1
|
Liu W, Zhang K, Liu J, Wang Y, Zhang M, Cui H, Sun J, Zhang L. Bioelectrocatalytic carbon dioxide reduction by an engineered formate dehydrogenase from Thermoanaerobacter kivui. Nat Commun 2024; 15:9962. [PMID: 39551789 PMCID: PMC11570645 DOI: 10.1038/s41467-024-53946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/29/2024] [Indexed: 11/19/2024] Open
Abstract
Electrocatalytic carbon dioxide (CO2) reduction by CO2 reductases is a promising approach for biomanufacturing. Among all known biological or chemical catalysts, hydrogen-dependent carbon dioxide reductase from Thermoanaerobacter kivui (TkHDCR) possesses the highest activity toward CO2 reduction. Herein, we engineer TkHDCR to generate an electro-responsive carbon dioxide reductase considering the safety and convenience. To achieve this purpose, a recombinant Escherichia coli TkHDCR overexpression system is established. The formate dehydrogenase is obtained via subunit truncation and rational design, which enables direct electron transfer (DET)-type bioelectrocatalysis with a near-zero overpotential. By applying a constant voltage of -500 mV (vs. SHE) to a mediated electrolytic cell, 22.8 ± 1.6 mM formate is synthesized in 16 h with an average production rate of 7.1 ± 0.5 μmol h-1cm-2, a Faradaic efficiency of 98.9% and a half-cell energy efficiency of 94.4%. This study provides an enzyme candidate for high efficient CO2 reduction and opens up a way to develop paradigm for CO2-based bio-manufacturing.
Collapse
Affiliation(s)
- Weisong Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 west 7th Avenue, Tianjin Airport Economic Area, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Kuncheng Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 west 7th Avenue, Tianjin Airport Economic Area, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jiang Liu
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yuanming Wang
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Meng Zhang
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, 9, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin, China
| | - Huijuan Cui
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 west 7th Avenue, Tianjin Airport Economic Area, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Junsong Sun
- University of Chinese Academy of Sciences, Beijing, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Lingling Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 west 7th Avenue, Tianjin Airport Economic Area, Tianjin, China.
- University of Chinese Academy of Sciences, Beijing, China.
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
2
|
Yu X, Li H, Xu C, Xu Z, Chen S, Liu W, Zhang T, Sun H, Ge Y, Qi Z, Liu J. Liquid-Liquid Phase Separation-Mediated Photocatalytic Subcellular Hybrid System for Highly Efficient Hydrogen Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400097. [PMID: 38572522 PMCID: PMC11165473 DOI: 10.1002/advs.202400097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/28/2024] [Indexed: 04/05/2024]
Abstract
Plant chloroplasts have a highly compartmentalized interior, essential for executing photocatalytic functions. However, the construction of a photocatalytic reaction compartment similar to chloroplasts in inorganic-biological hybrid systems (IBS) has not been reported. Drawing inspiration from the compartmentalized chloroplast and the phenomenon of liquid-liquid phase separation, herein, a new strategy is first developed for constructing a photocatalytic subcellular hybrid system through liquid-liquid phase separation technology in living cells. Photosensitizers and in vivo expressed hydrogenases are designed to coassemble within the cell to create subcellular compartments for synergetic photocatalysis. This compartmentalization facilitates efficient electron transfer and light energy utilization, resulting in highly effective H2 production. The subcellular compartments hybrid system (HM/IBSCS) exhibits a nearly 87-fold increase in H2 production compared to the bare bacteria/hybrid system. Furthermore, the intracellular compartments of the photocatalytic reactor enhance the system's stability obviously, with the bacteria maintaining approximately 81% of their H2 production activity even after undergoing five cycles of photocatalytic hydrogen production. The research brings forward visionary prospects for the field of semi-artificial photosynthesis, offering new possibilities for advancements in areas such as renewable energy, biomanufacturing, and genetic engineering.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
- Sino‐German Joint Research Lab for Space Biomaterials and Translational TechnologySchool of Life SciencesNorthwestern Polytechnical UniversityXi'an710072China
| | - Hui Li
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
- Sino‐German Joint Research Lab for Space Biomaterials and Translational TechnologySchool of Life SciencesNorthwestern Polytechnical UniversityXi'an710072China
| | - Chengchen Xu
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| | - Zhengwei Xu
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| | - Shuheng Chen
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| | - Wang Liu
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| | - Tianlong Zhang
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| | - Hongcheng Sun
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| | - Yan Ge
- Sino‐German Joint Research Lab for Space Biomaterials and Translational TechnologySchool of Life SciencesNorthwestern Polytechnical UniversityXi'an710072China
| | - Zhenhui Qi
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
- Sino‐German Joint Research Lab for Space Biomaterials and Translational TechnologySchool of Life SciencesNorthwestern Polytechnical UniversityXi'an710072China
| | - Junqiu Liu
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| |
Collapse
|
3
|
Yu X, Rao G, Britt RD, Rauchfuss TB. Final Stages in the Biosynthesis of the [FeFe]-Hydrogenase Active Site. Angew Chem Int Ed Engl 2024; 63:e202404044. [PMID: 38551577 PMCID: PMC11253240 DOI: 10.1002/anie.202404044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Indexed: 04/19/2024]
Abstract
The paper aims to elucidate the final stages in the biosynthesis of the [2Fe]H active site of the [FeFe]-hydrogenases. The recently hypothesized intermediate [Fe2(SCH2NH2)2(CN)2(CO)4]2- ([1]2-) was prepared by a multistep route from [Fe2(S2)(CN)(CO)5]-. The following synthetic intermediates were characterized in order: [Fe2(SCH2NHFmoc)2(CNBEt3)(CO)5]-, [Fe2(SCH2NHFmoc)2(CN)-(CO)5]-, and [Fe2(SCH2NHFmoc)2(CN)2(CO)4]2-, where Fmoc is fluorenylmethoxycarbonyl). Derivatives of these anions include [K(18-crown-6)]+, PPh4 + and PPN+ salts as well as the 13CD2-isotopologues. These Fe2 species exist as a mixture of two isomers attributed to diequatorial (ee) and axial-equatorial (ae) stereochemistry at sulfur. In vitro experiments demonstrate that [1]2- maturates HydA1 in the presence of HydF and a cocktail of reagents. HydA1 can also be maturated using a highly simplified cocktail, omitting HydF and other proteins. This result is consistent with HydA1 participating in the maturation process and refines the roles of HydF.
