1
|
Günder D, Axt M, Witte G. Heteroepitaxy in Organic/TMD Hybrids and Challenge to Achieve it for TMD Monolayers: The Case of Pentacene on WS 2 and WSe 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1911-1920. [PMID: 38154080 DOI: 10.1021/acsami.3c15829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The intriguing photophysical properties of monolayer stacks of different transition-metal dichalcogenides (TMDs), revealing rich exciton physics including interfacial and moiré excitons, have recently prompted an extension of similar investigations to hybrid systems of TMDs and organic films, as the latter combine large photoabsorption cross sections with the ability to tailor energy levels by targeted synthesis. To go beyond single-molecule photoexcitations and exploit the excitonic signatures of organic solids, crystalline molecular films are required. Moreover, a defined registry on the substrate, ideally an epitaxy, is desirable to also achieve an excitonic coupling in momentum space. This poses a certain challenge as excitonic dipole moments of organic films are closely related to the molecular orientation and film structure, which critically depend on the support roughness. Using X-ray diffraction, optical polarization, and atomic force microscopy, we analyzed the structure of pentacene (PEN) multilayer films grown on WSe2(001) and WS2(001) and identified an epitaxial alignment. While (022)-oriented PEN films are formed on both substrates, their azimuthal orientations are quite different, showing an alignment of the molecular L-axis along the ⟨ 110 ⟩ WSe 2 and ⟨ 100 ⟩ WS 2 directions. This intrinsic epitaxial PEN growth depends, however, sensitively on the substrates surface quality. While it occurs on exfoliated TMD single crystals and multilayer flakes, it is hardly found on exfoliated monolayers, which often exhibit bubbles and wrinkles. This enhances the surface roughness and results in (001)-oriented PEN films with upright molecular orientation but without any azimuthal alignment. However, monolayer flakes can be smoothed by AFM operated in contact mode or by transferring to ultrasmooth substrates such as hBN, which again yields epitaxial PEN films. As different PEN orientations result in different characteristic film morphologies (elongated mesa islands vs pyramidal dendrites), which can be easily distinguished by AFM or optical microscopy, this provides a simple means to judge the roughness of the used TMD surface.
Collapse
Affiliation(s)
- Darius Günder
- Molekulare Festkörperphysik, Philipps-Universität Marburg, Marburg 35032, Germany
| | - Marleen Axt
- Oberflächenphysik, Philipps-Universität Marburg, Marburg 35032, Germany
| | - Gregor Witte
- Molekulare Festkörperphysik, Philipps-Universität Marburg, Marburg 35032, Germany
| |
Collapse
|
2
|
Black E, Kratzer P, Morbec JM. Interaction between pentacene molecules and monolayer transition metal dichalcogenides. Phys Chem Chem Phys 2023; 25:29444-29450. [PMID: 37721397 DOI: 10.1039/d3cp01895d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Using first-principles calculations based on density-functional theory, we investigated the adsorption of pentacene molecules on monolayer two-dimensional transition metal dichalcogenides (TMD). We considered the four most popular TMDs, namely, MoS2, MoSe2, WS2 and WSe2, and we examined the structural and electronic properties of pentacene/TMD systems. We discuss how monolayer pentacene interacts with the TMDs, and how this interaction affects the charge transfer and work function of the heterostructure. We also analyse the type of band alignment formed in the heterostructure and how it is affected by molecule-molecule and molecule-substrate interactions. Such analysis is valuable since pentacene/TMD heterostructures are considered to be promising for application in flexible, thin and lightweight photovoltaics and photodetectors.
