1
|
Kundu A, Dhillon AK, Singh R, Barman S, Siddhanta S, Chakraborty B. Evolution of Mn-Bi 2O 3 from the Mn-doped Bi 3O 4Br electro(pre)catalyst during the oxygen evolution reaction. Dalton Trans 2024; 53:8020-8032. [PMID: 38651992 DOI: 10.1039/d4dt00633j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Mn-doped Bi3O4Br has been synthesized using a solvothermal route. The undoped Bi3O4Br and Mn-Bi3O4Br materials possess orthorhombic unit cells with two distinct Bi sites forming a layered atomic arrangement. The shift in the (020) plane in the powder X-ray diffraction (PXRD) pattern confirms Mn-doping in the Bi3O4Br lattice. Elemental mapping indicated 7% Mn doping in the Bi3O4Br lattice structure. A core-level X-ray photoelectron study (XPS) indicates the presence of BiIII and MnII valence-states in Mn-Bi3O4Br. Doping with a cation (MnII) containing a different charge and ionic radius resulted in vacancy/defects in Mn-Bi3O4Br which further altered its electronic structure by reducing the indirect band gap, beneficial for electron conduction and electrocatalysis. The irreversible MnII to MnIII transformation at a potential of 1.48 V (vs. RHE) precedes the electrochemical oxygen evolution reaction (OER). The Mn-doped electrocatalyst achieved 10 mA cm-2 current density at 337 mV overpotential, while the pristine Bi3O4Br required 385 mV overpotential to reach the same activity. The pronounced OER activity of the Mn-Bi3O4Br sample over the pristine Bi3O4Br highlights the necessity of MnII doping. The superior activity of the Mn-Bi3O4Br catalyst over that of Bi3O4Br is due to a low Tafel slope, better double-layer capacitance (Cdl), and small charge-transfer resistance (Rct). The chronoamperometry (CA) study depicts long-term stability for 12 h at 20 mA cm-2. An electrolyzer fabricated as Pt(-)/(+)Mn-Bi3O4Br can deliver 10 mA cm-2 at a cell potential of 2.05 V. The post-CA-OER analyses of the anode confirmed the leaching of [Br-] followed by in situ formation of Mn-doped Bi2O3 as the electrocatalytically active species. Herein, an ultra-low Mn-doping into Bi3O4Br leads to an improvement in the electrocatalytic performance of the inactive Bi3O4Br material.
Collapse
Affiliation(s)
- Avinava Kundu
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India.
| | - Ashish Kumar Dhillon
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India.
| | - Ruchi Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India.
| | - Sanmitra Barman
- Center for Advanced Materials and Devices (CAMD), BML Munjal University, Haryana, India.
| | - Soumik Siddhanta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India.
| | - Biswarup Chakraborty
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India.
| |
Collapse
|
2
|
Adak M, Basak HK, Chakraborty B. Ease of Electrochemical Arsenate Dissolution from FeAsO 4 Microparticles during Alkaline Oxygen Evolution Reaction. ACS ORGANIC & INORGANIC AU 2023; 3:223-232. [PMID: 37545654 PMCID: PMC10401858 DOI: 10.1021/acsorginorgau.3c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 08/08/2023]
Abstract
Transition metal-based ABO4-type materials have now been paid significant attention due to their excellent electrochemical activity. However, a detailed study to understand the active species and its electro-evolution pathway is not traditionally performed. Herein, FeAsO4, a bimetallic ABO4-type oxide, has been prepared solvothermally. In-depth microscopic and spectroscopic studies showed that the as-synthesized cocoon-like FeAsO4 microparticles consist of several small individual nanocrystals with a mixture of monoclinic and triclinic phases. While depositing FeAsO4 on three-dimensional nickel foam (NF), it can show oxygen evolution reaction (OER) in a moderate operating potential. During the electrochemical activation of the FeAsO4/NF anode through cyclic voltammetric (CV) cycles prior to the OER study, an exponential increment in the current density (j) was observed. An ex situ Raman study with the electrode along with field emission scanning electron microscopy imaging showed that the pronounced OER activity with increasing number of CV cycles is associated with a rigorous morphological and chemical change, which is followed by [AsO4]3- leaching from FeAsO4. A chronoamperometric study and subsequent spectro- and microscopic analyses of the isolated sample from the electrode show an amorphous γ-FeO(OH) formation at the constant potential condition. The in situ formation of FeO(OH)ED (ED indicates electrochemically derived) shows better activity compared to pristine FeAsO4 and independently prepared FeO(OH). Tafel, impedance spectroscopic study, and determination of electrochemical surface area have inferred that the in situ formed FeO(OH)ED shows better electro-kinetics and possesses higher surface active sites compared to its parent FeAsO4. In this study, the electrochemical activity of FeAsO4 has been correlated with its structural integrity and unravels its electro-activation pathway by characterizing the active species for OER.