Collapse
Affiliation(s)
- Xin Yu
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Guodong Rao
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - R. David Britt
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Thomas B. Rauchfuss
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Alavi G, Engelbrecht V, Hemschemeier A, Happe T. The Alga Uronema belkae Has Two Structural Types of [FeFe]-Hydrogenases with Different Biochemical Properties. Int J Mol Sci 2023; 24:17311. [PMID: 38139142 PMCID: PMC10744039 DOI: 10.3390/ijms242417311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Several species of microalgae can convert light energy into molecular hydrogen (H2) by employing enzymes of early phylogenetic origin, [FeFe]-hydrogenases, coupled to the photosynthetic electron transport chain. Bacterial [FeFe]-hydrogenases consist of a conserved domain that harbors the active site cofactor, the H-domain, and an additional domain that binds electron-conducting FeS clusters, the F-domain. In contrast, most algal hydrogenases characterized so far have a structurally reduced, so-termed M1-type architecture, which consists only of the H-domain that interacts directly with photosynthetic ferredoxin PetF as an electron donor. To date, only a few algal species are known to contain bacterial-type [FeFe]-hydrogenases, and no M1-type enzymes have been identified in these species. Here, we show that the chlorophycean alga Uronema belkae possesses both bacterial-type and algal-type [FeFe]-hydrogenases. Both hydrogenase genes are transcribed, and the cells produce H2 under hypoxic conditions. The biochemical analyses show that the two enzymes show features typical for each of the two [FeFe]-hydrogenase types. Most notable in the physiological context is that the bacterial-type hydrogenase does not interact with PetF proteins, suggesting that the two enzymes are integrated differently into the alga's metabolism.
Collapse
Affiliation(s)
| | | | - Anja Hemschemeier
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany; (G.A.); (V.E.)
| | - Thomas Happe
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany; (G.A.); (V.E.)
| |
Collapse
|
5
|
Arriaza-Gallardo FJ, Zheng YC, Gehl M, Nomura S, Fernandes-Queiroz JP, Shima S. [Fe]-Hydrogenase, Cofactor Biosynthesis and Engineering. Chembiochem 2023; 24:e202300330. [PMID: 37671838 DOI: 10.1002/cbic.202300330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
[Fe]-hydrogenase catalyzes the heterolytic cleavage of H2 and reversible hydride transfer to methenyl-tetrahydromethanopterin. The iron-guanylylpyridinol (FeGP) cofactor is the prosthetic group of this enzyme, in which mononuclear Fe(II) is ligated with a pyridinol and two CO ligands. The pyridinol ligand fixes the iron by an acyl carbon and a pyridinol nitrogen. Biosynthetic proteins for this cofactor are encoded in the hmd co-occurring (hcg) genes. The function of HcgB, HcgC, HcgD, HcgE, and HcgF was studied by using structure-to-function analysis, which is based on the crystal structure of the proteins and subsequent enzyme assays. Recently, we reported the catalytic properties of HcgA and HcgG, novel radical S-adenosyl methionine enzymes, by using an in vitro biosynthesis assay. Here, we review the properties of [Fe]-hydrogenase and the FeGP cofactor, and the biosynthesis of the FeGP cofactor. Finally, we discuss the expected engineering of [Fe]-hydrogenase and the FeGP cofactor.
Collapse
Affiliation(s)
| | - Yu-Cong Zheng
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Manuel Gehl
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Shunsuke Nomura
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - J Pedro Fernandes-Queiroz
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Seigo Shima
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| |
Collapse
|
6
|
Rao G, Yu X, Zhang Y, Rauchfuss TB, Britt RD. Fully Refined Semisynthesis of the [FeFe] Hydrogenase H-Cluster. Biochemistry 2023; 62:2868-2877. [PMID: 37691492 DOI: 10.1021/acs.biochem.3c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
[FeFe] hydrogenases contain a 6-Fe cofactor that serves as the active site for efficient redox interconversion between H2 and protons. The biosynthesis of the so-called H-cluster involves unusual enzymatic reactions that synthesize organometallic Fe complexes containing azadithiolate, CO, and CN- ligands. We have previously demonstrated that specific synthetic [Fe(CO)x(CN)y] complexes can be used to functionally replace proposed Fe intermediates in the maturation reaction. Here, we report the results from performing such cluster semisynthesis in the context of a recent fully defined cluster maturation procedure, which eliminates unknown components previously employed from Escherichia coli cell lysate and demonstrate this provides a concise route to H-cluster synthesis. We show that formaldehyde can be used as a simple reagent as the carbon source of the bridging adt ligand of H-cluster in lieu of serine/serine hydroxymethyltransferase. In addition to the actual H-cluster, we observe the formation of several H-cluster-like species, the identities of which are probed by cryogenic photolysis combined with EPR/ENDOR spectroscopy.
