, inversion of polarity was introduced in the TBA molecule to force the change of G-quadruplex topology. All oligonucleotides were characterized using circular dichroism and UV-Vis melting profiles. Next, the activity of the DNAzymes formed by studied oligonucleotides and hemin was investigated. The enhancement of peroxidase activity was observed when inversion of polarity was introduced. DNAzyme based on IPS2 showed the highest peroxidase activity in the presence of K+ or NH4+ ions. This proves that inversion of polarity can be used to convert a low-activity DNAzyme into a DNAzyme with high activity. Since TBA is known for its anticoagulant properties, the relevant experiments with IPS1 and IPS2 oligonucleotides were performed. Both IPS1 and IPS2 retain some anticoagulant activity in comparison to TBA in the reaction with fibrinogen. Additionally, the introduction of inversion of polarity makes these oligonucleotides more resistant to nucleases.
Collapse
|
20
|
Tang Y, Huang X, Wang X, Wang C, Tao H, Wu Y. G-quadruplex DNAzyme as peroxidase mimetic in a colorimetric biosensor for ultrasensitive and selective detection of trace tetracyclines in foods. Food Chem 2021; 366:130560. [PMID: 34284183 DOI: 10.1016/j.foodchem.2021.130560] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/27/2021] [Accepted: 06/28/2021] [Indexed: 01/03/2023]
Abstract
The colorimetric method can determine the initial results even by the naked eyes, but its main challenge for antibiotics detection in food at present is the relatively low sensitivity. Herein, an ultrasensitive colorimetric biosensor based on G-quadruplex DNAzyme was firstly proposed for the rapid detection of trace tetracycline antibiotics like tetracycline, oxytetracycline, chlortetracycline and doxycycline. DNAzyme composed of hemin and G-quadruplex has peroxidase-like activity, and tetracyclines can combine with hemin to form a stable complex and reduce catalytic activity, making the color of solution changes from yellow to green. The limits of detection (LOD) of the proposed colorimetric biosensor for tetracyclines is determined as low as 3.1 nM, which is lower than most of the other colorimetric methods for antibiotics detection. Moreover, the average recovery range of tetracyclines in actual samples is from 89% to 99%, indicating that such strategy may has bright application prospects for tetracyclines detection in foods.
Collapse
Affiliation(s)
- Yue Tang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xiaohuan Huang
- Comprehensive Technology Center of Guiyang Customs District, Qianlingshan Road 268, Guanshanhu District, Guiyang 550081, China
| | - Xueli Wang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China
| | - Chunxiao Wang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China
| | - Han Tao
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yuangen Wu
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China..
| |
Collapse
|
21
|
Stadlbauer P, Islam B, Otyepka M, Chen J, Monchaud D, Zhou J, Mergny JL, Šponer J. Insights into G-Quadruplex-Hemin Dynamics Using Atomistic Simulations: Implications for Reactivity and Folding. J Chem Theory Comput 2021; 17:1883-1899. [PMID: 33533244 DOI: 10.1021/acs.jctc.0c01176] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Guanine quadruplex nucleic acids (G4s) are involved in key biological processes such as replication or transcription. Beyond their biological relevance, G4s find applications as biotechnological tools since they readily bind hemin and enhance its peroxidase activity, creating a G4-DNAzyme. The biocatalytic properties of G4-DNAzymes have been thoroughly studied and used for biosensing purposes. Despite hundreds of applications and massive experimental efforts, the atomistic details of the reaction mechanism remain unclear. To help select between the different hypotheses currently under investigation, we use extended explicit-solvent molecular dynamics (MD) simulations to scrutinize the G4/hemin interaction. We find that besides the dominant conformation in which hemin is stacked atop the external G-quartets, hemin can also transiently bind to the loops and be brought to the external G-quartets through diverse delivery mechanisms. The simulations do not support the catalytic mechanism relying on a wobbling guanine. Similarly, the catalytic role of the iron-bound water molecule is not in line with our results; however, given the simulation limitations, this observation should be considered with some caution. The simulations rather suggest tentative mechanisms in which the external G-quartet itself could be responsible for the unique H2O2-promoted biocatalytic properties of the G4/hemin complexes. Once stacked atop a terminal G-quartet, hemin rotates about its vertical axis while readily sampling shifted geometries where the iron transiently contacts oxygen atoms of the adjacent G-quartet. This dynamics is not apparent from the ensemble-averaged structure. We also visualize transient interactions between the stacked hemin and the G4 loops. Finally, we investigated interactions between hemin and on-pathway folding intermediates of the parallel-stranded G4 fold. The simulations suggest that hemin drives the folding of parallel-stranded G4s from slip-stranded intermediates, acting as a G4 chaperone. Limitations of the MD technique are briefly discussed.
Collapse
Affiliation(s)
- Petr Stadlbauer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Barira Islam
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 8, 779 00 Olomouc, Czech Republic
| | - Jielin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - David Monchaud
- Institut de Chimie Moléculaire (ICMUB), CNRS UMR6302, UBFC, Dijon 21078, France
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China.,Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|