Collapse
|
3
|
Dasgupta B, Hausmann JN, Beltrán-Suito R, Kalra S, Laun K, Zebger I, Driess M, Menezes PW. A Facile Molecular Approach to Amorphous Nickel Pnictides and Their Reconstruction to Crystalline Potassium-Intercalated γ-NiOOH x Enabling High-Performance Electrocatalytic Water Oxidation and Selective Oxidation of 5-Hydroxymethylfurfural. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301258. [PMID: 37086146 DOI: 10.1002/smll.202301258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/29/2023] [Indexed: 05/03/2023]
Abstract
The low-temperature molecular precursor approach can be beneficial to conventional solid-state methods, which require high temperatures and lead to relatively large crystalline particles. Herein, a novel, single-step, room-temperature preparation of amorphous nickel pnictide (NiE; EP, As) nanomaterials is reported, starting from NaOCE(dioxane)n and NiBr2 (thf)1.5 . During application for the oxygen evolution reaction (OER), the pnictide anions leach, and both materials fully reconstruct into nickel(III/IV) oxide phases (similar to γ-NiOOH) comprising edge-sharing (NiO6 ) layers with intercalated potassium ions and a d-spacing of 7.27 Å. Remarkably, the intercalated γ-NiOOHx phases are nanocrystalline, unlike the amorphous nickel pnictide precatalysts. This unconventional reconstruction is fast and complete, which is ascribed to the amorphous nature of the nanostructured NiE precatalysts. The obtained γ-NiOOHx can effectively catalyse the OER for 100 h at a high current density (400 mA cm-2 ) and achieves outstandingly high current densities (>600 mA cm-2 ) for the selective, value-added oxidation of 5-hydroxymethylfurfural (HMF). The NiP-derived γ-NiOOHx shows a higher activity for both processes due to more available active sites. It is anticipated that the herein developed, effective, room-temperature molecular synthesis of amorphous nickel pnictide nanomaterials can be applied to other functional transition-metal pnictides.
Collapse
Affiliation(s)
- Basundhara Dasgupta
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Jan Niklas Hausmann
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Rodrigo Beltrán-Suito
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Shweta Kalra
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Konstantin Laun
- Department of Chemistry: Physical Chemistry/Biophysical Chemistry, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Ingo Zebger
- Department of Chemistry: Physical Chemistry/Biophysical Chemistry, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Prashanth Wilfred Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
4
|
Li A, Bai X, Xie Y, Xia P, Bao H, He M, Zeng X, Yang W, Li X. Preparation and characterization of PMT-TiO 2-NTs@NiO-C/Sn-Sb composite electrodes by a two-step pulsed electrodeposition method for the degradation of crystalline violet. CHEMOSPHERE 2023:139097. [PMID: 37302504 DOI: 10.1016/j.chemosphere.2023.139097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
To overcome the limitations imposed by Sn-Sb electrodes, the titanium foam (PMT)-TiO2-NTs@NiO-C/Sn-Sb composite electrodes with cubic crystal structure are synthesized by introducing NiO@C nanosheet arrays interlayer on the TiO2-NTs/PMT matrix through hydrothermal and carbonization process. Then a two-step pulsed electrodeposition method is used to prepare the Sn-Sb coating. Benefiting from the advantages of stacked 2D layer-sheet structure, the obtained electrodes exhibit enhanced stability and conductivity. Synergy of inner and outer layers fabricated by different pulse times strongly influence the electrochemical catalytic properties of the PMT-TiO2-NTs@NiO-C/Sn-Sb (Sn-Sb) electrode. Hence, the Sn-Sb (b0.5 h + w1 h) electrode is the optimal electrode to degrade the Crystalline Violet (CV). Next, the effect of the four experimental parameters (initial CV concentration, current density, pH value and supporting electrolyte concentration) on the degradation of CV by the electrode are investigated. The degradation of the CV is more sensitive to alkaline pH, and the rapid decolorization of CV when the pH is 10. Moreover, the possible electrocatalytic degradation pathway of CV is performed using HPLC-MS. Results from the tests show that the PMT-TiO2-NTs/NiO@C/Sn-Sb (b0.5 h + w1 h) electrode is an interesting alternative material in industrial wastewater applications.
