1
|
Tian Z, Wang W, Dong C, Deng X, Wang GH. A General and Scalable Approach to Sulfur-Doped Mono-/Bi-/Trimetallic Nanoparticles Confined in Mesoporous Carbon. ACS NANO 2023; 17:3889-3900. [PMID: 36790029 DOI: 10.1021/acsnano.2c12168] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metal nanoparticles confined in porous carbon materials have been widely used in various heterogeneous catalytic processes due to their enhanced activity and stability. However, fabrication of such catalysts in a facile and scalable way remains challenging. Herein, we report a general and scalable thiol-assisted strategy to synthesize sulfur-doped mono-/bi-/trimetallic nanoparticles confined in mesoporous carbon (S-M@MC, M = Pt, Pd, Rh, Co, Zn, etc.), involving only two synthetic steps, i.e., a hydrothermal process and pyrolysis. The strategy is based on coordination chemistry and hydro-phobic interaction that the metal precursors coordinated with the hydrophobic thiol ligands are located at the hydrophobic core of micelles, in situ confined in the hydrothermally prepared mesostructured polymer, and then converted into sulfur-doped metal nanoparticles confined in MC after pyrolysis. It is demonstrated that the S-PtCo@MC exhibits enhanced catalytic activity and improved durability toward acidic hydrogen evolution reaction due to the confinement effect and S-doping.
Collapse
Affiliation(s)
- Zhengbin Tian
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Wenquan Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Dong
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xiaohui Deng
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Guang-Hui Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Nishitoba T, Matsumoto K, Ishizaka Y, Arai N, Takeuchi K, Fukaya N, Fujitani T, Endo A, Yasuda H, Sato K, Choi JC. Controlled Growth of Platinum Nanoparticles on Amorphous Silica from Grafted Pt-Disilicate Complexes. ACS OMEGA 2022; 7:47120-47128. [PMID: 36570269 PMCID: PMC9773926 DOI: 10.1021/acsomega.2c06262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Supported platinum nanoparticles are currently the most functional catalysts applied in commercial chemical processes. Although investigations have been performed to improve the dispersion and thermal stability of Pt particles, it is challenging to apply amorphous silica supports to these systems owing to various Pt species derived from the non-uniform surface structure of the amorphous support. Herein, we report the synthesis and characterization of amorphous silica-supported Pt nanoparticles from (cod)Pt-disilicate complex (cod = 1,5-cyclooctadiene), which forms bis-grafted surface Pt species regardless of surface heterogeneity. The synthesized Pt nanoparticles were highly dispersible and had higher hydrogenation activity than those prepared by the impregnation method, irrespective of the calcination and reduction temperatures. The high catalytic activity of the catalyst prepared at low temperatures (such as 150 °C) was attributed to the formation of Pt nanoparticles triggered by the reduction of cod ligands under H2 conditions, whereas that of the catalyst prepared at high temperatures (up to 450 °C) was due to the modification of the SiO2 surface by grafting of the (cod)Pt-disilicate complex.
Collapse
Affiliation(s)
- Toshiki Nishitoba
- National
Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kazuhiro Matsumoto
- National
Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yusuke Ishizaka
- National
Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Graduate
School of Pure and Applied Sciences, University
of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Natsumi Arai
- Graduate
School of Science and Engineering, Ibaraki
University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Katsuhiko Takeuchi
- National
Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Norihisa Fukaya
- National
Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Tadahiro Fujitani
- National
Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Akira Endo
- National
Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Hiroyuki Yasuda
- National
Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kazuhiko Sato
- National
Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Jun-Chul Choi
- National
Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Graduate
School of Pure and Applied Sciences, University
of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
3
|
Platinum clusters anchored on sulfur-doped ordered mesoporous carbon for chemoselective hydrogenation of halogenated nitroarenes. J Colloid Interface Sci 2022; 625:640-650. [PMID: 35764044 DOI: 10.1016/j.jcis.2022.06.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/29/2022] [Accepted: 06/11/2022] [Indexed: 11/20/2022]
Abstract
Chemoselective hydrogenation of unsaturated organic compounds is a significant research topic in the catalysis field. Herein, a sulfur-doped ordered mesoporous carbon (SMC) material was prepared to anchor ultrafine platinum (Pt) clusters for the chemoselective hydrogenation of halogenated nitroarenes. The confinement effect of the ordered pores and the strong metal-support interaction caused by Pt clusters and sulfur atoms, efficiently suppress the aggregation and regulate the electronic states of the ultrafine Pt clusters. Thus, the hydrogenation of parachloronitrobenzene (p-CNB) shows high selectivity catalyzed by the ultrafine Pt clusters with electron-rich states. Meanwhile, the catalytic performance of the hydrogenation reaction catalyzed by Pt/SMC is capable of being maintained after at least 5 cycles, and the catalytic universality can also be applied to different halogenated nitroarenes hydrogenation. Therefore, this study may promote the research into the construction of noble metal-based catalysts for chemoselective hydrogenation reactions in green and sustainable chemical processes.