Collapse
Affiliation(s)
- Guodong Rao
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Xin Yu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - Yu Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - Thomas B Rauchfuss
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
- Miller Institute for Basic Research in Science, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Frielingsdorf S, Pinske C, Valetti F, Greening C. Editorial: Hydrogenase: structure, function, maturation, and application. Front Microbiol 2023; 14:1284540. [PMID: 37808289 PMCID: PMC10556730 DOI: 10.3389/fmicb.2023.1284540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Affiliation(s)
- Stefan Frielingsdorf
- Institute of Chemistry, Biophysical Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Constanze Pinske
- Institute for Biology, Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Francesca Valetti
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Chris Greening
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
8
|
Balci B, O'Neill RD, Shepard EM, Pagnier A, Marlott A, Mock MT, Broderick WE, Broderick JB. Semisynthetic maturation of [FeFe]-hydrogenase using [Fe 2(μ-SH) 2(CN) 2(CO) 4] 2-: key roles for HydF and GTP. Chem Commun (Camb) 2023. [PMID: 37376915 DOI: 10.1039/d3cc02169f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Here we describe maturation of the [FeFe]-hydrogenase from its [4Fe-4S]-bound precursor state by using the synthetic complex [Fe2(μ-SH)2(CN)2(CO)4]2- together with HydF and components of the glycine cleavage system, but in the absence of the maturases HydE and HydG. This semisynthetic and fully-defined maturation provides new insights into the nature of H-cluster biosynthesis.
Collapse
Affiliation(s)
- Batuhan Balci
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Roark D O'Neill
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Eric M Shepard
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Adrien Pagnier
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Alexander Marlott
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Michael T Mock
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - William E Broderick
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Joan B Broderick
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
9
|
Sidabras JW, Stripp ST. A personal account on 25 years of scientific literature on [FeFe]-hydrogenase. J Biol Inorg Chem 2023; 28:355-378. [PMID: 36856864 DOI: 10.1007/s00775-023-01992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/25/2023] [Indexed: 03/02/2023]
Abstract
[FeFe]-hydrogenases are gas-processing metalloenzymes that catalyze H2 oxidation and proton reduction (H2 release) in microorganisms. Their high turnover frequencies and lack of electrical overpotential in the hydrogen conversion reaction has inspired generations of biologists, chemists, and physicists to explore the inner workings of [FeFe]-hydrogenase. Here, we revisit 25 years of scientific literature on [FeFe]-hydrogenase and propose a personal account on 'must-read' research papers and review article that will allow interested scientists to follow the recent discussions on catalytic mechanism, O2 sensitivity, and the in vivo synthesis of the active site cofactor with its biologically uncommon ligands carbon monoxide and cyanide. Focused on-but not restricted to-structural biology and molecular biophysics, we highlight future directions that may inspire young investigators to pursue a career in the exciting and competitive field of [FeFe]-hydrogenase research.
Collapse
Affiliation(s)
- Jason W Sidabras
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, USA, 53226.
| | - Sven T Stripp
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
| |
Collapse
|
10
|
Stepwise assembly of the active site of [NiFe]-hydrogenase. Nat Chem Biol 2023; 19:498-506. [PMID: 36702959 DOI: 10.1038/s41589-022-01226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/16/2022] [Indexed: 01/27/2023]
Abstract
[NiFe]-hydrogenases are biotechnologically relevant enzymes catalyzing the reversible splitting of H2 into 2e- and 2H+ under ambient conditions. Catalysis takes place at the heterobimetallic NiFe(CN)2(CO) center, whose multistep biosynthesis involves careful handling of two transition metals as well as potentially harmful CO and CN- molecules. Here, we investigated the sequential assembly of the [NiFe] cofactor, previously based on primarily indirect evidence, using four different purified maturation intermediates of the catalytic subunit, HoxG, of the O2-tolerant membrane-bound hydrogenase from Cupriavidus necator. These included the cofactor-free apo-HoxG, a nickel-free version carrying only the Fe(CN)2(CO) fragment, a precursor that contained all cofactor components but remained redox inactive and the fully mature HoxG. Through biochemical analyses combined with comprehensive spectroscopic investigation using infrared, electronic paramagnetic resonance, Mössbauer, X-ray absorption and nuclear resonance vibrational spectroscopies, we obtained detailed insight into the sophisticated maturation process of [NiFe]-hydrogenase.
Collapse
|
11
|
Reduced mitochondria provide an essential function for the cytosolic methionine cycle. Curr Biol 2022; 32:5057-5068.e5. [PMID: 36347252 PMCID: PMC9746703 DOI: 10.1016/j.cub.2022.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/15/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
The loss of mitochondria in oxymonad protists has been associated with the redirection of the essential Fe-S cluster assembly to the cytosol. Yet as our knowledge of diverse free-living protists broadens, the list of functions of their mitochondrial-related organelles (MROs) expands. We revealed another such function in the closest oxymonad relative, Paratrimastix pyriformis, after we solved the proteome of its MRO with high accuracy, using localization of organelle proteins by isotope tagging (LOPIT). The newly assigned enzymes connect to the glycine cleavage system (GCS) and produce folate derivatives with one-carbon units and formate. These are likely to be used by the cytosolic methionine cycle involved in S-adenosyl methionine recycling. The data provide consistency with the presence of the GCS in MROs of free-living species and its absence in most endobionts, which typically lose the methionine cycle and, in the case of oxymonads, the mitochondria.