Collapse
Affiliation(s)
- Anqi Li
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, PR China
| | - Xuening Bai
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, PR China
| | - Yuting Xie
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, PR China
| | - Pengyang Xia
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, PR China
| | - Hebin Bao
- Fundamental Studies Department, Army Logistics Academy of PLA, Chongqing, 401331, PR China
| | - Miao He
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, PR China
| | - Xuzhong Zeng
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, PR China
| | - Wenjing Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, PR China
| | - Xueming Li
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, PR China.
| |
Collapse
|
5
|
Ghosh S, Dasgupta B, Kalra S, Ashton MLP, Yang R, Kueppers CJ, Gok S, Alonso EG, Schmidt J, Laun K, Zebger I, Walter C, Driess M, Menezes PW. Evolution of Carbonate-Intercalated γ-NiOOH from a Molecularly Derived Nickel Sulfide (Pre)Catalyst for Efficient Water and Selective Organic Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206679. [PMID: 36651137 DOI: 10.1002/smll.202206679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The development of a competent (pre)catalyst for the oxygen evolution reaction (OER) to produce green hydrogen is critical for a carbon-neutral economy. In this aspect, the low-temperature, single-source precursor (SSP) method allows the formation of highly efficient OER electrocatalysts, with better control over their structural and electronic properties. Herein, a transition metal (TM) based chalcogenide material, nickel sulfide (NiS), is prepared from a novel molecular complex [NiII (PyHS)4 ][OTf]2 (1) and utilized as a (pre)catalyst for OER. The NiS (pre)catalyst requires an overpotential of only 255 mV to reach the benchmark current density of 10 mA cm-2 and shows 63 h of chronopotentiometry (CP) stability along with over 95% Faradaic efficiency in 1 m KOH. Several ex situ measurements and quasi in situ Raman spectroscopy uncover that NiS irreversibly transformed to a carbonate-intercalated γ-NiOOH phase under the alkaline OER conditions, which serves as the actual active structure for the OER. Additionally, this in situ formed active phase successfully catalyzes the selective oxidation of alcohol, aldehyde, and amine-based organic substrates to value-added chemicals, with high efficiencies.
