1
|
Morse J, Nadiveedhi MR, Schmidt M, Tang FK, Hladun C, Ganesh P, Qiu Z, Leung K. Tunable Cytosolic Chloride Indicators for Real-Time Chloride Imaging in Live Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.606814. [PMID: 39149292 PMCID: PMC11326291 DOI: 10.1101/2024.08.08.606814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Chloride plays a crucial role in various cellular functions, and its level is regulated by a variety of chloride transporters and channels. However, to date, we still lack the capability to image instantaneous ion flux through chloride channels at single-cell level. Here, we developed a series of cell-permeable, pH-independent, chloride-sensitive fluorophores for real-time cytosolic chloride imaging, which we call CytoCl dyes. We demonstrated the ability of CytoCl dyes to monitor cytosolic chloride and used it to uncover the rapid changes and transient events of halide flux, which cannot be captured by steady-state imaging. Finally, we successfully imaged the proton-activated chloride channel-mediated ion flux at single-cell level, which is, to our knowledge, the first real-time imaging of ion flux through a chloride channel in unmodified cells. By enabling the imaging of single-cell level ion influx through chloride channels and transporters, CytoCl dyes can expand our understanding of ion flux dynamics, which is critical for characterization and modulator screening of these membrane proteins. A conjugable version of CytoCl dyes was also developed for its customization across different applications.
Collapse
Affiliation(s)
- Jared Morse
- Department of Chemistry & Biochemistry, Clarkson University, NY 13676, United States
| | | | - Matthias Schmidt
- Department of Chemistry & Biochemistry, Clarkson University, NY 13676, United States
| | - Fung-Kit Tang
- Department of Chemistry & Biochemistry, Clarkson University, NY 13676, United States
| | - Colby Hladun
- Department of Chemistry & Biochemistry, Clarkson University, NY 13676, United States
| | - Prasanna Ganesh
- Department of Chemistry & Biochemistry, Clarkson University, NY 13676, United States
| | - Zhaozhu Qiu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, MD 21205, United States
| | - Kaho Leung
- Department of Chemistry & Biochemistry, Clarkson University, NY 13676, United States
| |
Collapse
|
2
|
Phelps SM, Tutol JN, Advani D, Peng W, Dodani SC. Unlocking chloride sensing in the red at physiological pH with a fluorescent rhodopsin-based host. Chem Commun (Camb) 2023; 59:8460-8463. [PMID: 37337864 PMCID: PMC11136539 DOI: 10.1039/d3cc01786a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Chloride is a vital ion for all forms of life. Protein-based fluorescent biosensors can enable researchers to visualize chloride in cells but remain underdeveloped. Here, we demonstrate how a single point mutation in an engineered microbial rhodopsin results in ChloRED-1-CFP. This membrane-bound host is a far-red emitting, ratiometric sensor that provides a reversible readout of chloride in live bacteria at physiological pH, setting the stage to investigate the roles of chloride in diverse biological contexts.
Collapse
Affiliation(s)
- Shelby M Phelps
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Jasmine N Tutol
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Deeya Advani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Weicheng Peng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Sheel C Dodani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
3
|
Ong WSY, Ji K, Pathiranage V, Maydew C, Baek K, Villones RLE, Meloni G, Walker AR, Dodani SC. Rational Design of the β-Bulge Gate in a Green Fluorescent Protein Accelerates the Kinetics of Sulfate Sensing. Angew Chem Int Ed Engl 2023; 62:e202302304. [PMID: 37059690 PMCID: PMC10330437 DOI: 10.1002/anie.202302304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023]
Abstract
Detection of anions in complex aqueous media is a fundamental challenge with practical utility that can be addressed by supramolecular chemistry. Biomolecular hosts such as proteins can be used and adapted as an alternative to synthetic hosts. Here, we report how the mutagenesis of the β-bulge residues (D137 and W138) in mNeonGreen, a bright, monomeric fluorescent protein, unlocks and tunes the anion preference at physiological pH for sulfate, resulting in the turn-off sensor SulfOFF-1. This unprecedented sensing arises from an enhancement in the kinetics of binding, largely driven by position 138. In line with these data, molecular dynamics (MD) simulations capture how the coordinated entry and gating of sulfate into the β-barrel is eliminated upon mutagenesis to facilitate binding and fluorescence quenching.
