1
|
Jeong HC, Lee HJ, Maruoka K. Chemoselective Cleavage and Transamidation of Tertiary p-Methoxybenzyl Amides under Metal-Free Photoredox Catalysis. Org Lett 2024. [PMID: 39431889 DOI: 10.1021/acs.orglett.4c03485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
A metal-free and mild cleavage of tertiary p-methoxybenzyl amides (PMB tert-amide) under photoredox conditions is developed using Mes-Acr-Ph+BF4- and Selectfluor to activate the electron-rich benzylic C-H bond of the PMB moiety. The resulting acyl fluoride intermediate is versatile and facilitates a one-pot transamidation of the PMB tert-amide. The value of this protocol is highlighted by performing the chemoselective activation of the PMB tert-amide in bifunctional molecules containing more reactive functionalities than the amide.
Collapse
Affiliation(s)
- Hee-Chan Jeong
- School of Advanced Science and Technology, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Hyo-Jun Lee
- School of Advanced Science and Technology, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Tu JL, Huang B. Titanium in photocatalytic organic transformations: current applications and future developments. Org Biomol Chem 2024; 22:6650-6664. [PMID: 39118484 DOI: 10.1039/d4ob01152j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Titanium, as an important transition metal, has garnered extensive attention in both industry and academia due to its excellent mechanical properties, corrosion resistance, and unique reactivity in organic synthesis. In the field of organic photocatalysis, titanium-based compounds such as titanium dioxide (TiO2), titanocenes (Cp2TiCl2, CpTiCl3), titanium tetrachloride (TiCl4), tetrakis(isopropoxy)titanium (Ti(OiPr)4), and chiral titanium complexes have demonstrated distinct reactivity and selectivity. This review focuses on the roles of these titanium compounds in photocatalytic organic reactions, and highlights the reaction pathways such as photo-induced single-electron transfer (SET) and ligand-to-metal charge transfer (LMCT). By systematically surveying the latest advancements in titanium-involved organic photocatalysis, this review aims to provide references for further research and technological innovation within this fast-developing field.
Collapse
Affiliation(s)
- Jia-Lin Tu
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519085, China.
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Binbin Huang
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519085, China.
| |
Collapse
|
3
|
Zubkov MO, Dilman AD. Radical reactions enabled by polyfluoroaryl fragments: photocatalysis and beyond. Chem Soc Rev 2024; 53:4741-4785. [PMID: 38536104 DOI: 10.1039/d3cs00889d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Polyfluoroarenes have been known for a long time, but they are most often used as fluorinated building blocks for the synthesis of aromatic compounds. At the same time, due to peculiar fluorine effect, they have unique properties that provide applications in various fields ranging from synthesis to materials science. This review summarizes advances in the radical chemistry of polyfluoroarenes, which have become possible mainly with the advent of photocatalysis. Transformations of the fluorinated ring via the C-F bond activation, as well as use of fluoroaryl fragments as activating groups and hydrogen atom transfer agents are discussed. The ability of fluoroarenes to serve as catalysts is also considred.
Collapse
Affiliation(s)
- Mikhail O Zubkov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| |
Collapse
|
4
|
Herbstritt D, Tomar P, Müller R, Kaupp M, Braun T. A 2,2-Difluoroimidazolidine Derivative for Deoxyfluorination Reactions: Mechanistic Insights by Experimental and Computational Studies. Chemistry 2023; 29:e202301556. [PMID: 37341145 DOI: 10.1002/chem.202301556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
A N-heterocyclic deoxyfluorinating agent SIMesF2 was synthesized by nucleophilic fluorination of N,N-1,3-dimesityl-2-chloroimidazolidinium chloride (3) at room temperature. SIMesF2 was applied to deoxyfluorinate carboxylic acids and alcohols and convert benzaldehyde into difluorotoluene. Mechanistic studies by NMR spectroscopy suggest reaction pathways of the carboxylic acid to acyl fluoride via outer-sphere fluorinations at an imidazolidinium ion by polyfluoride. DFT studies give further insight by exploring mechanistic details which distinguish the fluorination of aldehydes from that of carboxylic acids. Furthermore, a consecutive reaction sequence for the oxidation of an aldehyde followed by in situ fluorination of the generated carboxylic acid was developed.
