1
|
Yan JL, Hu L, Lu Y, Yu JQ. Catalyst-Controlled Chemoselective γ-C(sp 3)-H Lactonization of Carboxylic Acid: Methyl versus Methylene. J Am Chem Soc 2024; 146:29311-29314. [PMID: 39412381 DOI: 10.1021/jacs.4c12907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Despite recent advances in ligand-enabled C(sp3)-H functionalization of native substrates, controlling chemoselectivity in the presence of methyl and methylene C(sp3)-H bonds remains a significant challenge. Herein, we report the first example of the Pd(II)-catalyzed chemoselective lactonization of γ-methyl and methylene C(sp3)-H bonds of carboxylic acids. Exclusive chemoselectivity of methyl or methylene γ-lactonization was achieved by using two different classes of Quinoline-Pyridone ligands. The bidentate ligand coordinating with Pd(II) via five-membered chelation favors γ-methyl C-H lactonization, whereas the ligand forming six-membered chelation affords γ-methylene C-H lactonization exclusively. Taking into account our previous findings, we show that the impact of ligand bite angle on chemoselectivity is different for five-membered and six-membered cyclopalladation processes. This method provides simple and versatile access to γ-lactones, including spiro- and fused ring systems. Deuterium incorporation experiments suggest that this observed chemoselectivity arises from both the C-H activation and C-O bond forming steps.
Collapse
Affiliation(s)
- Jie-Lun Yan
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Liang Hu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Yilin Lu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
2
|
Ali W, Oliver GA, Werz DB, Maiti D. Pd-catalyzed regioselective activation of C(sp 2)-H and C(sp 3)-H bonds. Chem Soc Rev 2024; 53:9904-9953. [PMID: 39212454 DOI: 10.1039/d4cs00408f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Differentiating between two highly similar C-H bonds in a given molecule remains a fundamental challenge in synthetic organic chemistry. Directing group assisted strategies for the functionalisation of proximal C-H bonds has been known for the last few decades. However, distal C-H bond functionalisation is strenuous and requires distinctly specialised techniques. In this review, we summarise the advancement in Pd-catalysed distal C(sp2)-H and C(sp3)-H bond activation through various redox manifolds including Pd(0)/Pd(II), Pd(II)/Pd(IV) and Pd(II)/Pd(0). Distal C-H functionalisation, where a Pd-catalyst is directly involved in the C-H activation step, either through assistance of an external directing group or directed by an inherent functionality or functional group incorporated at the site of the Pd-C bond is covered. The purpose of this review is to portray the current state of art in Pd-catalysed distal C(sp2)-H and C(sp3)-H functionalisation reactions, their mechanism and application in the late-stage functionalisation of medicinal compounds along with highlighting its limitations, thus leaving the field open for further synthetic adjustment.
Collapse
Affiliation(s)
- Wajid Ali
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India.
| | - Gwyndaf A Oliver
- Albert-Ludwigs-Universität Freiburg, Institut für Organische Chemie, Albertstraße 21, D-79104 Freiburg, Germany.
| | - Daniel B Werz
- Albert-Ludwigs-Universität Freiburg, Institut für Organische Chemie, Albertstraße 21, D-79104 Freiburg, Germany.
- Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India.
- Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Naskar G, Jeganmohan M. Palladium-Catalyzed Ligand-Enabled Cyclization of Substituted Aliphatic Carboxylic Acids with Allylic Electrophiles. Org Lett 2024; 26:6580-6585. [PMID: 39052895 DOI: 10.1021/acs.orglett.4c02129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A palladium-catalyzed cyclization of the β-C(sp3)-H bond of aliphatic carboxylic acids with allylic electrophiles providing five-membered γ-lactones in good to excellent yields is demonstrated. An acetyl-protected aminoethyl phenyl thioether ligand is used to promote the C-H activation reaction. A diverse range of allylic electrophiles such as allyl alcohols, allyl acetates, allyl sulfones, allyl phosphonate, allyl amine, and allyl ester have been utilized for this reaction. A feasible reaction mechanism has been proposed to account for the present cyclization reaction.
Collapse
Affiliation(s)
- Gouranga Naskar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
4
|
Pal T, Ghosh P, Islam M, Guin S, Maji S, Dutta S, Das J, Ge H, Maiti D. Tandem dehydrogenation-olefination-decarboxylation of cycloalkyl carboxylic acids via multifold C-H activation. Nat Commun 2024; 15:5370. [PMID: 38918374 PMCID: PMC11199700 DOI: 10.1038/s41467-024-49359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
Dehydrogenation chemistry has long been established as a fundamental aspect of organic synthesis, commonly encountered in carbonyl compounds. Transition metal catalysis revolutionized it, with strategies like transfer-dehydrogenation, single electron transfer and C-H activation. These approaches, extended to multiple dehydrogenations, can lead to aromatization. Dehydrogenative transformations of aliphatic carboxylic acids pose challenges, yet engineered ligands and metal catalysis can initiate dehydrogenation via C-H activation, though outcomes vary based on substrate structures. Herein, we have developed a catalytic system enabling cyclohexane carboxylic acids to undergo multifold C-H activation to furnish olefinated arenes, bypassing lactone formation. This showcases unique reactivity in aliphatic carboxylic acids, involving tandem dehydrogenation-olefination-decarboxylation-aromatization sequences, validated by control experiments and key intermediate isolation. For cyclopentane carboxylic acids, reluctant to aromatization, the catalytic system facilitates controlled dehydrogenation, providing difunctionalized cyclopentenes through tandem dehydrogenation-olefination-decarboxylation-allylic acyloxylation sequences. This transformation expands carboxylic acids into diverse molecular entities with wide applications, underscoring its importance.