Collapse
|
12
|
Lorenzi M, Gellett J, Zamader A, Senger M, Duan Z, Rodríguez-Maciá P, Berggren G. Investigating the role of the strong field ligands in [FeFe] hydrogenase: spectroscopic and functional characterization of a semi-synthetic mono-cyanide active site. Chem Sci 2022; 13:11058-11064. [PMID: 36320473 PMCID: PMC9516953 DOI: 10.1039/d2sc02271k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/05/2022] [Indexed: 08/11/2023] Open
Abstract
Artificial maturation of hydrogenases provides a path towards generating new semi-synthetic enzymes with novel catalytic properties. Here enzymes featuring a synthetic asymmetric mono-cyanide cofactor have been prepared using two different hydrogenase scaffolds. Their structure and reactivity was investigated in order to elucidate the design rationale behind the native di-cyanide cofactor, and by extension the second coordination sphere of the active-site pocket. Surprisingly, the choice of host enzyme was found to have a dramatic impact on reactivity. Moreover, the study shows that synthetic manipulations of the active-site can significantly increase inhibitor tolerance, as compared to native [FeFe] hydrogenase, while retaining the enzyme's native capacity for reversible catalysis.
Collapse
Affiliation(s)
- Marco Lorenzi
- Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University Lägerhyddsvägen 1 75120 Uppsala Sweden
| | - Joe Gellett
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford South Parks Road OX1 3QR UK
| | - Afridi Zamader
- Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University Lägerhyddsvägen 1 75120 Uppsala Sweden
- Laboratoire de Chimie et Biologie des Metaux, iRTSV-LCBM/Biocat, Commissariat à l'Energie Atomique (CEA) Grenoble 17, Rue des Martyrs, UMR 5249 38054 Grenoble Cedex 09 France
| | - Moritz Senger
- Department of Chemistry - Ångström, Physical Chemistry, Uppsala University Lägerhyddsvägen 1 75120 Uppsala Sweden
| | - Zehui Duan
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford South Parks Road OX1 3QR UK
| | - Patricia Rodríguez-Maciá
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford South Parks Road OX1 3QR UK
| | - Gustav Berggren
- Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University Lägerhyddsvägen 1 75120 Uppsala Sweden
| |
Collapse
|
13
|
Dhara S, Dey S, Panda S, Lahiri GK. On the Question of S-S Bond Cleavage of 2,2'-Dithiodipyridine on Selective Ru and Os Platforms. MLCT or Hydride or Solvent Mediated Event. Inorg Chem 2022; 61:14297-14312. [PMID: 36044731 DOI: 10.1021/acs.inorgchem.2c01866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This article deals with the S-S bond scission of the model substrate 2,2'-dithiodipyridine (DTDP) in the presence of a selective set of metal precursors: RuII(acac)2, [RuIICl2(PPh3)3], [RuIIHCl(CO)(PPh3)3], [RuII(H)2(CO)(PPh3)3], [RuII(bpy)2Cl2], [RuII(pap)2Cl2], [OsII(bpy)2Cl2], and [OsII(pap)2Cl2] (acac, acetylacetonate; bpy, 2,2'-bipyridine; pap, 2-phenylazopyridine). This led to the eventual formation of the corresponding mononuclear complexes containing the cleaved pyridine-2-thiolate unit in 1-4/[5]ClO4-[8]ClO4. The formation of the complexes was ascertained by their single-crystal X-ray structures, which also established sterically constrained four-membered chelate (average N1-M-S1 angle of 67.89°) originated from the in situ-generated pyridine-2-thiolate unit. Ruthenium(III)-derived one-electron paramagnetic complexes 1-2 (S = 1/2, magnetic moment/B.M. = 1.82 (1)/1.81(2)) exhibited metal-based anisotropic electron paramagnetic resonance (EPR) (Δg: 1/2 = 0.64/0.93, ⟨g⟩: 1/2 = 2.173/2.189) and a broad 1H nuclear magnetic resonance (NMR) signature due to the contact shift effect. The spectroelectrochemical and electronic structural aspects of the complexes were analyzed experimentally in combination with theoretical calculations of density functional theory (DFT and TD-DFT). The unperturbed feature of DTDP even in refluxing ethanol over a period of 10 h can be attributed to the active participation of the metal fragments in facilitating S-S bond cleavage in 1-4/[5]ClO4-[8]ClO4. It also revealed the following three probable pathways toward S-S bond cleavage of DTDP as a function of metal precursors: (i) the metal-to-ligand charge-transfer (MLCT) (RuII → σ* of DTDP)-driven metal oxidation (RuII → RuIII) process in the case of relatively electron-rich metal fragments {RuII(acac)2} or RuIICl2 in 1 or 2, respectively; (ii) metal hydride-assisted formation of 3 or 4 with the concomitant generation of H2; and (iii) S-S bond reduction with the simultaneous oxidation of the solvent benzyl alcohol to benzaldehyde.