Collapse
Affiliation(s)
- Domenique Herbstritt
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Pooja Tomar
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Robert Müller
- Institut für Chemie, Technische Universität Berlin, Theoretische Chemie/Quantenchemie, Sekr.C7, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Martin Kaupp
- Institut für Chemie, Technische Universität Berlin, Theoretische Chemie/Quantenchemie, Sekr.C7, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Thomas Braun
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
5
|
Yang C, Arora S, Maldonado S, Pratt DA, Stephenson CRJ. The design of PINO-like hydrogen-atom-transfer catalysts. Nat Rev Chem 2023; 7:653-666. [PMID: 37464019 DOI: 10.1038/s41570-023-00511-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 07/20/2023]
Abstract
Phthalimide-N-oxyl (PINO) is a valuable hydrogen-atom-transfer (HAT) catalyst for selective C-H functionalization. To advance and optimize PINO-catalysed HAT reactions, researchers have been focused on modifying the phthalimide core structure. Despite much effort and some notable advances, the modifications to date have centred on optimization of a single parameter of the catalyst, such as reactivity, solubility or stability. Unfortunately, the optimization with respect to one parameter is often associated with a worsening of the others. The derivation of a single catalyst structure with optimal performance across multiple parameters has therefore remained elusive. Here we present an analysis of the structure-activity relationships of PINO and its derivatives as HAT catalysts, which we hope will stimulate further development of PINO-catalysed HAT reactions and, ultimately, lead to much improved catalysts for real-world applications.
Collapse
Affiliation(s)
- Cheng Yang
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Sahil Arora
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Stephen Maldonado
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
- Program in Applied Physics, University of Michigan, Ann Arbor, MI, USA.
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada.
| | - Corey R J Stephenson
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Zhao M, Chen M, Wang T, Yang S, Peng Q, Tang P. Fluorocarbonylation via palladium/phosphine synergistic catalysis. Nat Commun 2023; 14:4583. [PMID: 37524725 PMCID: PMC10390470 DOI: 10.1038/s41467-023-40180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
Despite the growing importance of fluorinated organic compounds in pharmaceuticals, agrochemicals, and materials science, the introduction of fluorine into organic molecules is still a challenge, and no catalytic fluorocarbonylation of aryl/alkyl boron compounds has been reported to date. Herein, we present the development of palladium and phosphine synergistic redox catalysis of fluorocarbonylation of potassium aryl/alkyl trifluoroborate. Trifluoromethyl arylsulfonate (TFMS), which was used as a trifluoromethoxylation reagent, an easily handled and bench-scale reagent, has been employed as an efficient source of COF2. The reaction operates under mild conditions with good to excellent yields and tolerates diverse complex scaffolds, which allows efficient late-stage fluorocarbonylation of marked small-molecule drugs. Mechanistically, the key intermediates of labile Brettphos-Pd(II)-OCF3 complex and difluoro-Brettphos were synthesized and spectroscopically characterized, including X-ray crystallography. A detailed reaction mechanism involving the synergistic redox catalytic cycles Pd(II)/(0) and P(III)/(V) was proposed, and multifunction of phosphine ligand was identified based on 19F NMR, isotope tracing, synthetic, and computational studies.
Collapse
Affiliation(s)
- Mingxin Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| | - Miao Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| | - Tian Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| | - Shuhan Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| | - Qian Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China.
| | - Pingping Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China.
| |
Collapse
|
7
|
Zou Z, Chang W, Zhang W, Ni S, Pan Y, Liang Y, Pan D, Wang Y. CuCF3 Mediated Deoxyfluorination of Redox-active Esters. J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
8
|
5,8-Di-tert-butyl-2-hydroxy-1H-benzo[de]isoquinoline-1,3(2H)-dione—A New Lipophilic N-oxyl Radical Precursor. MOLBANK 2023. [DOI: 10.3390/m1543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
N-hydroxyimides are widely known as organocatalysts for aerobic oxidation and oxidative coupling reactions, in which corresponding imide-N-oxyl radicals play the role of catalytically active hydrogen atom abstracting species. The drawbacks of many N-hydroxyimides are poor solubility in low polarity solvents and limited activity in the cleavage of unactivated C–H bonds. To overcome these shortcomings, we have synthesized a new lipophilic N-hydroxyimide, 5,8-di-tert-butyl-2-hydroxy-1H-benzo[de]isoquinoline-1,3(2H)-dione, with high solubility in low-polarity solvents such as DCM. According to the EPR study, the stability of the corresponding imide-N-oxyl radical is comparable to that of the non-tert-butylated analogue, naphthalimide-N-oxyl radical. DFT calculations showed that the NO–H bond dissociation enthalpy (BDE) in the synthesized tert-butylated-N-hydroxynaphthalimide is one of the highest in N-hydroxyimide series, which corresponds to high hydrogen atom abstracting reactivity and may be useful in catalysis of strong C–H bond oxidative cleavage. The synthesized compound can be considered as catalyst for liquid-phase free-radical oxidation and oxidative coupling reactions in non-polar media where solubility was previously the limiting factor.