Collapse
Affiliation(s)
- Tanay Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Premananda Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, India
| | - Minhajul Islam
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, India
| | - Srimanta Guin
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Suman Maji
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Suparna Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Jayabrata Das
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, USA.
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
5
|
Xu X, Wang Y, Yu X, Liu X, Hao L, Ji Y. Palladium-Catalyzed (3 + 2) Annulation of Aromatic Acids by C(sp 3)-H Olefination and Decarboxylative Cross-Coupling Reaction. Org Lett 2024; 26:1338-1342. [PMID: 38334428 DOI: 10.1021/acs.orglett.3c04177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
A palladium-catalyzed (3 + 2) annulation of 2-methylbenzoic acid with maleimide using Ac-Leu-OH as a powerful ligand has been reported. Through a site-selective γ-C(sp3)-H olefination reaction and a sequential decarboxylative cross-coupling reaction, a five-membered cyclic ring was obtained as the final product. This novel reaction features great site selectivity and reactivity to generate various cyclic products in moderate to good yields.
Collapse
Affiliation(s)
- Xiaobo Xu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Yangyang Wang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xiao Yu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xian Liu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Liqiang Hao
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Yafei Ji
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
6
|
Hoque ME, Yu JQ. Ligand-Enabled Double γ-C(sp 3 )-H Functionalization of Aliphatic Acids: One-Step Synthesis of γ-Arylated γ-Lactones. Angew Chem Int Ed Engl 2023; 62:e202312331. [PMID: 37851865 PMCID: PMC11221842 DOI: 10.1002/anie.202312331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
γ-methylene C(sp3 )-H functionalization of linear free carboxylic acids remains a significant challenge. Here in we report a Pd(II)-catalyzed tandem γ-arylation and γ-lactonization of aliphatic acids enabled by a L,X-type CarboxPyridone ligand. A wide range of γ-arylated γ-lactones are synthesized in a single step from aliphatic acids in moderate to good yield. Arylated lactones can readily be converted into disubstituted tetrahydrofurans, a prominent scaffold amongst bioactive molecules.
Collapse
Affiliation(s)
- Md Emdadul Hoque
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, 92037, La Jolla, CA, USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, 92037, La Jolla, CA, USA
| |
Collapse
|
7
|
Das J, Ali W, Ghosh A, Pal T, Mandal A, Teja C, Dutta S, Pothikumar R, Ge H, Zhang X, Maiti D. Access to unsaturated bicyclic lactones by overriding conventional C(sp 3)-H site selectivity. Nat Chem 2023; 15:1626-1635. [PMID: 37563324 PMCID: PMC10624629 DOI: 10.1038/s41557-023-01295-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/17/2023] [Indexed: 08/12/2023]
Abstract
Transition metal catalysis plays a pivotal role in transforming unreactive C-H bonds. However, regioselective activation of distal aliphatic C-H bonds poses a tremendous challenge, particularly in the absence of directing templates. Activation of a methylene C-H bond in the presence of methyl C-H is underexplored. Here we show activation of a methylene C-H bond in the presence of methyl C-H bonds to form unsaturated bicyclic lactones. The protocol allows the reversal of the general selectivity in aliphatic C-H bond activation. Computational studies suggest that reversible C-H activation is followed by β-hydride elimination to generate the Pd-coordinated cycloalkene that undergoes stereoselective C-O cyclization, and subsequent β-hydride elimination to provide bicyclic unsaturated lactones. The broad generality of this reaction has been highlighted via dehydrogenative lactonization of mid to macro ring containing acids along with the C-H olefination reaction with olefin and allyl alcohol. The method substantially simplifies the synthesis of important bicyclic lactones that are important features of natural products as well as pharmacoactive molecules.
Collapse
Affiliation(s)
- Jayabrata Das
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Wajid Ali
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Animesh Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Tanay Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Astam Mandal
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Chitrala Teja
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Suparna Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | | | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| | - Xinglong Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
8
|
Stockhammer L, Radetzky M, Khatoon SS, Bechmann M, Waser M. Chiral Lewis Base-Catalysed Asymmetric Syntheses of Benzo-fused ϵ-Lactones. European J Org Chem 2023; 26:e202300704. [PMID: 38601860 PMCID: PMC11005097 DOI: 10.1002/ejoc.202300704] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/24/2023] [Indexed: 04/12/2024]
Abstract
We herein report a two-step protocol for the asymmetric synthesis of novel chiral benzofused ϵ-lactones starting from O-protected hydroxymethyl-para-quinone methides and activated aryl esters. By using chiral isothiourea Lewis base catalysts a broad variety of differently substituted products could be obtained in yields of around 50 % over both steps with high levels of enantioselectivities, albeit low diastereoselectivities only.
Collapse
Affiliation(s)
- Lotte Stockhammer
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstrasse 694040LinzAustria
| | - Maximilian Radetzky
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstrasse 694040LinzAustria
| | - Syeda Sadia Khatoon
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstrasse 694040LinzAustria
| | - Matthias Bechmann
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstrasse 694040LinzAustria
| | - Mario Waser
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstrasse 694040LinzAustria
| |
Collapse
|
9
|
Dutta A, Jeganmohan M. Palladium-Catalyzed Aerobic Oxidative Spirocyclization of Alkyl Amides with Maleimides via β-C(sp 3)-H Activation. Org Lett 2023; 25:6305-6310. [PMID: 37606577 DOI: 10.1021/acs.orglett.3c02182] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
An efficient method for the synthesis of bicyclic spirodiamine molecules via β-C(sp3)-H bond activation of aliphatic amides, followed by cyclization with maleimides, has been developed. The reaction proceeds through an amide-directed β-C(sp3)-H bond activation of alkyl amides and subsequent cyclization with maleimides. The methodology is highly compatible with a wide variety of maleimides. Amides derived from biologically active aliphatic and fatty acids were also found to be highly compatible with the protocol. A palladacycle was synthesized and found to be the active intermediate in this reaction. A plausible reaction mechanism was also proposed to account for this spirocyclization.
