1
|
Singh P, Kundu K, Seçkin S, Bhardwaj K, König TAF, Jaiswal A. The Rise of Structurally Anisotropic Plasmonic Janus Gold Nanostars. Chemistry 2023; 29:e202302100. [PMID: 37461223 DOI: 10.1002/chem.202302100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 09/12/2023]
Abstract
Nanostructures intrinsically possessing two different structural or functional features, often called Janus nanoparticles, are emerging as a potential material for sensing, catalysis, and biomedical applications. Herein, we report the synthesis of plasmonic gold Janus nanostars (NSs) possessing a smooth concave pentagonal morphology with sharp tips and edges on one side and, contrastingly, a crumbled morphology on the other. The methodology reported herein for their synthesis - a single-step growth reaction - is different from any other Janus nanoparticle preparation involving either template-assisted growth or a masking technique. Interestingly, the coexistence of lower- and higher-index facets was found in these Janus NSs. The general paradigm for synthesizing gold Janus NSs was investigated by understanding the kinetic control mechanism with the combinatorial effect of all the reagents responsible for the structure. The optical properties of the Janus NSs were realized by corelating their extinction spectra with the simulated data. The size-dependent surface-enhanced Raman scattering (SERS) activity of these Janus NSs was studied with 1,4-BDT as the model analyte. Finite-difference time-domain simulations for differently sized particles revealed the distribution of electromagnetic hot-spots over the particles resulting in enhancement of the SERS signal in a size-dependent manner.
Collapse
Affiliation(s)
- Prem Singh
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Koustav Kundu
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Sezer Seçkin
- Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Straße 6, 01069, Dresden, Germany
| | - Keshav Bhardwaj
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Straße 6, 01069, Dresden, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Helmholtzstraße 18, 01062, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Amit Jaiswal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
2
|
Nobile C, Cozzoli PD. Synthetic Approaches to Colloidal Nanocrystal Heterostructures Based on Metal and Metal-Oxide Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1729. [PMID: 35630951 PMCID: PMC9147683 DOI: 10.3390/nano12101729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 12/04/2022]
Abstract
Composite inorganic nanoarchitectures, based on combinations of distinct materials, represent advanced solid-state constructs, where coexistence and synergistic interactions among nonhomologous optical, magnetic, chemical, and catalytic properties lay a basis for the engineering of enhanced or even unconventional functionalities. Such systems thus hold relevance for both theoretical and applied nanotechnology-based research in diverse areas, spanning optics, electronics, energy management, (photo)catalysis, biomedicine, and environmental remediation. Wet-chemical colloidal synthetic techniques have now been refined to the point of allowing the fabrication of solution free-standing and easily processable multicomponent nanocrystals with sophisticated modular heterostructure, built upon a programmed spatial distribution of the crystal phase, composition, and anchored surface moieties. Such last-generation breeds of nanocrystals are thus composed of nanoscale domains of different materials, assembled controllably into core/shell or heteromer-type configurations through bonding epitaxial heterojunctions. This review offers a critical overview of achievements made in the design and synthetic elaboration of colloidal nanocrystal heterostructures based on diverse associations of transition metals (with emphasis on plasmonic metals) and transition-metal oxides. Synthetic strategies, all leveraging on the basic seed-mediated approach, are described and discussed with reference to the most credited mechanisms underpinning regioselective heteroepitaxial deposition. The unique properties and advanced applications allowed by such brand-new nanomaterials are also mentioned.
Collapse
Affiliation(s)
- Concetta Nobile
- CNR NANOTEC—Institute of Nanotechnology, UOS di Lecce, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy;
| | - Pantaleo Davide Cozzoli
- Department of Mathematics and Physics “Ennio De Giorgi”, c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
- UdR INSTM di Lecce, c/o Campus Ecotekne, University of Salento, Via Arnesano, 73100 Lecce, Italy
| |
Collapse
|
3
|
Li X, Liu Q, Wang J, Meng D, Shu Y, Lv X, Zhao B, Yang H, Cheng T, Gao Q, Li L, Wu HB. Enhanced electroreduction of CO2 to C2+ products on heterostructured Cu/oxide electrodes. Chem 2022. [DOI: 10.1016/j.chempr.2022.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Loiudice A, Niau BP, Buonsanti R. Crystal-Phase Control of Ternary Metal Oxides by Solid-State Synthesis with Nanocrystals. ACS NANOSCIENCE AU 2022; 2:233-238. [PMID: 37101825 PMCID: PMC10114672 DOI: 10.1021/acsnanoscienceau.1c00049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ternary metal oxides are materials of interest for many applications, from batteries to catalysis. Their crystalline structure and composition determine their properties, and thus it is important to achieve control over these features. Here, we demonstrate that solid-state chemistry among nanocrystalline precursors is a promising approach for their synthesis. We show that the crystalline phase of nanocrystal precursors direct that of the ternary reaction product. The combination of X-ray and electron microscopy techniques reveals that the spinel and rhombohedral phases of copper iron oxide are obtained by reacting copper nanocrystals with spinel γ-Fe2O3 and corundum α-Fe2O3 nanocrystals, respectively. Considering the available library of nanocrystals with tunable crystal phases, this discovery opens up an alternative pathway toward the synthesis of a wide variety of ternary and quaternary materials, including those with metastable phases.