Collapse
Affiliation(s)
- E Black
- School of Chemical and Physical Sciences, Keele University, Keele ST5 5BG, UK.
| | - P Kratzer
- Fakultät für Physik, Universität Duisburg-Essen, Campus Duisburg, Lotharstr. 1, 47057 Duisburg, Germany
| | - J M Morbec
- School of Chemical and Physical Sciences, Keele University, Keele ST5 5BG, UK.
| |
Collapse
|
3
|
Dreher M, Dombrowski PM, Tripp MW, Münster N, Koert U, Witte G. Shape control in 2D molecular nanosheets by tuning anisotropic intermolecular interactions and assembly kinetics. Nat Commun 2023; 14:1554. [PMID: 36944658 PMCID: PMC10030871 DOI: 10.1038/s41467-023-37203-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
Since molecular materials often decompose upon exposure to radiation, lithographic patterning techniques established for inorganic materials are usually not applicable for the fabrication of organic nanostructures. Instead, molecular self-organisation must be utilised to achieve bottom-up growth of desired structures. Here, we demonstrate control over the mesoscopic shape of 2D molecular nanosheets without affecting their nanoscopic molecular packing motif, using molecules that do not form lateral covalent bonds. We show that anisotropic attractive Coulomb forces between partially fluorinated pentacenes lead to the growth of distinctly elongated nanosheets and that the direction of elongation differs between nanosheets that were grown and ones that were fabricated by partial desorption of a complete molecular monolayer. Using kinetic Monte Carlo simulations, we show that lateral intermolecular interactions alone are sufficient to rationalise the different kinetics of structure formation during nanosheet growth and desorption, without inclusion of interactions between the molecules and the supporting MoS2 substrate. By comparison of the behaviour of differently fluorinated molecules, experimentally and computationally, we can identify properties of molecules with regard to interactions and molecular packing motifs that are required for an effective utilisation of the observed effect.
Collapse
Affiliation(s)
- Maximilian Dreher
- Department of Physics, Philipps-Universität Marburg, 35037, Marburg, Germany
| | | | | | - Niels Münster
- Department of Chemistry, Philipps-Universität Marburg, 35037, Marburg, Germany
| | - Ulrich Koert
- Department of Chemistry, Philipps-Universität Marburg, 35037, Marburg, Germany
| | - Gregor Witte
- Department of Physics, Philipps-Universität Marburg, 35037, Marburg, Germany.
| |
Collapse
|
4
|
Thompson JJP, Lumsargis V, Feierabend M, Zhao Q, Wang K, Dou L, Huang L, Malic E. Interlayer exciton landscape in WS 2/tetracene heterostructures. NANOSCALE 2023; 15:1730-1738. [PMID: 36594632 DOI: 10.1039/d2nr02055f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The vertical stacking of two-dimensional materials into heterostructures gives rise to a plethora of intriguing optoelectronic properties and presents an unprecedented potential for technological development. While much progress has been made combining different monolayers of transition metal dichalcogenides (TMDs), little is known about TMD-based heterostructures including organic layers of molecules. Here, we present a joint theory-experiment study on a TMD/tetracene heterostructure demonstrating clear signatures of spatially separated interlayer excitons in low temperature photoluminescence spectra. Here, the Coulomb-bound electrons and holes are localized either in the TMD or in the molecule layer, respectively. We reveal both in theory and experiment signatures of the entire intra- and interlayer exciton landscape in the photoluminescence spectra. In particular, we find both in theory and experiment a pronounced transfer of intensity from the intralayer TMD exciton to a series of energetically lower interlayer excitons with decreasing temperature. In addition, we find signatures of phonon-sidebands stemming from these interlayer exciton states. Our findings shed light on the microscopic nature of interlayer excitons in TMD/molecule heterostructures and could have important implications for technological applications of these materials.
Collapse
Affiliation(s)
- Joshua J P Thompson
- Department of Physics, Philipps-Universität Marburg, 35037 Marburg, Germany.
| | - Victoria Lumsargis
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Maja Feierabend
- Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Quichen Zhao
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, Jilin, 130012, China
| | - Kang Wang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Ermin Malic
- Department of Physics, Philipps-Universität Marburg, 35037 Marburg, Germany.
- Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
5
|
Markeev PA, Najafidehaghani E, Samu GF, Sarosi K, Kalkan SB, Gan Z, George A, Reisner V, Mogyorosi K, Chikan V, Nickel B, Turchanin A, de Jong MP. Exciton Dynamics in MoS 2-Pentacene and WSe 2-Pentacene Heterojunctions. ACS NANO 2022; 16:16668-16676. [PMID: 36178781 PMCID: PMC9620401 DOI: 10.1021/acsnano.2c06144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
We measured the exciton dynamics in van der Waals heterojunctions of transition metal dichalcogenides (TMDCs) and organic semiconductors (OSs). TMDCs and OSs are semiconducting materials with rich and highly diverse optical and electronic properties. Their heterostructures, exhibiting van der Waals bonding at their interfaces, can be utilized in the field of optoelectronics and photovoltaics. Two types of heterojunctions, MoS2-pentacene and WSe2-pentacene, were prepared by layer transfer of 20 nm pentacene thin films as well as MoS2 and WSe2 monolayer crystals onto Au surfaces. The samples were studied by means of transient absorption spectroscopy in the reflectance mode. We found that A-exciton decay by hole transfer from MoS2 to pentacene occurs with a characteristic time of 21 ± 3 ps. This is slow compared to previously reported hole transfer times of 6.7 ps in MoS2-pentacene junctions formed by vapor deposition of pentacene molecules onto MoS2 on SiO2. The B-exciton decay in WSe2 shows faster hole transfer rates for WSe2-pentacene heterojunctions, with a characteristic time of 7 ± 1 ps. The A-exciton in WSe2 also decays faster due to the presence of a pentacene overlayer; however, fitting the decay traces did not allow for the unambiguous assignment of the associated decay time. Our work provides important insights into excitonic dynamics in the growing field of TMDC-OS heterojunctions.
Collapse
Affiliation(s)
- Pavel A. Markeev
- MESA+
Institute for Nanotechnology, University
of Twente, 7500 AEEnschede, The Netherlands
| | - Emad Najafidehaghani
- Institute
of Physical Chemistry, Abbe Center of Photonics, Friedrich Schiller University, 07743Jena, Germany
| | - Gergely F. Samu
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner 3, SzegedH-6728, Hungary
| | - Krisztina Sarosi
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner 3, SzegedH-6728, Hungary
| | - Sirri Batuhan Kalkan
- Faculty
of Physics and CeNS, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539Munich, Germany
| | - Ziyang Gan
- Institute
of Physical Chemistry, Abbe Center of Photonics, Friedrich Schiller University, 07743Jena, Germany
| | - Antony George
- Institute
of Physical Chemistry, Abbe Center of Photonics, Friedrich Schiller University, 07743Jena, Germany
| | - Veronika Reisner
- Faculty
of Physics and CeNS, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539Munich, Germany
| | - Karoly Mogyorosi
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner 3, SzegedH-6728, Hungary
| | - Viktor Chikan
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner 3, SzegedH-6728, Hungary
- Department
of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas66506-0401, United States
| | - Bert Nickel
- Faculty
of Physics and CeNS, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539Munich, Germany
| | - Andrey Turchanin
- Institute
of Physical Chemistry, Abbe Center of Photonics, Friedrich Schiller University, 07743Jena, Germany
| | - Michel P. de Jong
- MESA+
Institute for Nanotechnology, University
of Twente, 7500 AEEnschede, The Netherlands
| |
Collapse
|
6
|
Tumino F, Rabia A, Bassi AL, Tosoni S, Casari C. Interface-Driven Assembly of Pentacene/MoS 2 Lateral Heterostructures. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:1132-1139. [PMID: 35087609 PMCID: PMC8785183 DOI: 10.1021/acs.jpcc.1c06661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Mixed-dimensional van der Waals heterostructures formed by molecular assemblies and 2D materials provide a novel platform for fundamental nanoscience and future nanoelectronics applications. Here we investigate a prototypical hybrid heterostructure between pentacene molecules and 2D MoS2 nanocrystals, deposited on Au(111) by combining pulsed laser deposition and organic molecular beam epitaxy. The obtained structures were investigated in situ by scanning tunneling microscopy and spectroscopy and analyzed theoretically by density functional theory calculations. Our results show the formation of atomically thin pentacene/MoS2 lateral heterostructures on the Au substrate. The most stable pentacene adsorption site corresponds to MoS2 terminations, where the molecules self-assemble parallel to the direction of MoS2 edges. The density of states changes sharply across the pentacene/MoS2 interface, indicating a weak interfacial coupling, which leaves the electronic signature of MoS2 edge states unaltered. This work unveils the self-organization of abrupt mixed-dimensional lateral heterostructures, opening to hybrid devices based on organic/inorganic one-dimensional junctions.