Collapse
Affiliation(s)
- Ananya Dutta
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
10
|
Bhattacharya T, Baroliya PK, Al-Thabaiti SA, Maiti D. Simplifying the Synthesis of Nonproteinogenic Amino Acids via Palladium-Catalyzed δ-Methyl C-H Olefination of Aliphatic Amines and Amino Acids. JACS AU 2023; 3:1975-1983. [PMID: 37502162 PMCID: PMC10369672 DOI: 10.1021/jacsau.3c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/29/2023]
Abstract
Transition metal-catalyzed directing group assisted C-H functionalizations provide a straightforward access to a wide variety of nonproteinogenic amino acids. While altering the side chain of an existing natural amino acids is one way, introducing a functional group to an aliphatic amine to synthesize versatile unnatural amino acids is another exciting avenue. In this work, we explore both the possibilities by the palladium-catalyzed δ-C(sp3)-H olefination of aliphatic amines and amino acids. A diverse substrate scope including sequential difunctionalizations followed by post synthetic transformations were achieved to understand the applicability of the current protocol. An in-depth mechanistic study was carried out to learn the mode of the reaction pathway.
Collapse
Affiliation(s)
- Trisha Bhattacharya
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
| | - Prabhat Kumar Baroliya
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
- Department
of Chemistry, Mohanlal Sukhadia University, Udaipur 313001, India
| | - Shaeel A. Al-Thabaiti
- Department
of Chemistry, Faculty of Science, King Abdulaziz
University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Debabrata Maiti
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
11
|
Fernández-Moyano S, Salamanca V, Albéniz AC. Palladium mono- N-protected amino acid complexes: experimental validation of the ligand cooperation model in C-H activation. Chem Sci 2023; 14:6688-6694. [PMID: 37350841 PMCID: PMC10284104 DOI: 10.1039/d3sc02076b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023] Open
Abstract
Mechanistic proposals for the C-H activation reaction enabled by mono-N-protected amino acid ligands (MPAAs) have been supported by DFT calculations. The direct experimental observation of the ligand-assisted C-H activation has not yet been reported due to the lack of well-defined isolated palladium complexes with MPAAs that can serve as models. In this work, palladium complexes bearing chelating MPAAs (NBu4)[Pd(κ2-N,O-AcN-CHR-COO)(C6F5)py] (Ac = MeC(O); R = H, Me) and [Pd(κ2-N,O-MeNH-CH2-COO)(C6F5)py] have been isolated and characterized. Their evolution in a solution containing toluene leads to the C-H activation of the arene and the formation of the C6F5-C6H4Me coupling products. This process takes place only for the ligands with an acyl protecting group, showing the cooperating role of this group in a complex with a chelating MPAA, therefore experimentally validating this working model. The carboxylate group is inefficient in this C-H activation.
Collapse
Affiliation(s)
| | - Vanesa Salamanca
- IU CINQUIMA/Química Inorgánica, Universidad de Valladolid 47071-Valladolid Spain
| | - Ana C Albéniz
- IU CINQUIMA/Química Inorgánica, Universidad de Valladolid 47071-Valladolid Spain
| |
Collapse
|
12
|
Aravindan N, Jeganmohan M. One-Pot Synthesis of Benzo[ c]phenanthridine Alkaloids from 7-Azabenzonorbornadienes and Aryl Nitrones. Org Lett 2023. [PMID: 37200493 DOI: 10.1021/acs.orglett.3c01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
An efficient synthesis of benzo[c]phenanthridine alkaloids via a synergistic combination of C-C bond formation and a cycloaromatization reaction is described. Aryl nitrones react with 7-azabenzonorbornadienes in the presence of a Rh(III) catalyst, providing pharmaceutically useful benzo[c]phenanthridine derivatives in good to moderate yields. Using this methodology, highly useful alkaloids such as norfagaronine, norchelerythrine, decarine, norsanguinarine, and nornitidine were prepared in a single step.
Collapse
Affiliation(s)
- Narasingan Aravindan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
13
|
Li H, Yin C, Liu S, Tu H, Lin P, Chen J, Su W. Multiple remote C(sp 3)-H functionalizations of aliphatic ketones via bimetallic Cu-Pd catalyzed successive dehydrogenation. Chem Sci 2022; 13:13843-13850. [PMID: 36544736 PMCID: PMC9710215 DOI: 10.1039/d2sc05370e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
The dehydrogenation-triggered multiple C(sp3)-H functionalizations at remote positions γ, δ or ε, ζ to carbonyl groups of aliphatic ketones with aryl/alkenyl carboxylic acids as coupling partners have been achieved using a bimetallic Cu-Pd catalyst system. This reaction allows access to alkenylated isocoumarins and their derivatives in generally good yields with high functional group tolerance. The identification of bimetallic Cu-Pd synergistic catalysis for efficient successive dehydrogenation of aliphatic ketones, which overcomes the long-standing challenge posed by the successive dehydrogenation desaturation of terminally unsubstituted alkyl chains in aliphatic ketones, is essential to achieving this bimetallic Cu-Pd catalyzed dehydrogenation coupling reaction.