Collapse
Affiliation(s)
- Suptish Ghosh
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Basundhara Dasgupta
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Shweta Kalra
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Marten L P Ashton
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Ruotao Yang
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Christopher J Kueppers
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Sena Gok
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Eduardo Garcia Alonso
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Johannes Schmidt
- Department of Chemistry, Functional Materials, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Konstantin Laun
- Department of Chemistry, Physical Chemistry/Biophysical Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, Sekr. PC14, 10623, Berlin, Germany
| | - Ingo Zebger
- Department of Chemistry, Physical Chemistry/Biophysical Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, Sekr. PC14, 10623, Berlin, Germany
| | - Carsten Walter
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Matthias Driess
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Prashanth W Menezes
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
6
|
Chen Z, Yang H, Mebs S, Dau H, Driess M, Wang Z, Kang Z, Menezes PW. Reviving Oxygen Evolution Electrocatalysis of Bulk La-Ni Intermetallics via Gaseous Hydrogen Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208337. [PMID: 36528302 DOI: 10.1002/adma.202208337] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
A hydrogen processing strategy is developed to enable bulk LaNi5 to attain high activity and long-term stability toward the electrocatalytic oxygen evolution reaction (OER). By a combination of in situ Raman and quasi in situ X-ray absorption (XAS) spectra, secondary-electron-excited scanning transmission electron microscopy (STEM) patterns as well as the Rietveld method and density functional theory (DFT) calculations, it is discovered that hydrogen-induced lattice distortion, grain refinement, and particle cracks dictate the effective reconstruction of the LaNi5 surface into a porous hetero-nanoarchitecture composed of uniformly confined active γ-NiOOH nanocrystals by La(OH)3 layer in the alkaline OER process. This significantly optimizes the charge transfer, structural integrity, active-site exposure, and adsorption energy toward the reaction intermediates. Benefiting from these merits, the overpotential (322 mV) at 100 mA cm-2 for the hydrogen-processed OER catalyst deposited on nickel foam is reduced by 104 mV as compared to the original phase. Notably, it exhibits remarkable stability for 10 days at an industrial-grade current density of more than 560 mA cm-2 in alkaline media.
Collapse
Affiliation(s)
- Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Hongyuan Yang
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Stefan Mebs
- S Department of Physics, Free University of Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Holger Dau
- S Department of Physics, Free University of Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Matthias Driess
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Zhaowu Wang
- School of Physics and Engineering, Longmen laboratory, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Prashanth W Menezes
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
- Materials Chemistry Group for Thin Film Catalysis-CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
7
|
Rienmüller J, Schmidt A, Yutronkie NJ, Clérac R, Werncke CG, Weigend F, Dehnen S. Reactive Solubilization of Heterometallic Clusters by Treatment of (TrBi 3 ) 2- Anions (Tr=Ga, In, Tl) with [Mn{N(SiMe 3 ) 2 } 2 ]. Angew Chem Int Ed Engl 2022; 61:e202210683. [PMID: 36008351 PMCID: PMC9825972 DOI: 10.1002/anie.202210683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 01/11/2023]
Abstract
Lowering the charge of Zintl anions by (element-)organic substituents allows their use as sources of (semi)metal nanostructures in common organic solvents, as realized for group 15 anions or Ge9 4- and Sn9 4- . We developed a new strategy for other anions, using low-coordinate 3d metal complexes as electrophiles. [K(crypt-222)]+ salts of (TrBi3 )2- anions dissolved in situ in Et2 O and/or THF when reacted with [Mn(hmds)2 ]. Work-up afforded soluble [K(crypt-222)]+ salts of [{(hmds)2 Mn}2 (TlBi3 )]2- (in 1), [{(hmds)2 Mn}2 (Bi2 )]2- (in 2), and [{(hmds)Mn}4 (Bi2 )2 ]2- (in 3) (crypt-222=4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane; Tr=Ga, In, Tl; hmds=N(SiMe3 )2 ), representing rare cases of Zintl clusters with open-shell metal atoms. 1 comprises the first coordination compound of the (TlBi3 )2- anion, 2 features a diamond-shaped {Pn2 M2 } unit, and 3 is a mixed-valent MnI /MnII compound. The uncommon electronic structures in 1-3 and magnetic coupling were studied by comprehensive DFT calculations.