Collapse
Affiliation(s)
- Francesco Tumino
- Dipartimento
di Energia, Politecnico di Milano, via G. Ponzio 34/3, Milano I-20133, Italy
| | - Andi Rabia
- Dipartimento
di Energia, Politecnico di Milano, via G. Ponzio 34/3, Milano I-20133, Italy
| | - Andrea Li Bassi
- Dipartimento
di Energia, Politecnico di Milano, via G. Ponzio 34/3, Milano I-20133, Italy
| | - Sergio Tosoni
- Dipartimento
di Scienza dei Materiali, Università
di Milano-Bicocca, via Roberto Cozzi 55, 20125 Milano, Italy
| | - Carlo
S. Casari
- Dipartimento
di Energia, Politecnico di Milano, via G. Ponzio 34/3, Milano I-20133, Italy
| |
Collapse
|
7
|
Günder D, Valencia AM, Guerrini M, Breuer T, Cocchi C, Witte G. Polarization Resolved Optical Excitation of Charge-Transfer Excitons in PEN:PFP Cocrystalline Films: Limits of Nonperiodic Modeling. J Phys Chem Lett 2021; 12:9899-9905. [PMID: 34610238 DOI: 10.1021/acs.jpclett.1c02761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Charge-transfer excitons (CTXs) at organic donor/acceptor interfaces are considered important intermediates for charge separation in photovoltaic devices. Crystalline model systems provide microscopic insights into the nature of such states as they enable microscopic structure-property investigations. Here, we use angular-resolved UV/vis absorption spectroscopy to characterize the CTXs of crystalline pentacene:perfluoro-pentacene (PEN:PFP) films allowing determination of the polarization of this state. This analysis is complemented by first-principles many-body calculations, performed on the three-dimensional PEN:PFP cocrystal, which confirm that the lowest-energy excitation is a CTX. Analogous simulations performed on bimolecular clusters are unable to reproduce this state. We ascribe this failure to the lack of long-range interactions and wave function periodicity in these cluster calculations, which appear to remain a valid tool for modeling properties of organic materials ruled by local intermolecular couplings.
Collapse
Affiliation(s)
- Darius Günder
- Philipps-Universität Marburg, Molekulare Festkörperphysik, 35032 Marburg, Germany
| | - Ana M Valencia
- Carl von Ossietzky Universität Oldenburg, Institute of Physics, Carl-von-Ossietzky-Straße 9, 26129 Oldenburg, Germany
| | - Michele Guerrini
- Carl von Ossietzky Universität Oldenburg, Institute of Physics, Carl-von-Ossietzky-Straße 9, 26129 Oldenburg, Germany
| | - Tobias Breuer
- Philipps-Universität Marburg, Molekulare Festkörperphysik, 35032 Marburg, Germany
| | - Caterina Cocchi
- Carl von Ossietzky Universität Oldenburg, Institute of Physics, Carl-von-Ossietzky-Straße 9, 26129 Oldenburg, Germany
- Humboldt-Universität zu Berlin, Physics Department and IRIS Adlershof, Zum Großen Windkanal 2, 12489 Berlin, Germany
| | - Gregor Witte
- Philipps-Universität Marburg, Molekulare Festkörperphysik, 35032 Marburg, Germany
| |
Collapse
|
8
|
Dombrowski PM, Kachel SR, Neuhaus L, Gottfried JM, Witte G. Temperature-programmed desorption of large molecules: influence of thin film structure and origin of intermolecular repulsion. NANOSCALE 2021; 13:13816-13826. [PMID: 34477656 DOI: 10.1039/d1nr03532k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although the exact knowledge of the binding energy of organic adsorbates on solid surfaces is of vital importance for the realization of molecular nanostructures and the theoretical modelling of molecule-substrate interactions, an experimental determination is by no means trivial. Temperature-programmed desorption (TPD) is a widely used technique that can provide such information, but a quantitative analysis requires detailed knowledge of the pre-exponential factor of desorption and is therefore rarely performed on a quantitative level for larger molecules that often exhibit notable mutual intermolecular interactions. Here, we provide a thorough anlysis of TPD data of monolayers of pentacene and perfluoropentacene adsorbed on Au(111) that serve as a model system for polycyclic aromatic hydrocarbons adsorbed on noble metal surfaces. We show that the pre-exponential factor varies by several orders of magnitude with the surface coverage and evolves in a step-like fashion due to the sudden activation of a rotational degree of freedom during thermally controlled monolayer desorption. Using complementary coverage-dependent work function measurements, the interface dipole moments were determined. This allows to identify the origin and quantify the relative contributions of the lateral intermolecular interactions, which we modelled by force field calculations. This analysis clearly shows that the main cause for intermolecular repulsion are electrostatic interactions between the intramolecular charge distributions, while interface dipoles play only a minor role.