Collapse
Affiliation(s)
- Hongyi Li
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Chang Yin
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350002 China
| | - Sien Liu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Hua Tu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Ping Lin
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Jing Chen
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| |
Collapse
|
14
|
Wang BC, Wei Y, Xiong FY, Qu BL, Xiao WJ, Lu LQ. Construction of enantioenriched eight-membered lactones via Pd-catalyzed asymmetric (6+2) dipolar annulation. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1374-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Das J, Pal T, Ali W, Sahoo SR, Maiti D. Pd-Catalyzed Dual-γ-1,1-C(sp 3)–H Activation of Free Aliphatic Acids with Allyl–O Moieties. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jayabrata Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Tanay Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Wajid Ali
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sumeet Ranjan Sahoo
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
16
|
Shahid M, Banakar VB, Ganesh PSKP, Gopinath P. Transition‐metal Catalyzed Remote C(sp3)‐H functionalization of carboxylic acid and its derivative. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- M. Shahid
- Indian Institute of Science Education and Research Tirupati Chemistry INDIA
| | | | | | - Purushothaman Gopinath
- Indian Institute of Science Education and Research Chemistry Karkambadi Road 517507 Tirupati INDIA
| |
Collapse
|
17
|
Logeswaran R, Jeganmohan M. Transition‐Metal‐Catalyzed, Chelation‐Assisted C−H Alkenylation and Allylation of Organic Molecules with Unactivated Alkenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Nandi S, Mondal S, Jana R. Chemo- and regioselective benzylic C(sp3)–H oxidation bridging the gap between hetero- and homogeneous copper catalysis. iScience 2022; 25:104341. [PMID: 35602936 PMCID: PMC9118691 DOI: 10.1016/j.isci.2022.104341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/09/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
Selective C‒H functionalization in a pool of proximal C‒H bonds, predictably altering their innate reactivity is a daunting challenge. We disclose here, an expedient synthesis of privileged seven-membered lactones, dibenzo[c,e]oxepin-5(7H)-one through a highly chemoselective benzylic C(sp3)‒H activation. Remarkably, the formation of widely explored six-membered lactone via C(sp2)‒H activation is suppressed under the present conditions. The reaction proceeds smoothly on use of inexpensive metallic copper catalyst and di-tert-butyl peroxide (DTBP). Owing to the hazards of stoichiometric DTBP, further, we have developed a sustainable metallic copper/rose bengal dual catalytic system coupled with molecular oxygen replacing DTBP. A 1,5-aryl migration through Smiles rearrangement was realized from the corresponding diaryl ether substrates instead of expected eight-membered lactones. The present methodology is scalable, applied to the total synthesis of cytotoxic and neuroprotective natural product alterlactone. The catalyst is recyclable and the reaction can be performed in a copper bottle without any added catalyst. Catalytic strategy for chemo- and regioselective benzylic C–H activation Bulk copper catalysis merging with photocatalysis Reusable copper catalyst Reaction demonstrated in commercial copper bottle without external catalyst
Collapse
Affiliation(s)
- Shantanu Nandi
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Shuvam Mondal
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Corresponding author
| |
Collapse
|
19
|
Thombal RS, Rubio PYM, Lee D, Maiti D, Lee YR. Modern Palladium-Catalyzed Transformations Involving C–H Activation and Subsequent Annulation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Raju S. Thombal
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Peter Yuosef M. Rubio
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Daesung Lee
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | | | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
20
|
Zeng M, Jiang H, Li K, Chen Z, Yin G. Palladium(II)/Lewis Acid-Catalyzed Olefination of Arylacetamides with Dioxygen. J Org Chem 2022; 87:4524-4537. [PMID: 35306815 DOI: 10.1021/acs.joc.1c02783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present work introduces Pd(II)/LA-catalyzed (LA: Lewis acid) olefination of arylacetamides with dioxygen as the oxidant source. This protocol tolerates with different functional groups on the substrates, and the catalytic efficiency is highly Lewis acidity-dependent on added LA, that is, a stronger LA provided a better promotional effect. The 1H NMR studies of the semireaction between the arylacetamide and the Pd(II)/Sc(III) catalyst in HOAc-d4 disclosed the formation of a palladacycle intermediate, and the C-H activation step was reversible, which led to the formation of the deuterated arylacetamide substrate and the palladacycle intermediate. Further semireaction between the palladacycle intermediate and the olefin disclosed that it was a clean and much faster reaction than the C-H activation step, thus revealing multiple mechanistic information for Pd(II)-catalyzed C-H activation.
Collapse
Affiliation(s)
- Miao Zeng
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Hongwu Jiang
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Kaiwen Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
21
|
Dutta S, Bhattacharya T, Geffers FJ, Bürger M, Maiti D, Werz DB. Pd-catalysed C-H functionalisation of free carboxylic acids. Chem Sci 2022; 13:2551-2573. [PMID: 35340865 PMCID: PMC8890104 DOI: 10.1039/d1sc05392b] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/07/2022] [Indexed: 11/21/2022] Open
Abstract
Pd-catalysed C-H functionalisation of free carboxylic acids has drawn significant attention over the last few years due to the predominance of carboxylic acid moieties in pharmaceuticals and agrochemicals. But their coordinating ability was overlooked and masked by exogenous directing groups for a long time. Even other crucial roles of carboxylic acids as additives and steric inducers that directly influence the mode of a reaction have been widely neglected. This review aims to embrace all of the diverse aspects of carboxylic acids except additive and steric effects by concisely and systematically describing their versatile role in Pd-catalysed proximal and distal C-H activation reactions that could be implemented in the pharmaceutical and agrochemical industries. In addition, the mechanistic perspectives along with several recent strategies developed in the last few years discussed here will serve as educational resources for future research.