Collapse
Affiliation(s)
- Suman Dhara
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanchaita Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanjib Panda
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
14
|
Genome-Scale Mining of Acetogens of the Genus Clostridium Unveils Distinctive Traits in [FeFe]- and [NiFe]-Hydrogenase Content and Maturation. Microbiol Spectr 2022; 10:e0101922. [PMID: 35735976 PMCID: PMC9431212 DOI: 10.1128/spectrum.01019-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Knowledge of the organizational and functional properties of hydrogen metabolism is pivotal to the construction of a framework supportive of a hydrogen-fueled low-carbon economy. Hydrogen metabolism relies on the mechanism of action of hydrogenases. In this study, we investigated the genomes of several industrially relevant acetogens of the genus Clostridium (C. autoethanogenum, C. ljungdahlii, C. carboxidivorans, C. drakei, C. scatologenes, C. coskatii, C. ragsdalei, C. sp. AWRP) to systematically identify their intriguingly diversified hydrogenases’ repertoire. An entirely computational annotation pipeline unveiled common and strain-specific traits in the functional content of [NiFe]- and [FeFe]-hydrogenases. Hydrogenases were identified and categorized into functionally distinct classes by the combination of sequence homology, with respect to a database of curated nonredundant hydrogenases, with the analysis of sequence patterns characteristic of the mode of action of [FeFe]- and [NiFe]-hydrogenases. The inspection of the genes in the neighborhood of the catalytic subunits unveiled a wide agreement between their genomic arrangement and the gene organization templates previously developed for the predicted hydrogenase classes. Subunits’ characterization of the identified hydrogenases allowed us to glean some insights on the redox cofactor-binding determinants in the diaphorase subunits of the electron-bifurcating [FeFe]-hydrogenases. Finally, the reliability of the inferred hydrogenases was corroborated by the punctual analysis of the maturation proteins necessary for the biosynthesis of [NiFe]- and [FeFe]-hydrogenases. IMPORTANCE Mastering hydrogen metabolism can support a sustainable carbon-neutral economy. Of the many microorganisms metabolizing hydrogen, acetogens of the genus Clostridium are appealing, with some of them already in usage as industrial workhorses. Having provided detailed information on the hydrogenase content of an unprecedented number of clostridial acetogens at the gene level, our study represents a valuable knowledge base to deepen our understanding of hydrogenases’ functional specificity and/or redundancy and to develop a large array of biotechnological processes. We also believe our study could serve as a basis for future strain-engineering approaches, acting at the hydrogenases’ level or at the level of their maturation proteins. On the other side, the wealth of functional elements discussed in relation to the identified hydrogenases is worthy of further investigation by biochemical and structural studies to ultimately lead to the usage of these enzymes as valuable catalysts.
Collapse
|
15
|
Schaupp S, Arriaza‐Gallardo FJ, Pan H, Kahnt J, Angelidou G, Paczia N, Costa K, Hu X, Shima S. In Vitro Biosynthesis of the [Fe]-Hydrogenase Cofactor Verifies the Proposed Biosynthetic Precursors. Angew Chem Int Ed Engl 2022; 61:e202200994. [PMID: 35286742 PMCID: PMC9314073 DOI: 10.1002/anie.202200994] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 02/06/2023]
Abstract
In the FeGP cofactor of [Fe]-hydrogenase, low-spin FeII is in complex with two CO ligands and a pyridinol derivative; the latter ligates the iron with a 6-acylmethyl substituent and the pyridinol nitrogen. A guanylylpyridinol derivative, 6-carboxymethyl-3,5-dimethyl-4-guanylyl-2-pyridinol (3), is produced by the decomposition of the FeGP cofactor under irradiation with UV-A/blue light and is also postulated to be a precursor of FeGP cofactor biosynthesis. HcgC and HcgB catalyze consecutive biosynthesis steps leading to 3. Here, we report an in vitro biosynthesis assay of the FeGP cofactor using the cell extract of the ΔhcgBΔhcgC strain of Methanococcus maripaludis, which does not biosynthesize 3. We chemically synthesized pyridinol precursors 1 and 2, and detected the production of the FeGP cofactor from 1, 2 and 3. These results indicated that 1, 2 and 3 are the precursors of the FeGP cofactor, and the carboxy group of 3 is converted to the acyl ligand.
Collapse
Affiliation(s)
- Sebastian Schaupp
- Max Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Straße 1035043MarburgGermany
| | | | - Hui‐jie Pan
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI, BCH 33051015LausanneSwitzerland
| | - Jörg Kahnt
- Max Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Straße 1035043MarburgGermany
| | - Georgia Angelidou
- Max Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Straße 1035043MarburgGermany
| | - Nicole Paczia
- Max Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Straße 1035043MarburgGermany
| | - Kyle Costa
- Department of Plant and Microbial BiologyUniversity of MinnesotaTwin CitiesSt. Paul, MNUSA
| | - Xile Hu
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI, BCH 33051015LausanneSwitzerland
| | - Seigo Shima
- Max Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Straße 1035043MarburgGermany
| |
Collapse
|
16
|
Tachezy J, Makki A, Hrdý I. The hydrogenosomes of Trichomonas vaginalis. J Eukaryot Microbiol 2022; 69:e12922. [PMID: 35567536 DOI: 10.1111/jeu.12922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This review is dedicated to the 50th anniversary of the discovery of hydrogenosomes by Miklós Müller and Donald Lindmark, which we will celebrate the following year. It was a long journey from the first observation of enigmatic rows of granules in trichomonads at the end of the 19th century to their first biochemical characterization in 1973. The key experiments by Müller and Lindmark revealed that the isolated granules contain hydrogen-producing hydrogenase, similar to some anaerobic bacteria-a discovery that gave birth to the field of hydrogenosomes. It is also important to acknowledge the parallel work of the team of Apolena Čerkasovová, Jiří Čerkasov, and Jaroslav Kulda, who demonstrated that these granules, similar to mitochondria, produce ATP. However, the evolutionary origin of hydrogenosomes remained enigmatic until the turn of the millennium, when it was finally accepted that hydrogenosomes and mitochondria evolved from a common ancestor. After a historical introduction, the review provides an overview of hydrogenosome biogenesis, hydrogenosomal protein import, and the relationship between the peculiar structure of membrane translocases and its low inner membrane potential due to the lack of respiratory complexes. Next, it summarizes the current state of knowledge on energy metabolism, the oxygen defense system, and iron/sulfur cluster assembly.