Collapse
|
9
|
Lopat’eva ER, Krylov IB, Lapshin DA, Terent’ev AO. Redox-active molecules as organocatalysts for selective oxidative transformations - an unperceived organocatalysis field. Beilstein J Org Chem 2022; 18:1672-1695. [PMID: 36570566 PMCID: PMC9749543 DOI: 10.3762/bjoc.18.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Organocatalysis is widely recognized as a key synthetic methodology in organic chemistry. It allows chemists to avoid the use of precious and (or) toxic metals by taking advantage of the catalytic activity of small and synthetically available molecules. Today, the term organocatalysis is mainly associated with redox-neutral asymmetric catalysis of C-C bond-forming processes, such as aldol reactions, Michael reactions, cycloaddition reactions, etc. Organophotoredox catalysis has emerged recently as another important catalysis type which has gained much attention and has been quite well-reviewed. At the same time, there are a significant number of other processes, especially oxidative, catalyzed by redox-active organic molecules in the ground state (without light excitation). Unfortunately, many of such processes are not associated in the literature with the organocatalysis field and thus many achievements are not fully consolidated and systematized. The present article is aimed at overviewing the current state-of-art and perspectives of oxidative organocatalysis by redox-active molecules with the emphasis on challenging chemo-, regio- and stereoselective CH-functionalization processes. The catalytic systems based on N-oxyl radicals, amines, thiols, oxaziridines, ketone/peroxide, quinones, and iodine(I/III) compounds are the most developed catalyst types which are covered here.
Collapse
Affiliation(s)
- Elena R Lopat’eva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Dmitry A Lapshin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Alexander O Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
10
|
Lee HJ, Choi ES, Maruoka K. Development of a catalytic ester activation protocol for the efficient formation of amide bonds using an Ar‐I/HF•pyridine/mCPBA system. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hyo-Jun Lee
- Kunsan National University Department of Chemistry KOREA, REPUBLIC OF
| | - Eun-Sol Choi
- Kunsan National University Department of Chemistry KOREA, REPUBLIC OF
| | - Keiji Maruoka
- Kyoto University Graduate School of Pharmaceutical Sciences Sakyo 606-8501 Kyoto JAPAN
| |
Collapse
|
11
|
Wu ZX, Hu GW, Luan YX. Development of N-Hydroxy Catalysts for C–H Functionalization via Hydrogen Atom Transfer: Challenges and Opportunities. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhi-Xian Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Guan-Wen Hu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Xin Luan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Liu XH, Yu HY, Huang JY, Su JH, Xue C, Zhou XT, He YR, He Q, Xu DJ, Xiong C, Ji HB. Biomimetic catalytic aerobic oxidation of C-sp(3)-H bonds under mild conditions using galactose oxidase model compound Cu IIL. Chem Sci 2022; 13:9560-9568. [PMID: 36091900 PMCID: PMC9400635 DOI: 10.1039/d2sc02606f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Developing highly efficient catalytic protocols for C-sp(3)-H bond aerobic oxidation under mild conditions is a long-desired goal of chemists. Inspired by nature, a biomimetic approach for the aerobic oxidation of C-sp(3)-H by galactose oxidase model compound CuIIL and NHPI (N-hydroxyphthalimide) was developed. The CuIIL-NHPI system exhibited excellent performance in the oxidation of C-sp(3)-H bonds to ketones, especially for light alkanes. The biomimetic catalytic protocol had a broad substrate scope. Mechanistic studies revealed that the CuI-radical intermediate species generated from the intramolecular redox process of CuIILH2 was critical for O2 activation. Kinetic experiments showed that the activation of NHPI was the rate-determining step. Furthermore, activation of NHPI in the CuIIL-NHPI system was demonstrated by time-resolved EPR results. The persistent PINO (phthalimide-N-oxyl) radical mechanism for the aerobic oxidation of C-sp(3)-H bond was demonstrated.