Collapse
Affiliation(s)
- Suparna Dutta
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India https://www.dmaiti.com
| | - Trisha Bhattacharya
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India https://www.dmaiti.com
| | - Finn J Geffers
- Technische Universität Braunschweig, Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany https://www.werzlab.de
| | - Marcel Bürger
- Technische Universität Braunschweig, Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany https://www.werzlab.de
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India https://www.dmaiti.com
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany https://www.werzlab.de
| |
Collapse
|
22
|
Babu SA, Aggarwal Y, Patel P, Tomar R. Diastereoselective palladium-catalyzed functionalization of prochiral C(sp 3)-H bonds of aliphatic and alicyclic compounds. Chem Commun (Camb) 2022; 58:2612-2633. [PMID: 35113087 DOI: 10.1039/d1cc05649b] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We highlight the reported developments of the palladium-catalyzed C-H activation and functionalization of the inactive/unreactive prochiral C(sp3)-H bonds of aliphatic and alicyclic compounds. There exist numerous classical methods for generating contiguous stereogenic centers in a compound with a high degree of stereocontrol. Along similar lines, the Pd(II)-catalyzed, directing group-aided functionalization of inactive prochiral/diastereotopic C(sp3)-H bonds have been exploited to accomplish the stereoselective construction of stereo-arrays in organic compounds. We present a concise discussion on how specific strategies consisting of Pd(II)-catalyzed, directing group-aided C(sp3)-H functionalization have been utilized to generate two or more stereogenic centers in aliphatic and alicyclic compounds.
Collapse
Affiliation(s)
- Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Yashika Aggarwal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Pooja Patel
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Radha Tomar
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| |
Collapse
|
23
|
Font M, Gulías M, Mascareñas JL. Transition‐Metal‐Catalyzed Annulations Involving the Activation of C(sp
3
)−H Bonds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Marc Font
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Moisés Gulías
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
24
|
Font M, Gulías M, Mascareñas JL. Transition-Metal-Catalyzed Annulations Involving the Activation of C(sp 3 )-H Bonds. Angew Chem Int Ed Engl 2022; 61:e202112848. [PMID: 34699657 PMCID: PMC9300013 DOI: 10.1002/anie.202112848] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 12/15/2022]
Abstract
The selective functionalization of C(sp3 )-H bonds using transition-metal catalysis is among the more attractive transformations of modern synthetic chemistry. In addition to its inherent atom economy, such reactions open unconventional retrosynthetic pathways that can streamline synthetic processes. However, the activation of intrinsically inert C(sp3 )-H bonds, and the selection among very similar C-H bonds, represent highly challenging goals. In recent years there has been notable progress tackling these issues, especially with regard to the development of intermolecular reactions entailing the formation of C-C and C-heteroatom bonds. Conversely, the assembly of cyclic products from simple acyclic precursors using metal-catalyzed C(sp3 )-H bond activations has been less explored. Only recently has the number of reports on such annulations started to grow. Herein we give an overview of some of the more relevant advances in this exciting topic.
Collapse
Grants
- SAF2016-76689-R Ministerio de Ciencia, Innovación y Universidades
- PID2019-108624RBI00 Ministerio de Ciencia, Innovación y Universidades
- PID2019-110385GB-I00 Ministerio de Ciencia, Innovación y Universidades
- IJCI-2017-31450 Ministerio de Ciencia, Innovación y Universidades
- 2021-CP054, ED431C-2021/25 Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia
- ED431G 2019/03 Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia
- 340055 FP7 Ideas: European Research Council
- European Regional Development Fund
- Ministerio de Ciencia, Innovación y Universidades
- Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia
- FP7 Ideas: European Research Council
- European Regional Development Fund
Collapse
Affiliation(s)
- Marc Font
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Moisés Gulías
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| |
Collapse
|
25
|
Barve BD, Kuo YH, Li WT. Pd-Catalyzed and ligand-enabled alkene difunctionalization via unactivated C-H bond functionalization. Chem Commun (Camb) 2021; 57:12045-12057. [PMID: 34724518 DOI: 10.1039/d1cc04397h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Palladium-catalyzed and ligand-enabled C-H functionalization methods have emerged as a powerful approach for the preparation of therapeutically important motifs and complex natural products. Olefins, owing to their natural abundance, have been extensively employed for the formation of C-C and C-X bonds and the generation of various heterocycles. Traditionally, activated as well as starting materials with preinstalled functional groups, and also halide substrates under transition metal catalysis, have been employed for olefin difunctionalization. However, strategies for employing unactivated C-H bond functionalization to achieve alkene difunctionalization have rarely been explored. A possible solution to this challenge is the application of bulky ligands which enhances the reductive elimination pathway and inhibits β-hydride elimination to selectively yield difunctionalized alkene products. This feature article summarizes the utilization of unreactive C-H bonds in the Pd-catalyzed and ligand-enabled difunctionalization of alkenes.