Collapse
Affiliation(s)
- Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
| | - Abhijith Makki
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
| |
Collapse
|
17
|
Richardson KH, Seif-Eddine M, Sills A, Roessler MM. Controlling and exploiting intrinsic unpaired electrons in metalloproteins. Methods Enzymol 2022; 666:233-296. [PMID: 35465921 DOI: 10.1016/bs.mie.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Electron paramagnetic resonance spectroscopy encompasses a versatile set of techniques that allow detailed insight into intrinsically occurring paramagnetic centers in metalloproteins and enzymes that undergo oxidation-reduction reactions. In this chapter, we discuss the process from isolating the protein to acquiring and analyzing pulse EPR spectra, adopting a practical perspective. We start with considerations when preparing the protein sample, explain techniques and procedures available for determining the reduction potential of the redox-active center of interest and provide details on methodologies to trap a given paramagnetic state for detailed pulse EPR studies, with an emphasis on biochemical and spectroscopic tools available when multiple EPR-active species are present. We elaborate on some of the most commonly used pulse EPR techniques and the choices the user has to make, considering advantages and disadvantages and how to avoid pitfalls. Examples are provided throughout.
Collapse
Affiliation(s)
| | - Maryam Seif-Eddine
- Imperial College London, Molecular Sciences Research Hub, London, United Kingdom
| | - Adam Sills
- Imperial College London, Molecular Sciences Research Hub, London, United Kingdom
| | - Maxie M Roessler
- Imperial College London, Molecular Sciences Research Hub, London, United Kingdom.
| |
Collapse
|
18
|
Schaupp S, Arriaza‐Gallardo FJ, Pan H, Kahnt J, Angelidou G, Paczia N, Costa K, Hu X, Shima S. In Vitro Biosynthesis of the [Fe]‐Hydrogenase Cofactor Verifies the Proposed Biosynthetic Precursors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sebastian Schaupp
- Max Planck Institute for Terrestrial Microbiology Karl-von-Frisch-Straße 10 35043 Marburg Germany
| | | | - Hui‐jie Pan
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI, BCH 3305 1015 Lausanne Switzerland
| | - Jörg Kahnt
- Max Planck Institute for Terrestrial Microbiology Karl-von-Frisch-Straße 10 35043 Marburg Germany
| | - Georgia Angelidou
- Max Planck Institute for Terrestrial Microbiology Karl-von-Frisch-Straße 10 35043 Marburg Germany
| | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology Karl-von-Frisch-Straße 10 35043 Marburg Germany
| | - Kyle Costa
- Department of Plant and Microbial Biology University of Minnesota Twin Cities St. Paul, MN USA
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI, BCH 3305 1015 Lausanne Switzerland
| | - Seigo Shima
- Max Planck Institute for Terrestrial Microbiology Karl-von-Frisch-Straße 10 35043 Marburg Germany
| |
Collapse
|
19
|
King SJ, Jerkovic A, Brown LJ, Petroll K, Willows RD. Synthetic biology for improved hydrogen production in Chlamydomonas reinhardtii. Microb Biotechnol 2022; 15:1946-1965. [PMID: 35338590 PMCID: PMC9249334 DOI: 10.1111/1751-7915.14024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022] Open
Abstract
Hydrogen is a clean alternative to fossil fuels. It has applications for electricity generation and transportation and is used for the manufacturing of ammonia and steel. However, today, H2 is almost exclusively produced from coal and natural gas. As such, methods to produce H2 that do not use fossil fuels need to be developed and adopted. The biological manufacturing of H2 may be one promising solution as this process is clean and renewable. Hydrogen is produced biologically via enzymes called hydrogenases. There are three classes of hydrogenases namely [FeFe], [NiFe] and [Fe] hydrogenases. The [FeFe] hydrogenase HydA1 from the model unicellular algae Chlamydomonas reinhardtii has been studied extensively and belongs to the A1 subclass of [FeFe] hydrogenases that have the highest turnover frequencies amongst hydrogenases (21,000 ± 12,000 H2 s−1 for CaHydA from Clostridium acetobutyliticum). Yet to date, limitations in C. reinhardtii H2 production pathways have hampered commercial scale implementation, in part due to O2 sensitivity of hydrogenases and competing metabolic pathways, resulting in low H2 production efficiency. Here, we describe key processes in the biogenesis of HydA1 and H2 production pathways in C. reinhardtii. We also summarize recent advancements of algal H2 production using synthetic biology and describe valuable tools such as high‐throughput screening (HTS) assays to accelerate the process of engineering algae for commercial biological H2 production.
Collapse
Affiliation(s)
- Samuel J King
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ante Jerkovic
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Louise J Brown
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kerstin Petroll
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Robert D Willows
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
20
|
Britt RD, Tao L, Rao G, Chen N, Wang LP. Proposed Mechanism for the Biosynthesis of the [FeFe] Hydrogenase H-Cluster: Central Roles for the Radical SAM Enzymes HydG and HydE. ACS BIO & MED CHEM AU 2022; 2:11-21. [PMID: 35187536 PMCID: PMC8855341 DOI: 10.1021/acsbiomedchemau.1c00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/05/2023]
Abstract
Radical S-adenosylmethionine (radical SAM or rSAM) enzymes use their S-adenosylmethionine cofactor bound to a unique Fe of a [4Fe-4S] cluster to generate the "hot" 5'-deoxyadenosyl radical, which drives highly selective radical reactions via specific interactions with a given rSAM enzyme's substrate. This Perspective focuses on the two rSAM enzymes involved in the biosynthesis of the organometallic H-cluster of [FeFe] hydrogenases. We present here a detailed sequential model initiated by HydG, which lyses a tyrosine substrate via a 5'-deoxyadenosyl H atom abstraction from those amino acid's amino group, initially producing dehydroglycine and an oxidobenzyl radical. In this model, two successive radical cascade reactions lead ultimately to the formation of HydG's product, a mononuclear Fe organometallic complex: [Fe(II)(CN)(CO)2(cysteinate)]-, with the iron originating from a unique "dangler" Fe coordinated by a cysteine ligand providing a sulfur bridge to another [4Fe-4S] auxiliary cluster in the enzyme. In turn, in this model, [Fe(II)(CN)(CO)2(cysteinate)]- is the substrate for HydE, the second rSAM enzyme in the biosynthetic pathway, which activates this mononuclear organometallic unit for dimerization, forming a [Fe2S2(CO)4(CN)2] precursor to the [2Fe] H component of the H-cluster, requiring only the completion of the bridging azadithiolate (SCH2NHCH2S) ligand. This model is built upon a foundation of data that incorporates cell-free synthesis, isotope sensitive spectroscopies, and the selective use of synthetic complexes substituting for intermediates in the enzymatic "assembly line". We discuss controversies pertaining to this model and some remaining open issues to be addressed by future work.