Collapse
Affiliation(s)
- Julia Rienmüller
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Str. 453043MarburgGermany
| | - Andreas Schmidt
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Str. 453043MarburgGermany
| | - Nathan J. Yutronkie
- Univ. BordeauxCNRSCentre de Recherche Paul PascalCRPPUMR 503133600PessacFrance
| | - Rodolphe Clérac
- Univ. BordeauxCNRSCentre de Recherche Paul PascalCRPPUMR 503133600PessacFrance
| | - C. Gunnar Werncke
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Str. 453043MarburgGermany
| | - Florian Weigend
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Str. 453043MarburgGermany
| | - Stefanie Dehnen
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Str. 453043MarburgGermany
| |
Collapse
|
8
|
Walter C, Beltrán-Suito R, Schwarze M, Gupta NK, Menezes PW, Driess M. Elemental chalcogens acting as metal-free electrocatalysts for effective alkaline and acidic hydrogen evolution reaction. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Rienmüller J, Schmidt A, Yutronkie NJ, Clérac R, Werncke CG, Weigend F, Dehnen S. Reactive Solubilization of Heterometallic Clusters by Treatment of (TrBi3)2– Anions (Tr = Ga, In, Tl) with [Mn{N(SiMe3)2}2]. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Julia Rienmüller
- Philipps-Universität Marburg ZMB: Philipps-Universitat Marburg Fachbereich Chemie GERMANY
| | - Andreas Schmidt
- Philipps-Universität Marburg ZMB: Philipps-Universitat Marburg Fachbereich Chemie GERMANY
| | | | | | - C. Gunnar Werncke
- Philipps-Universität Marburg ZMB: Philipps-Universitat Marburg Fachbereich Chemie GERMANY
| | - Florian Weigend
- Philipps-Universität Marburg ZMB: Philipps-Universitat Marburg Fachbereich Chemie GERMANY
| | - Stefanie Dehnen
- Philipps-Universität Marburg: Philipps-Universitat Marburg Fachbereich Chemie Hans-Meerwein-Strasse 4 35032 Marburg GERMANY
| |
Collapse
|
10
|
Qi J, Chen M, Zhang W, Cao R. Ammonium cobalt phosphate with asymmetric coordination sites for enhanced electrocatalytic water oxidation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64035-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Chen Z, Yang H, Kang Z, Driess M, Menezes PW. The Pivotal Role of s-, p-, and f-Block Metals in Water Electrolysis: Status Quo and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108432. [PMID: 35104388 DOI: 10.1002/adma.202108432] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/19/2022] [Indexed: 05/27/2023]
Abstract
Transition metals, in particular noble metals, are the most common species in metal-mediated water electrolysis because they serve as highly active catalytic sites. In many cases, the presence of nontransition metals, that is, s-, p-, and f-block metals with high natural abundance in the earth-crust in the catalytic material is indispensable to boost efficiency and durability in water electrolysis. This is why alkali metals, alkaline-earth metals, rare-earth metals, lean metals, and metalloids receive growing interest in this research area. In spite of the pivotal role of these nontransition metals in tuning efficiency of water electrolysis, there is far more room for developments toward a knowledge-based catalyst design. In this review, five classes of nontransition metals species which are successfully utilized in water electrolysis, with special emphasis on electronic structure-catalytic activity relationships and phase stability, are discussed. Moreover, specific fundamental aspects on electrocatalysts for water electrolysis as well as a perspective on this research field are also addressed in this account. It is anticipated that this review can trigger a broader interest in using s-, p-, and f-block metals species toward the discovery of advanced polymetal-containing electrocatalysts for practical water splitting.