Collapse
Affiliation(s)
- Balaji D Barve
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan, Republic of China. .,Department of Chemistry, National Taiwan Normal University, Taipei 10610, Taiwan, Republic of China
| | - Yao-Haur Kuo
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan, Republic of China.
| | - Wen-Tai Li
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan, Republic of China.
| |
Collapse
|
26
|
Maity B, Zhu C, Rueping M, Cavallo L. Mechanistic Understanding of Arylation vs Alkylation of Aliphatic Csp3–H Bonds by Decatungstate–Nickel Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bholanath Maity
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Chen Zhu
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Magnus Rueping
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
27
|
Sinha SK, Guin S, Maiti S, Biswas JP, Porey S, Maiti D. Toolbox for Distal C-H Bond Functionalizations in Organic Molecules. Chem Rev 2021; 122:5682-5841. [PMID: 34662117 DOI: 10.1021/acs.chemrev.1c00220] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transition metal catalyzed C-H activation has developed a contemporary approach to the omnipresent area of retrosynthetic disconnection. Scientific researchers have been tempted to take the help of this methodology to plan their synthetic discourses. This paradigm shift has helped in the development of industrial units as well, making the synthesis of natural products and pharmaceutical drugs step-economical. In the vast zone of C-H bond activation, the functionalization of proximal C-H bonds has gained utmost popularity. Unlike the activation of proximal C-H bonds, the distal C-H functionalization is more strenuous and requires distinctly specialized techniques. In this review, we have compiled various methods adopted to functionalize distal C-H bonds, mechanistic insights within each of these procedures, and the scope of the methodology. With this review, we give a complete overview of the expeditious progress the distal C-H activation has made in the field of synthetic organic chemistry while also highlighting its pitfalls, thus leaving the field open for further synthetic modifications.
Collapse
Affiliation(s)
- Soumya Kumar Sinha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Srimanta Guin
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudip Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sandip Porey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
28
|
Uttry A, Mal S, van Gemmeren M. Late-Stage β-C(sp 3)-H Deuteration of Carboxylic Acids. J Am Chem Soc 2021; 143:10895-10901. [PMID: 34279928 DOI: 10.1021/jacs.1c06474] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carboxylic acids are highly abundant in bioactive molecules. In this study, we describe the late-stage β-C(sp3)-H deuteration of free carboxylic acids. On the basis of the finding that C-H activation with our catalysts is reversible, the de-deuteration process was first optimized. The resulting method uses ethylenediamine-based ligands and can be used to achieve the desired deuteration when using a deuterated solvent. The reported method allows for the functionalization of a wide range of free carboxylic acids with diverse substitution patterns, as well as the late-stage deuteration of bioactive molecules and related frameworks and enables the functionalization of nonactivated methylene β-C(sp3)-H bonds for the first time.
Collapse
Affiliation(s)
- Alexander Uttry
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Sourjya Mal
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Manuel van Gemmeren
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
29
|
Hao HY, Lou SJ, Wang S, Zhou K, Wu QZ, Mao YJ, Xu ZY, Xu DQ. Pd-catalysed β-selective C(sp 3)-H arylation of simple amides. Chem Commun (Camb) 2021; 57:8055-8058. [PMID: 34291778 DOI: 10.1039/d1cc02261j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An efficient Pd-catalysed β-C(sp3)-H arylation of diverse native amides with aryl iodides was developed. This protocol overcomes the necessity of the Thorpe-Ingold effect and features broad substrate scope and good functional group tolerance. The potential application of this protocol is collectively demonstrated by gram-scale synthesis and the synthesis of several bioactive molecules.
Collapse
Affiliation(s)
- Hong-Yan Hao
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Yoshioka S. Carbon (sp<sup>3</sup>)-hydorogen Bond Activation by Mono <i>N</i>-protected Amino Acid Ligand. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shohei Yoshioka
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
31
|
Yang L, Xie H, An G, Li G. Acid-Enabled Palladium-Catalyzed β-C(sp3)–H Functionalization of Weinreb Amides. J Org Chem 2021; 86:7872-7880. [DOI: 10.1021/acs.joc.1c00781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Liming Yang
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, People’s Republic of China
| | - Henan Xie
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, People’s Republic of China
| | - Guanghui An
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, People’s Republic of China
| | - Guangming Li
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, People’s Republic of China
| |
Collapse
|
32
|
Das J, Mal DK, Maji S, Maiti D. Recent Advances in External-Directing-Group-Free C–H Functionalization of Carboxylic Acids without Decarboxylation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00176] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jayabrata Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Dibya Kanti Mal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suman Maji
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
33
|
Das A, Maji B. The Emergence of Palladium-Catalyzed C(sp 3 )-H Functionalization of Free Carboxylic Acids. Chem Asian J 2021; 16:397-408. [PMID: 33427411 DOI: 10.1002/asia.202001440] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Indexed: 01/15/2023]
Abstract
Palladium-catalyzed directing group assisted C-H bond activation has emerged as a powerful tool in synthetic organic chemistry. However, only recently, among various directing groups, widely available carboxylate moiety is recognized as a versatile candidate for the regioselective transformations. Notably, palladium-catalyzed carboxylate directed C(sp3 )-H bond activation and diverse functionalization is highly challenging and has gained huge attention for its versatile applications. Mono- and bidentate ligands have proven to be useful for accelerating the C(sp3 )-H bond activation step, which helps to control reactivity and selectivity (including enantioselectivity). In this Minireview, we discuss the recent progress made in palladium-catalyzed C(sp3 )-H bond functionalization reactions for the construction of C-C and C-Heteroatom bonds with the direction of free carboxylic acid.