Collapse
|
4
|
Chen Z, Zeng X, Wang S, Cheng A, Zhang Y. Advanced Carbon-Based Nanocatalysts and their Application in Catalytic Conversion of Renewable Platform Molecules. CHEMSUSCHEM 2022; 15:e202200411. [PMID: 35366059 DOI: 10.1002/cssc.202200411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/30/2022] [Indexed: 06/14/2023]
Abstract
The transformation of renewable platform molecules to produce value-added fuels and fine-chemicals is a promising strategy to sustainably meet future demands. Owing to their finely modified electronic and geometric properties, carbon-based nanocatalysts have shown great capability to regulate their catalytic activity and stability. Their well-defined and uniform structures also provide both the opportunity to explore intrinsic reaction mechanisms and the site-requirement for valorization of renewable platform molecules to advanced fuels and chemicals. This Review highlights the progress achieved in carbon-based nanocatalysts, mainly by using effective regulation approaches such as heteroatom anchoring, bimetallic synergistic effects, and carbon encapsulation to enhance catalyst performance and stability, and their applications in renewable platform molecule transformations. The foundation for understanding the structure-performance relationship of carbon-based catalysts has been established by investigating the effect of these regulation methods on catalyst performance. Finally, the opportunities, challenges and potential applications of carbon-based nanocatalysts are discussed.
Collapse
Affiliation(s)
- Zemin Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiang Zeng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shenyu Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Aohua Cheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ying Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
5
|
Zuo LJ, Xu SL, Wang A, Yin P, Zhao S, Liang HW. High-Temperature Synthesis of Carbon-Supported Bimetallic Nanocluster Catalysts by Enlarging the Interparticle Distance. Inorg Chem 2022; 61:2719-2723. [PMID: 35108014 DOI: 10.1021/acs.inorgchem.1c03965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Supported bimetallic nanoparticle catalysts with small size have attracted wide research attention in catalysis but are difficult to synthesize because high-temperature annealing required for alloying inevitably accelerates metal sintering and leads to larger particles. Here, we report a simple and scalable "critical interparticle distance" method for the synthesis of a family of bimetallic nanocluster catalysts with an average particle size of only 1.5 nm by using large-surface-area carbon black supports at high temperatures, which consist of 12 diverse combinations of 3 noble metals (Pt, Ru, and Rh) and 4 other metals (Cr, Fe, Zr, and Sn). In this strategy, high-temperature treatments ensure the formation of alloyed bimetallic nanoparticles and enlargement of the interparticle distance on high-surface-area supports significantly suppresses metal sintering. The prepared ultrafine Pt2Sn and RuSn nanocluster catalysts exhibited enhanced performance in catalyzing the synthesis of aromatic secondary amines and the selective hydrogenation of furfural, respectively.