Collapse
Affiliation(s)
- Anna Loiudice
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Bastien P.G. Niau
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| |
Collapse
|
5
|
Varandili SB, Stoian D, Vavra J, Rossi K, Pankhurst JR, Guntern YT, López N, Buonsanti R. Elucidating the structure-dependent selectivity of CuZn towards methane and ethanol in CO 2 electroreduction using tailored Cu/ZnO precatalysts. Chem Sci 2021; 12:14484-14493. [PMID: 34880999 PMCID: PMC8580038 DOI: 10.1039/d1sc04271h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/06/2021] [Indexed: 11/21/2022] Open
Abstract
Understanding the catalyst compositional and structural features that control selectivity is of uttermost importance to target desired products in chemical reactions. In this joint experimental-computational work, we leverage tailored Cu/ZnO precatalysts as a material platform to identify the intrinsic features of methane-producing and ethanol-producing CuZn catalysts in the electrochemical CO2 reduction reaction (CO2RR). Specifically, we find that Cu@ZnO nanocrystals, where a central Cu domain is decorated with ZnO domains, and ZnO@Cu nanocrystals, where a central ZnO domain is decorated with Cu domains, evolve into Cu@CuZn core@shell catalysts that are selective for methane (∼52%) and ethanol (∼39%), respectively. Operando X-ray absorption spectroscopy and various microscopy methods evidence that a higher degree of surface alloying along with a higher concentration of metallic Zn improve the ethanol selectivity. Density functional theory explains that the combination of electronic and tandem effects accounts for such selectivity. These findings mark a step ahead towards understanding structure-property relationships in bimetallic catalysts for the CO2RR and their rational tuning to increase selectivity towards target products, especially alcohols.
Collapse
Affiliation(s)
- Seyedeh Behnaz Varandili
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| | - Dragos Stoian
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| | - Jan Vavra
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| | - Kevin Rossi
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| | - James R Pankhurst
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| | - Yannick T Guntern
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology 43007 Tarragona Spain
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| |
Collapse
|
6
|
Zhang X, Fu Q, Duan H, Song J, Yang H. Janus Nanoparticles: From Fabrication to (Bio)Applications. ACS NANO 2021; 15:6147-6191. [PMID: 33739822 DOI: 10.1021/acsnano.1c01146] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Janus nanoparticles (JNPs) refer to the integration of two or more chemically discrepant composites into one structure system. Studies into JNPs have been of significant interest due to their interesting characteristics stemming from their asymmetric structures, which can integrate different functional properties and perform more synergetic functions simultaneously. Herein, we present recent progress of Janus particles, comprehensively detailing fabrication strategies and applications. First, the classification of JNPs is divided into three blocks, consisting of polymeric composites, inorganic composites, and hybrid polymeric/inorganic JNPs composites. Then, the fabrication strategies are alternately summarized, examining self-assembly strategy, phase separation strategy, seed-mediated polymerization, microfluidic preparation strategy, nucleation growth methods, and masking methods. Finally, various intriguing applications of JNPs are presented, including solid surfactants agents, micro/nanomotors, and biomedical applications such as biosensing, controlled drug delivery, bioimaging, cancer therapy, and combined theranostics. Furthermore, challenges and future works in this field are provided.
Collapse
Affiliation(s)
- Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| |
Collapse
|
7
|
Lu XZ, Gu C, Zhang Q, Shi L, Han SK, Jin GP. Regioselective Construction of Chemically Transformed Phosphide-Metal Nanoheterostructures for Enhanced Hydrogen Evolution Catalysis. Inorg Chem 2021; 60:7269-7275. [PMID: 33764054 DOI: 10.1021/acs.inorgchem.1c00348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Engineering nanoheterostructures (NHs) plays a key role in exploring novel or enhanced physicochemical properties of nanocrystals. Despite previously reported synthetic methodologies, selective synthesis of NHs to achieve the anticipated composition and interface is still challenging. Herein, we presented a colloidal strategy for the regioselective construction of typical Ag-Co2P NHs with precisely controlled location of Ag nanoparticles (NPs) on unique chemically transformed Co2P nanorods (NRs) by simply changing the ratio of different surfactants. As a proof-of-concept study, the constructed heterointerface-dependent hydrogen evolution reaction (HER) catalysis was demonstrated. The multiple Ag NP-tipped Co2P NRs exhibited the best HER performance, due to their more exposed active sites and the synergistic effect at the interfaces. Our results open up new avenues in rational design and fabrication of NHs with delicate control over the spatial distribution and interfaces between different components.
Collapse
Affiliation(s)
- Xing-Zhou Lu
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chao Gu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qi Zhang
- Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, China
| | - Lei Shi
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shi-Kui Han
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Guan-Ping Jin
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
8
|
Guntern YT, Okatenko V, Pankhurst J, Varandili SB, Iyengar P, Koolen C, Stoian D, Vavra J, Buonsanti R. Colloidal Nanocrystals as Electrocatalysts with Tunable Activity and Selectivity. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04403] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yannick T. Guntern
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Valery Okatenko
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - James Pankhurst
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Seyedeh Behnaz Varandili
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Pranit Iyengar
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Cedric Koolen
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Dragos Stoian
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Jan Vavra
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| |
Collapse
|