Collapse
Affiliation(s)
- Animesh Das
- Indian Institute of Science Education and Research Kolkata Nadia, West Bengal, India
| | - Biplab Maji
- Indian Institute of Science Education and Research Kolkata Nadia, West Bengal, India
| |
Collapse
|
34
|
Suseelan AS, Dutta A, Lahiri GK, Maiti D. Organopalladium Intermediates in Coordination-Directed C(sp3)-H Functionalizations. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2020.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Liao Y, Zhou Y, Zhang Z, Fan J, Liu F, Shi Z. Intramolecular Oxidative Coupling between Unactivated Aliphatic C-H and Aryl C-H Bonds. Org Lett 2021; 23:1251-1257. [PMID: 33555883 DOI: 10.1021/acs.orglett.0c04239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Direct oxidative coupling of different inert C-H bonds is the most straightforward and environmentally benign method to construct C-C bonds. In this paper, we developed a Pd-catalyzed intramolecular oxidative coupling between unactivated aliphatic and aryl C-H bonds. This chemistry showed great potential to build up fused cyclic scaffolds from linear substrates through oxidative couplings. Privileged chromane and tetralin scaffolds were constructed from readily available linear starting materials in the absence of any organohalides and organometallic partners.
Collapse
Affiliation(s)
- Yang Liao
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Yi Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhen Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Junzhen Fan
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Feng Liu
- Department of Chemistry, Fudan University, Shanghai 200438, China.,School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhangjie Shi
- Department of Chemistry, Fudan University, Shanghai 200438, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| |
Collapse
|
36
|
Bhattacharya T, Ghosh A, Maiti D. Hexafluoroisopropanol: the magical solvent for Pd-catalyzed C-H activation. Chem Sci 2021; 12:3857-3870. [PMID: 34163654 PMCID: PMC8179444 DOI: 10.1039/d0sc06937j] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/19/2021] [Indexed: 12/28/2022] Open
Abstract
Among numerous solvents available for chemical transformations, 1,1,1,3,3,3-hexafluoro-2-propanol (popularly known as HFIP) has attracted enough attention of the scientific community in recent years. Several unique features of HFIP compared to its non-fluoro analogue isopropanol have helped this solvent to make a difference in various subdomains of organic chemistry. One such area is transition metal-catalyzed C-H bond functionalization reactions. While, on one side, HFIP is emerging as a green and sustainable deep eutectic solvent (DES), on the other side, a major proportion of Pd-catalyzed C-H functionalization is heavily relying on this solvent. In particular, for distal aromatic C-H functionalizations, the exceptional impact of HFIP to elevate the yield and selectivity has made this solvent irreplaceable. Recent research studies have also highlighted the H-bond-donating ability of HFIP to enhance the chiral induction in Pd-catalyzed atroposelective C-H activation. This perspective aims to portray different shades of HFIP as a magical solvent in Pd-catalyzed C-H functionalization reactions.
Collapse
Affiliation(s)
- Trisha Bhattacharya
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai Maharashtra 400076 India
| | - Animesh Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai Maharashtra 400076 India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai Maharashtra 400076 India
- Tokyo Tech World Research Hub Initiative (WRHI), Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Tokyo 152-8550 Japan
| |
Collapse
|
37
|
Ali W, Prakash G, Maiti D. Recent development in transition metal-catalysed C-H olefination. Chem Sci 2021; 12:2735-2759. [PMID: 34164039 PMCID: PMC8179420 DOI: 10.1039/d0sc05555g] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/28/2020] [Indexed: 01/10/2023] Open
Abstract
Transition metal-catalysed functionalizations of inert C-H bonds to construct C-C bonds represent an ideal route in the synthesis of valuable organic molecules. Fine tuning of directing groups, catalysts and ligands has played a crucial role in selective C-H bond (sp2 or sp3) activation. Recent developments in these areas have assured a high level of regioselectivity in C-H olefination reactions. In this review, we have summarized the recent progress in the oxidative olefination of sp2 and sp3 C-H bonds with special emphasis on distal, atroposelective, non-directed sp2 and directed sp3 C-H olefination. The scope, limitation, and mechanism of various transition metal-catalysed olefination reactions have been described briefly.
Collapse
Affiliation(s)
- Wajid Ali
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai Maharashtra-400076 India
| | - Gaurav Prakash
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai Maharashtra-400076 India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai Maharashtra-400076 India
- Tokyo Tech World Research Hub Initiative (WRHI), Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Tokyo 152-8550 Japan
| |
Collapse
|
38
|
Yang C, Wu TR, Li Y, Wu BB, Jin RX, Hu DD, Li YB, Bian KJ, Wang XS. Facile synthesis of axially chiral styrene-type carboxylic acids via palladium-catalyzed asymmetric C-H activation. Chem Sci 2021; 12:3726-3732. [PMID: 34163646 PMCID: PMC8179534 DOI: 10.1039/d0sc06661c] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/19/2021] [Indexed: 12/27/2022] Open
Abstract
A novel method by a one-step introduction of axial chirality and sterically hindered group has been developed for facile synthesis of axially chiral styrene-type carboxylic acids. With the palladium-catalyzed C-H arylation and olefination of readily available cinnamic acid established, this transformation demonstrated excellent yield, excellent stereocontrol (up to 99% yield and 99% ee), and broad substrate scope under mild conditions. The axially chiral styrene-type carboxylic acids produced have been successfully applied to Cp*CoIII-catalyzed asymmetric C-H activation reactions, indicating their potential as chiral ligands or catalysts in asymmetric synthesis.