Collapse
Affiliation(s)
- Xiao-Hui Liu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Hai-Yang Yu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Jia-Ying Huang
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Ji-Hu Su
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China Hefei 230026 China
| | - Can Xue
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Xian-Tai Zhou
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Yao-Rong He
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Qian He
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - De-Jing Xu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Chao Xiong
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Hong-Bing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
13
|
Visible-light induced transition-metal and photosensitizer-free conversion of aldehydes to acyl fluorides under mild conditions. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
14
|
|
15
|
|
16
|
Chen H, Wang L, Xu S, Liu X, He Q, Song L, Ji H. Selective Functionalization of Hydrocarbons Using a ppm Bioinspired Molecular Tweezer via Proton-Coupled Electron Transfer. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hongyu Chen
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Lingling Wang
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Sheng Xu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Xiaohui Liu
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Qian He
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055 China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Hongbing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
17
|
Matsumoto A, Wang Z, Maruoka K. Radical-Mediated Activation of Esters with a Copper/Selectfluor System: Synthesis of Bulky Amides and Peptides. J Org Chem 2021; 86:5401-5411. [PMID: 33720721 DOI: 10.1021/acs.joc.1c00188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we describe a new approach for the activation of esters via a radical-mediated process enabled by a copper/Selectfluor system. A variety of para-methoxybenzyl esters derived from bulky carboxylic acids and amino acids can be easily converted into the corresponding acyl fluorides, directly used in the one-pot synthesis of amides and peptides. As a proof of concept, this method was applied to the iterative formation of sterically hindered amide bonds.
Collapse
Affiliation(s)
- Akira Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Zhe Wang
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.,School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
18
|
Nakatsuji Y, Kobayashi Y, Masuda S, Takemoto Y. Azolium/Hydroquinone Organo-Radical Co-Catalysis: Aerobic C-C-Bond Cleavage in Ketones. Chemistry 2021; 27:2633-2637. [PMID: 33258523 DOI: 10.1002/chem.202004943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/30/2020] [Indexed: 01/25/2023]
Abstract
Organo-radical catalysts have recently attracted great interest, and the development of this field can be expected to broaden the applications of organocatalysis. Herein, the first example of a radical-generating system is reported that does not require any photoirradiation, radical initiators, or preactivated substrates. The oxidative C-C-bond cleavage of 2-substituted cyclohexanones was achieved using an azolium salt and a hydroquinone as co-catalysts. A catalytic mechanism was proposed based on the results of diffusion-ordered spectroscopy and cyclic voltammetry measurements, as well as computational studies.
Collapse
Affiliation(s)
- Yuya Nakatsuji
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yusuke Kobayashi
- Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, 1 Misasagishichono-cho, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Sakyo Masuda
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
19
|
Le B, Wu H, Hu X, Zhou X, Guo Y, Chen QY, Liu C. Rapid synthesis of acyl fluorides from carboxylic acids with Cu(O2CCF2SO2F)2. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Matsumoto A, Lee HJ, Maruoka K. Development of New Radical-mediated Selective Reactions Promoted by Hypervalent Iodine(III) Reagents. CHEM REC 2020; 21:1342-1357. [PMID: 33210803 DOI: 10.1002/tcr.202000132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 11/09/2022]
Abstract
In this account, we describe our recent developments on the four-types of hypervalent iodine(III)-mediated radical reactions in organic synthesis. Firstly, the activation of aldehydic C-H bonds can be successfully effected with hypervalent iodine(III) reagents, thereby allowing the synthesis of various ketones with high efficiency. Secondly, the site-selective oxidation of unactivated C(sp3 )-H bonds of hydrocarbon substrates was realized with designer hypervalent iodine(III) reagents. Thirdly, various perfluoroalkyl and α-aminoalkyl radicals can be generated from sodium perfluoroalkanesulfinates and sodium α-aminoalkanesulfinates, respectively, under the influence of hypervalent iodine(III) reagents. Finally, the efficient generation of difluoromethyl radical from hypervalent difluoroacetoxyliodine(III) reagent was realized by photolysis. These four different strategies are illustrated by using various selective radical approaches.
Collapse
Affiliation(s)
- Akira Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo, Kyoto, 606-8501, Japan
| | - Hyo-Jun Lee
- Department of Chemistry, Kunsan National University, Gunsan, 54150, Republic of Korea
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo, Kyoto, 606-8501, Japan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|