Collapse
|
9
|
Wang Q, Yang J, Franco-Cañellas A, Bürker C, Niederhausen J, Dombrowski P, Widdascheck F, Breuer T, Witte G, Gerlach A, Duhm S, Schreiber F. Pentacene/perfluoropentacene bilayers on Au(111) and Cu(111): impact of organic-metal coupling strength on molecular structure formation. NANOSCALE ADVANCES 2021; 3:2598-2606. [PMID: 36134152 PMCID: PMC9419101 DOI: 10.1039/d1na00040c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/08/2021] [Indexed: 05/12/2023]
Abstract
As crucial element in organic opto-electronic devices, heterostructures are of pivotal importance. In this context, a comprehensive study of the properties on a simplified model system of a donor-acceptor (D-A) bilayer structure is presented, using ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction (LEED) and normal-incidence X-ray standing wave (NIXSW) measurements. Pentacene (PEN) as donor and perfluoropentacene (PFP) as acceptor material are chosen to produce bilayer structures on Au(111) and Cu(111) by sequential monolayer deposition of the two materials. By comparing the adsorption behavior of PEN/PFP bilayers on such weakly and strongly interacting substrates, it is found that: (i) the adsorption distance of the first layer (PEN or PFP) indicates physisorption on Au(111), (ii) the characteristics of the bilayer structure on Au(111) are (almost) independent of the deposition sequence, and hence, (iii) in both cases a mixed bilayer is formed on the Au substrate. This is in striking contrast to PFP/PEN bilayers on Cu(111), where strong chemisorption pins PEN molecules to the metal surface and no intermixing is induced by subsequent PFP deposition. The results illustrate the strong tendency of PEN and PFP molecules to mix, which has important implications for the fabrication of PEN/PFP heterojunctions.
Collapse
Affiliation(s)
- Qi Wang
- Institut für Angewandte Physik, Universität Tübingen 72076 Tübingen Germany
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University Suzhou 215123 People's Republic of China
| | - Jiacheng Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University Suzhou 215123 People's Republic of China
| | | | - Christoph Bürker
- Institut für Angewandte Physik, Universität Tübingen 72076 Tübingen Germany
| | - Jens Niederhausen
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH 14109 Berlin Germany
| | - Pierre Dombrowski
- Fachbereich Physik, Philipps-Universität Marburg 35032 Marburg Germany
| | - Felix Widdascheck
- Fachbereich Physik, Philipps-Universität Marburg 35032 Marburg Germany
| | - Tobias Breuer
- Fachbereich Physik, Philipps-Universität Marburg 35032 Marburg Germany
| | - Gregor Witte
- Fachbereich Physik, Philipps-Universität Marburg 35032 Marburg Germany
| | - Alexander Gerlach
- Institut für Angewandte Physik, Universität Tübingen 72076 Tübingen Germany
| | - Steffen Duhm
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University Suzhou 215123 People's Republic of China
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen 72076 Tübingen Germany
| |
Collapse
|