Collapse
Affiliation(s)
- Lu-Jie Zuo
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shi-Long Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ao Wang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Peng Yin
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shuai Zhao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hai-Wei Liang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Sun K, Shi Y, Li H, Shan J, Sun C, Wu ZY, Ji Y, Wang Z. Efficient CO 2 Electroreduction via Au-Complex Derived Carbon Nanotube Supported Au Nanoclusters. CHEMSUSCHEM 2021; 14:4929-4935. [PMID: 34559951 DOI: 10.1002/cssc.202101972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The production of value-added chemicals from CO2 electroreduction, using renewable energy, provides an appealing route to achieve the goal of carbon neutrality. Challenges remain in designing and understanding of high-performance catalysts with restructuring behavior under electrochemical conditions. Here, the intrinsic performance enhancement of an Au-complex derived carbon nanotube-supported Au nanoclusters catalyst was demonstrated for CO2 reduction. This catalyst exhibited impressive activity for yielding CO in both H-cell and flow cell reactors. Experimental results revealed that the synthesis procedure via metal complex reconstructing on proper support induced charge transfer between Au nanoclusters and carbon nanotubes, forming a rather electron-rich state for Au active sites, which greatly contributed to the CO2 activation pathway.
Collapse
Affiliation(s)
- Kun Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China
| | - Yaoxuan Shi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China
| | - Huiyi Li
- School of Energy Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China
| | - Jingjing Shan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China
| | - Chengyue Sun
- Space Environment Simulation Research Infrastructure, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China
| | - Zhen-Yu Wu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhijiang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China
| |
Collapse
|
7
|
Abstract
A novel reusable Fe3O4@NC@Pt heterogeneous catalyst was synthesized by immobilizing platinum on nitrogen-doped carbon magnetic nanostructures. It was characterized by infrared analysis (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM). The catalytic efficiency of Fe3O4@NC@Pt was investigated by reduction of nitro aromatic compounds. The catalyst showed good catalytic activity, wide range of substrates, and good chemical selectivity, especially for the substrates of compounds containing halide and carbonyl groups. The magnetically catalyst can readily be reused up to ten cycles without loss of catalytic activity. Moreover, the key pharmaceutical intermediate Lorlatini can be facilely achieved through this strategy.
Collapse
|
8
|
How to Make a Cocktail of Palladium Catalysts with Cola and Alcohol: Heteroatom Doping vs. Nanoscale Morphology of Carbon Supports. NANOMATERIALS 2021; 11:nano11102599. [PMID: 34685039 PMCID: PMC8537531 DOI: 10.3390/nano11102599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022]
Abstract
Sparkling drinks such as cola can be considered an affordable and inexpensive starting material consisting of carbohydrates and sulfur- and nitrogen-containing organic substances in phosphoric acid, which makes them an excellent precursor for the production of heteroatom-doped carbon materials. In this study, heteroatom-doped carbon materials were successfully prepared in a quick and simple manner using direct carbonization of regular cola and diet cola. The low content of carbon in diet cola allowed reaching a higher level of phosphorus in the prepared carbon material, as well as obtaining additional doping with nitrogen and sulfur due to the presence of sweeteners and caffeine. Effects of carbon support doping with phosphorus, nitrogen and sulfur, as well as of changes in textural properties by ball milling, on the catalytic activity of palladium catalysts were investigated in the Suzuki–Miyaura and Mizoroki–Heck reactions. Contributions of the heteroatom doping and specific surface area of the carbon supports to the increased activity of supported catalysts were discussed. Additionally, the possibility of these reactions to proceed in 40% potable ethanol was studied. Moreover, transformation of various palladium particles (complexes and nanoparticles) in the reaction medium was detected by mass spectrometry and transmission electron microscopy, which evidenced the formation of a cocktail of catalysts in a commercial 40% ethanol/water solution.
Collapse
|
9
|
Gao F, Zhang Y, Wu Z, You H, Du Y. Universal strategies to multi-dimensional noble-metal-based catalysts for electrocatalysis. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213825] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Song W, Yi X, Jiang X, Lai W. Mo 2C Promoted Pd Nanoparticles on Hierarchical Porous Carbon for Enhanced Selective Hydrogenation of Nitroarenes. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenjing Song
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430073, P. R. China
| | - Xiaodong Yi
- National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xingmao Jiang
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430073, P. R. China
| | - Weikun Lai
- National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|