Collapse
Affiliation(s)
- Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Hongyuan Yang
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Matthias Driess
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Prashanth W Menezes
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
- Material Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
12
|
Yang H, Hausmann JN, Hlukhyy V, Braun T, Laun K, Zebger I, Driess M, Menezes PW. An Intermetallic CaFe6Ge6 Approach to Unprecedented Ca‐Fe‐O Electrocatalyst for Efficient Alkaline Oxygen Evolution Reaction. ChemCatChem 2022. [DOI: 10.1002/cctc.202200293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Viktor Hlukhyy
- Technical University of Munich: Technische Universitat Munchen Chemistry Lichtenbergstraße 4Garching 85747 Garching GERMANY
| | - Thomas Braun
- Technical University of Munich: Technische Universitat Munchen Chemistry GERMANY
| | | | - Ingo Zebger
- Technical University of Berlin: Technische Universitat Berlin Chemistry GERMANY
| | - Matthias Driess
- Technische Universitat Graz Chemistry Strasse des 17. Juni 135, Sekr. C2Technische Universität BerlinBerlin D-10623 Berlin GERMANY
| | - Prashanth W. Menezes
- Technische Universitat Berlin Chemistry Strasse des 17. Juni 135, Sekr. C2 10623 Berlin GERMANY
| |
Collapse
|
13
|
Aggarwal P, Sarkar D, Awasthi K, Menezes PW. Functional role of single-atom catalysts in electrocatalytic hydrogen evolution: Current developments and future challenges. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214289] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Qi J, Shen X, Chen M, Shangguan E, Zhang W, Cao R. Lewis acid Mg2+-doped cobalt phosphate nanosheets for enhanced electrocatalytic oxygen evolution reaction. Chem Commun (Camb) 2022; 58:10801-10804. [DOI: 10.1039/d2cc03755f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobalt-based materials are considered to be promising electrocatalysts for oxygen evolution reaction (OER). However, their catalytic efficiencies are still limited by sluggish surface adsorption and high activation overpotentials. Herein, Lewis...
Collapse
|
15
|
Li F, Tang J, Ke Q, Guo Y, Ha MN, Wan C, Lei Z, Gu J, Ling Q, Nguyen VN, Zhan W. Investigation into Enhanced Catalytic Performance for Epoxidation of Styrene over LaSrCo xFe 2–xO 6 Double Perovskites: The Role of Singlet Oxygen Species Promoted by the Photothermal Effect. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03164] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fengfeng Li
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Jun Tang
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Qingping Ke
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Yun Guo
- Key Laboratory for Advanced Materials and Research, Institute of Industrial Catalysis School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Minh Ngoc Ha
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
- VNU Key Laboratory of Advanced Material for Green Growth, VNU University of Science, Vietnam National University, Hanoi 100000, Vietnam
| | - Chao Wan
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Zhiping Lei
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Jing Gu
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Qiang Ling
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Van Noi Nguyen
- VNU Key Laboratory of Advanced Material for Green Growth, VNU University of Science, Vietnam National University, Hanoi 100000, Vietnam
| | - Wangcheng Zhan
- Key Laboratory for Advanced Materials and Research, Institute of Industrial Catalysis School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
16
|
Walter C, Menezes PW, Driess M. Perspective on intermetallics towards efficient electrocatalytic water-splitting. Chem Sci 2021; 12:8603-8631. [PMID: 34257861 PMCID: PMC8246119 DOI: 10.1039/d1sc01901e] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
Intermetallic compounds exhibit attractive electronic, physical, and chemical properties, especially in terms of a high density of active sites and enhanced conductivity, making them an ideal class of materials for electrocatalytic applications. Nevertheless, widespread use of intermetallics for such applications is often limited by the complex energy-intensive processes yielding larger particles with decreased surface areas. In this regard, alternative synthetic strategies are now being explored to realize intermetallics with distinct crystal structures, morphology, and chemical composition to achieve high performance and as robust electrode materials. In this perspective, we focus on the recent advances and progress of intermetallics for the reaction of electrochemical water-splitting. We first introduce fundamental principles and the evaluation parameters of water-splitting. Then, we emphasize the various synthetic methodologies adapted for intermetallics and subsequently, discuss their catalytic activities for water-splitting. In particular, importance has been paid to the chemical stability and the structural transformation of the intermetallics as well as their active structure determination under operating water-splitting conditions. Finally, we describe the challenges and future opportunities to develop novel high-performance and stable intermetallic compounds that can hold the key to more green and sustainable economy and rise beyond the horizon of water-splitting application.