Collapse
Affiliation(s)
- R David Britt
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Lizhi Tao
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Guodong Rao
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Nanhao Chen
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
21
|
Nicolet Y, Cherrier MV, Amara P. Radical SAM Enzymes and Metallocofactor Assembly: A Structural Point of View. ACS BIO & MED CHEM AU 2022; 2:36-52. [PMID: 37102176 PMCID: PMC10114646 DOI: 10.1021/acsbiomedchemau.1c00044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This Review focuses on the structure-function relationship of radical S-adenosyl-l-methionine (SAM) enzymes involved in the assembly of metallocofactors corresponding to the active sites of [FeFe]-hydrogenase and nitrogenase [MoFe]-protein. It does not claim to correspond to an extensive review on the assembly machineries of these enzyme active sites, for which many good reviews are already available, but instead deals with the contribution of structural data to the understanding of their chemical mechanism (Buren et al. Chem. Rev.2020, 142 ( (25), ) 11006-11012; Britt et al. Chem. Sci.2020, 11 ( (38), ), 10313-10323). Hence, we will present the history and current knowledge about the radical SAM maturases HydE, HydG, and NifB as well as what, in our opinion, should be done in the near future to overcome the existing barriers in our understanding of this fascinating chemistry that intertwine organic radicals and organometallic complexes.
Collapse
Affiliation(s)
- Yvain Nicolet
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France
| | - Mickael V. Cherrier
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France
| | - Patricia Amara
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France
| |
Collapse
|
22
|
Zhang Y, Tao L, Woods TJ, Britt RD, Rauchfuss TB. Organometallic Fe 2(μ-SH) 2(CO) 4(CN) 2 Cluster Allows the Biosynthesis of the [FeFe]-Hydrogenase with Only the HydF Maturase. J Am Chem Soc 2022; 144:1534-1538. [PMID: 35041427 PMCID: PMC9169013 DOI: 10.1021/jacs.1c12506] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The biosynthesis of the active site of the [FeFe]-hydrogenases (HydA1), the H-cluster, is of interest because these enzymes are highly efficient catalysts for the oxidation and production of H2. The biosynthesis of the [2Fe]H subcluster of the H-cluster proceeds from simple precursors, which are processed by three maturases: HydG, HydE, and HydF. Previous studies established that HydG produces an Fe(CO)2(CN) adduct of cysteine, which is the substrate for HydE. In this work, we show that by using the synthetic cluster [Fe2(μ-SH)2(CN)2(CO)4]2- active HydA1 can be biosynthesized without maturases HydG and HydE.
Collapse
Affiliation(s)
- Yu Zhang
- School of Chemical Sciences, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Lizhi Tao
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Toby J Woods
- School of Chemical Sciences, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Thomas B Rauchfuss
- School of Chemical Sciences, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
23
|
Unusual structures and unknown roles of FeS clusters in metalloenzymes seen from a resonance Raman spectroscopic perspective. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214287] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Rao G, Chen N, Marchiori DA, Wang LP, Britt RD. Accumulation and Pulse Electron Paramagnetic Resonance Spectroscopic Investigation of the 4-Oxidobenzyl Radical Generated in the Radical S-Adenosyl-l-methionine Enzyme HydG. Biochemistry 2022; 61:107-116. [PMID: 34989236 DOI: 10.1021/acs.biochem.1c00619] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The radical S-adenosyl-l-methionine (SAM) enzyme HydG cleaves tyrosine to generate CO and CN- ligands of the [FeFe] hydrogenase H-cluster, accompanied by the formation of a 4-oxidobenzyl radical (4-OB•), which is the precursor to the HydG p-cresol byproduct. Native HydG only generates a small amount of 4-OB•, limiting detailed electron paramagnetic resonance (EPR) spectral characterization beyond our initial EPR lineshape study employing various tyrosine isotopologues. Here, we show that the concentration of trapped 4-OB• is significantly increased in reactions using HydG variants, in which the "dangler Fe" to which CO and CN- bind is missing or substituted by a redox-inert Zn2+ ion. This allows for the detailed characterization of 4-OB• using high-field EPR and electron nuclear double resonance spectroscopy to extract its g-values and 1H/13C hyperfine couplings. These results are compared to density functional theory-predicted values of several 4-OB• models with different sizes and protonation states, with a best fit to the deprotonated radical anion configuration of 4-OB•. Overall, our results depict a clearer electronic structure of the transient 4-OB• radical and provide new insights into the radical SAM chemistry of HydG.