Collapse
Affiliation(s)
- Chi Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China Hefei Anhui 230026 China
| | - Tian-Rui Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China Hefei Anhui 230026 China
| | - Yan Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China Hefei Anhui 230026 China
| | - Bing-Bing Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China Hefei Anhui 230026 China
| | - Ruo-Xing Jin
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China Hefei Anhui 230026 China
| | - Duo-Duo Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China Hefei Anhui 230026 China
| | - Yuan-Bo Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China Hefei Anhui 230026 China
| | - Kang-Jie Bian
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China Hefei Anhui 230026 China
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
39
|
Cheng Y, Yu S, He Y, An G, Li G, Yang Z. C4-arylation and domino C4-arylation/3,2-carbonyl migration of indoles by tuning Pd catalytic modes: Pd(i)-Pd(ii) catalysis vs. Pd(ii) catalysis. Chem Sci 2021; 12:3216-3225. [PMID: 34164090 PMCID: PMC8179361 DOI: 10.1039/d0sc05409g] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Efficient C4-arylation and domino C4-arylation/3,2-carbonyl migration of indoles have been developed. The former route enables C4-arylation in a highly efficient and mild manner and the latter route provides an alternative straightforward protocol for synthesis of C2/C4 disubstituted indoles. The mechanism studies imply that the different reaction pathways were tuned by the distinct acid additives, which led to either the Pd(i)-Pd(ii) pathway or Pd(ii) catalysis.
Collapse
Affiliation(s)
- Yaohang Cheng
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Shijie Yu
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Yuhang He
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Guanghui An
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Guangming Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Zhenyu Yang
- School of Pharmaceutical and Materials Engineering, Taizhou University 1139 Shifu Avenue Taizhou 318000 China
| |
Collapse
|
40
|
Mingo MM, Rodríguez N, Arrayás RG, Carretero JC. Remote C(sp 3)–H functionalization via catalytic cyclometallation: beyond five-membered ring metallacycle intermediates. Org Chem Front 2021. [DOI: 10.1039/d1qo00389e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite impressive recent momentum gained in C(sp3)–H activation, achieving high regioselectivity in molecules containing different C–H bonds with similar high energy without abusing tailored substitution remains as one of the biggest challenges.
Collapse
Affiliation(s)
- Mario Martínez Mingo
- Department of Organic Chemistry, Universidad Autónoma de Madrid, c/Fco. Tomás y Valiente 7, Cantoblanco 28049, Madrid, Spain
| | - Nuria Rodríguez
- Department of Organic Chemistry, Universidad Autónoma de Madrid, c/Fco. Tomás y Valiente 7, Cantoblanco 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Spain
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry, Universidad Autónoma de Madrid, c/Fco. Tomás y Valiente 7, Cantoblanco 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Spain
| | - Juan C. Carretero
- Department of Organic Chemistry, Universidad Autónoma de Madrid, c/Fco. Tomás y Valiente 7, Cantoblanco 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Spain
| |
Collapse
|
41
|
Garia A, Chauhan P, Halder R, Jain N. Quinoline-Fused Lactones via Tandem Oxidation Cyclization: Metal-Free sp 3 C-H Functionalization. J Org Chem 2021; 86:538-546. [PMID: 33289376 DOI: 10.1021/acs.joc.0c02238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A unique lactonization of 2-methyl-3-acyl-4-phenylquinolines using PhIO as the oxidant and selectfluor as an additive is reported. The reaction occurs under ambient conditions through tandem oxidation and cyclization of sp3 C-H bonds under metal-free conditions. The heterocycle-fused lactones are obtained in moderate to good yield.
Collapse
Affiliation(s)
- Alankrita Garia
- Department of Chemistry, Indian Institute of Technology, New Delhi 110016, India
| | - Parul Chauhan
- Department of Chemistry, Indian Institute of Technology, New Delhi 110016, India
| | - Riya Halder
- Department of Chemistry, Indian Institute of Technology, New Delhi 110016, India
| | - Nidhi Jain
- Department of Chemistry, Indian Institute of Technology, New Delhi 110016, India
| |
Collapse
|
42
|
DFNS/α-CD/Au as a Nanocatalyst for Interpolation of CO2 into Aryl Alkynes Followed by SN2 Coupling with Allylic Chlorides. Catal Letters 2020. [DOI: 10.1007/s10562-020-03451-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Das J, Guin S, Maiti D. Diverse strategies for transition metal catalyzed distal C(sp 3)-H functionalizations. Chem Sci 2020; 11:10887-10909. [PMID: 34094339 PMCID: PMC8162984 DOI: 10.1039/d0sc04676k] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/26/2020] [Indexed: 01/26/2023] Open
Abstract
Transition metal catalyzed C(sp3)-H functionalization is a rapidly growing field. Despite severe challenges, distal C-H functionalizations of aliphatic molecules by overriding proximal positions have witnessed tremendous progress. While usage of stoichiometric directing groups played a crucial role, reactions with catalytic transient directing groups or methods without any directing groups are gaining more attention due to their practicality. Various innovative strategies, slowly but steadily, circumvented issues related to remote functionalizations of aliphatic molecules. A systematic compilation has been presented here to provide insights into the recent developments and future challenges in the field. The Present perspective is expected to open up a new dimension and provide an avenue for deep insights into the distal C(sp3)-H functionalizations that could be applied routinely in various pharmaceutical and agrochemical industries.
Collapse
Affiliation(s)
- Jayabrata Das
- Department of Chemistry, IIT Bombay Powai Mumbai 400076 India
| | - Srimanta Guin
- Department of Chemistry, IIT Bombay Powai Mumbai 400076 India
| | - Debabrata Maiti
- Department of Chemistry, IIT Bombay Powai Mumbai 400076 India
| |
Collapse
|