Collapse
Affiliation(s)
- Carsten Walter
- Derpartment of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 Berlin 10623 Germany
| | - Prashanth W Menezes
- Derpartment of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 Berlin 10623 Germany
| | - Matthias Driess
- Derpartment of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 Berlin 10623 Germany
| |
Collapse
|
17
|
Hausmann JN, Beltrán‐Suito R, Mebs S, Hlukhyy V, Fässler TF, Dau H, Driess M, Menezes PW. Evolving Highly Active Oxidic Iron(III) Phase from Corrosion of Intermetallic Iron Silicide to Master Efficient Electrocatalytic Water Oxidation and Selective Oxygenation of 5-Hydroxymethylfurfural. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008823. [PMID: 34048605 PMCID: PMC11468827 DOI: 10.1002/adma.202008823] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/01/2021] [Indexed: 06/12/2023]
Abstract
In a green energy economy, electrocatalysis is essential for chemical energy conversion and to produce value added chemicals from regenerative resources. To be widely applicable, an electrocatalyst should comprise the Earth's crust's most abundant elements. The most abundant 3d metal, iron, with its multiple accessible redox states has been manifold applied in chemocatalytic processes. However, due to the low conductivity of FeIII Ox Hy phases, its applicability for targeted electrocatalytic oxidation reactions such as water oxidation is still limited. Herein, it is shown that iron incorporated in conductive intermetallic iron silicide (FeSi) can be employed to meet this challenge. In contrast to silicon-poor iron-silicon alloys, intermetallic FeSi possesses an ordered structure with a peculiar bonding situation including covalent and ionic contributions together with conducting electrons. Using in situ X-ray absorption and Raman spectroscopy, it could be demonstrated that, under the applied corrosive alkaline conditions, the FeSi partly forms a unique, oxidic iron(III) phase consisting of edge and corner sharing [FeO6 ] octahedra together with oxidized silicon species. This phase is capable of driving the oxyge evolution reaction (OER) at high efficiency under ambient and industrially relevant conditions (500 mA cm-2 at 1.50 ± 0.025 VRHE and 65 °C) and to selectively oxygenate 5-hydroxymethylfurfural (HMF).
Collapse
Affiliation(s)
- J. Niklas Hausmann
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnical University of BerlinStraße des 17 Juni 135. Sekr. C210623BerlinGermany
| | - Rodrigo Beltrán‐Suito
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnical University of BerlinStraße des 17 Juni 135. Sekr. C210623BerlinGermany
| | - Stefan Mebs
- Department of PhysicsFree University of BerlinArnimallee 1414195BerlinGermany
| | - Viktor Hlukhyy
- Department of ChemistryTechnical University of MunichLichtenbergstraße 485747GarchingGermany
| | - Thomas F. Fässler
- Department of ChemistryTechnical University of MunichLichtenbergstraße 485747GarchingGermany
| | - Holger Dau
- Department of PhysicsFree University of BerlinArnimallee 1414195BerlinGermany
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnical University of BerlinStraße des 17 Juni 135. Sekr. C210623BerlinGermany
| | - Prashanth W. Menezes
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnical University of BerlinStraße des 17 Juni 135. Sekr. C210623BerlinGermany
| |
Collapse
|
18
|
Abstract
Progress in non-covalent/self-assembled immobilization methods on (photo)electrode materials for molecular catalysts could broaden the scope of attainable systems. While covalent linkage (though considered more stable) necessitates functional groups introduced by means of often cumbersome synthetic procedures, non-covalent assemblies require sufficient propensity of the molecular unit for surface adsorption, thus set less rigorous pre-requisites. Herein, we report efficient electrodeposition (ED) of two Fe(III) complexes prepared with closely related NN’N pincer ligands yielding stable and active ad-layers for the electrocatalysis of the oxygen-evolving reaction (OER). The ED method is based on the utilization of a chloride precursor complex [FeIIICl2(NN’N)], which is dissolved in an organic electrolyte undergoes chloride/aqua ligand exchange upon addition of water. ED provides patchy distribution of a chloride-depleted catalyst layer on indium tin oxide (ITO) and fluorine-doped tin oxide (FTO) surfaces, which can be applied for long periods as OER electrocatalysts. Compared to drop-casting or layering of [FeIIICl2(NN’N)] with Nafion (a commonly used support for molecular electrocatalysts), the surface modification by ED is a material saving and efficient method to immobilize catalysts.
Collapse
|