Collapse
Affiliation(s)
- Guodong Rao
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Nanhao Chen
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - David A Marchiori
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - R David Britt
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
25
|
Chen N, Rao G, Britt RD, Wang LP. Quantum Chemical Study of a Radical Relay Mechanism for the HydG-Catalyzed Synthesis of a Fe(II)(CO) 2(CN)cysteine Precursor to the H-Cluster of [FeFe] Hydrogenase. Biochemistry 2021; 60:3016-3026. [PMID: 34569243 DOI: 10.1021/acs.biochem.1c00379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The [FeFe] hydrogenase catalyzes the redox interconversion of protons and H2 with a Fe-S "H-cluster" employing CO, CN, and azadithiolate ligands to two Fe centers. The biosynthesis of the H-cluster is a highly interesting reaction carried out by a set of Fe-S maturase enzymes called HydE, HydF, and HydG. HydG, a member of the radical S-adenosylmethionine (rSAM) family, converts tyrosine, cysteine, and Fe(II) into an organometallic Fe(II)(CO)2(CN)cysteine "synthon", which serves as the substrate for HydE. Although key aspects of the HydG mechanism have been experimentally determined via isotope-sensitive spectroscopic methods, other important mechanistic questions have eluded experimental determination. Here, we use computational quantum chemistry to refine the mechanism of the HydG catalytic reaction. We utilize quantum mechanics/molecular mechanics simulations to investigate the reactions at the canonical Fe-S cluster, where a radical cleavage of the tyrosine substrate takes place and proceeds through a relay of radical intermediates to form HCN and a COO•- radical anion. We then carry out a broken-symmetry density functional theory study of the reactions at the unusual five-iron auxiliary Fe-S cluster, where two equivalents of CN- and COOH• coordinate to the fifth "dangler iron" in a series of substitution and redox reactions that yield the synthon as the final product for further processing by HydE.
Collapse
Affiliation(s)
- Nanhao Chen
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Guodong Rao
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - R David Britt
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
26
|
Kosourov S, Böhm M, Senger M, Berggren G, Stensjö K, Mamedov F, Lindblad P, Allahverdiyeva Y. Photosynthetic hydrogen production: Novel protocols, promising engineering approaches and application of semi-synthetic hydrogenases. PHYSIOLOGIA PLANTARUM 2021; 173:555-567. [PMID: 33860946 DOI: 10.1111/ppl.13428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Photosynthetic production of molecular hydrogen (H2 ) by cyanobacteria and green algae is a potential source of renewable energy. These organisms are capable of water biophotolysis by taking advantage of photosynthetic apparatus that links water oxidation at Photosystem II and reduction of protons to H2 downstream of Photosystem I. Although the process has a theoretical potential to displace fossil fuels, photosynthetic H2 production in its current state is not yet efficient enough for industrial applications due to a number of physiological, biochemical, and engineering barriers. This article presents a short overview of the metabolic pathways and enzymes involved in H2 photoproduction in cyanobacteria and green algae and our present understanding of the mechanisms of this process. We also summarize recent advances in engineering photosynthetic cell factories capable of overcoming the major barriers to efficient and sustainable H2 production.
Collapse
Affiliation(s)
- Sergey Kosourov
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Maximilian Böhm
- Molecular Biomimetics, Department of Chemistry-Ångström, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Moritz Senger
- Molecular Biomimetics, Department of Chemistry-Ångström, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Gustav Berggren
- Molecular Biomimetics, Department of Chemistry-Ångström, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry-Ångström, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry-Ångström, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
27
|
Dhara S, Panda S, Lahiri GK. Redox induced S-S bond cleavage of 2,2'-dithiobisbenzothiazole - leading to a [2Ru-2S] core analogous to [2Fe-2S] cluster. Dalton Trans 2021; 50:12408-12412. [PMID: 34378605 DOI: 10.1039/d1dt02211c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Facile reduction of 2,2'-dithiobisbenzothiazole by the mediation of metal-to-ligand charge transfer or by internal reducing equivalent is demonstrated. It leads to various binding modes of thiolates (κ1, κ2, μ) in a series of mononuclear and dinuclear ruthenium complexes. The dinuclear complex exhibited electron transfer processes similar to a [2Fe-2S] cluster.
Collapse
Affiliation(s)
- Suman Dhara
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Sanjib Panda
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
28
|
Britt RD, Rauchfuss TB. Biosynthesis of the [FeFe] hydrogenase H-cluster via a synthetic [Fe(II)(CN)(CO) 2(cysteinate)] - complex. Dalton Trans 2021; 50:12386-12391. [PMID: 34545884 DOI: 10.1039/d1dt02258j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The H-cluster of [Fe-Fe] hydrogenase consists of a [4Fe]H subcluster linked by the sulfur of a cysteine residue to an organometallic [2Fe]H subcluster that utilizes terminal CO and CN ligands to each Fe along with a bridging CO and a bridging SCH2NHCH2S azadithiolate (adt) to catalyze proton reduction or hydrogen oxidation. Three Fe-S "maturase" proteins, HydE, HydF, and HydG, are responsible for the biosynthesis of the [2Fe]H subcluster and its incorporation into the hydrogenase enzyme to form this catalytically active H-cluster. We have proposed that HydG is a bifunctional enzyme that uses S-adenosylmethione (SAM) bound to a [4Fe-4S] cluster to lyse tyrosine via a transient 5'-deoxyadenosyl radical to produce CO and CN ligands to a unique cysteine-chelated Fe(II) that is linked to a second [4Fe-4S] cluster via the cysteine sulfur. In this "synthon model", after two cycles of tyrosine lysis, the product of HydG is completed: a [Fe(CN)(CO)2(cysteinate)]- organometallic unit that is vectored directly into the synthesis of the [2Fe]H sub-cluster. However our HydG-centric synthon model is not universally accepted, so further validation is important. In this Frontiers article, we discuss recent results using a synthetic "Syn-B" complex that donates [Fe(CN)(CO)2(cysteinate)]- units that match our proposed HydG product. Can Syn-B activate hydrogenase in the absence of HydG and its tyrosine substrate? If so, since Syn-B can be synthesized with specific magnetic nuclear isotopes and with chemical substitutions, its use could allow its enzymatic conversions on the route to the H-cluster to be monitored and modeled in fresh detail.
Collapse
Affiliation(s)
- R David Britt
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA.
| | - Thomas B Rauchfuss
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|