Collapse
Affiliation(s)
- Whitney S. Y. Ong
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Ke Ji
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Vishaka Pathiranage
- Department of Chemistry, Wayne State University, 42 W. Warren Ave. Detroit, MI 48202, USA
| | - Caden Maydew
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Kiheon Baek
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Rhiza Lyne E. Villones
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Alice R. Walker
- Department of Chemistry, Wayne State University, 42 W. Warren Ave. Detroit, MI 48202, USA
| | - Sheel C. Dodani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| |
Collapse
|
4
|
Ziegler C, Martin J, Sinner C, Morcos F. Latent generative landscapes as maps of functional diversity in protein sequence space. Nat Commun 2023; 14:2222. [PMID: 37076519 PMCID: PMC10113739 DOI: 10.1038/s41467-023-37958-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/05/2023] [Indexed: 04/21/2023] Open
Abstract
Variational autoencoders are unsupervised learning models with generative capabilities, when applied to protein data, they classify sequences by phylogeny and generate de novo sequences which preserve statistical properties of protein composition. While previous studies focus on clustering and generative features, here, we evaluate the underlying latent manifold in which sequence information is embedded. To investigate properties of the latent manifold, we utilize direct coupling analysis and a Potts Hamiltonian model to construct a latent generative landscape. We showcase how this landscape captures phylogenetic groupings, functional and fitness properties of several systems including Globins, β-lactamases, ion channels, and transcription factors. We provide support on how the landscape helps us understand the effects of sequence variability observed in experimental data and provides insights on directed and natural protein evolution. We propose that combining generative properties and functional predictive power of variational autoencoders and coevolutionary analysis could be beneficial in applications for protein engineering and design.
Collapse
Affiliation(s)
- Cheyenne Ziegler
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Jonathan Martin
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Claude Sinner
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Faruck Morcos
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA.
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080, USA.
- Center for Systems Biology, University of Texas at Dallas, Richardson, TX, 75080, USA.
| |
Collapse
|
5
|
Peng W, Maydew CC, Kam H, Lynd JK, Tutol JN, Phelps SM, Abeyrathna S, Meloni G, Dodani SC. Discovery of a monomeric green fluorescent protein sensor for chloride by structure-guided bioinformatics. Chem Sci 2022; 13:12659-12672. [PMID: 36519056 PMCID: PMC9645410 DOI: 10.1039/d2sc03903f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/05/2022] [Indexed: 11/21/2022] Open
Abstract
Chloride is an essential anion for all forms of life. Beyond electrolyte balance, an increasing body of evidence points to new roles for chloride in normal physiology and disease. Over the last two decades, this understanding has been advanced by chloride-sensitive fluorescent proteins for imaging applications in living cells. To our surprise, these sensors have primarily been engineered from the green fluorescent protein (GFP) found in the jellyfish Aequorea victoria. However, the GFP family has a rich sequence space that could already encode for new sensors with desired properties, thereby minimizing protein engineering efforts and accelerating biological applications. To efficiently sample this space, we present and validate a stepwise bioinformatics strategy focused first on the chloride binding pocket and second on a monomeric oligomerization state. Using this, we identified GFPxm163 from GFPxm found in the jellyfish Aequorea macrodactyla. In vitro characterization shows that the binding of chloride as well as bromide, iodide, and nitrate rapidly tunes the ground state chromophore equilibrium from the phenolate to the phenol state generating a pH-dependent, turn-off fluorescence response. Furthermore, live-cell fluorescence microscopy reveals that GFPxm163 provides a reversible, yet indirect readout of chloride transport via iodide exchange. With this demonstration, we anticipate that the pairing of bioinformatics with protein engineering methods will provide an efficient methodology to discover and design new chloride-sensitive fluorescent proteins for cellular applications.
Collapse
Affiliation(s)
- Weicheng Peng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson 75080 Texas USA
- Department of Biological Sciences, The University of Texas at Dallas Richardson 75080 Texas USA
| | - Caden C Maydew
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson 75080 Texas USA
| | - Hiu Kam
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson 75080 Texas USA
| | - Jacob K Lynd
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson 75080 Texas USA
| | - Jasmine N Tutol
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson 75080 Texas USA
| | - Shelby M Phelps
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson 75080 Texas USA
| | - Sameera Abeyrathna
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson 75080 Texas USA
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson 75080 Texas USA
| | - Sheel C Dodani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson 75080 Texas USA
| |
Collapse
|
6
|
Liang GT, Lai C, Yue Z, Zhang H, Li D, Chen Z, Lu X, Tao L, Subach FV, Piatkevich KD. Enhanced small green fluorescent proteins as a multisensing platform for biosensor development. Front Bioeng Biotechnol 2022; 10:1039317. [PMID: 36324888 PMCID: PMC9618808 DOI: 10.3389/fbioe.2022.1039317] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
Engineered light, oxygen, and voltage (LOV)-based proteins are able to fluoresce without oxygen requirement due to the autocatalytic incorporation of exogenous flavin as a chromophore thus allowing for live cell imaging under hypoxic and anaerobic conditions. They were also discovered to have high sensitivity to transition metal ions and physiological flavin derivatives. These properties make flavin-binding fluorescent proteins (FPs) a perspective platform for biosensor development. However, brightness of currently available flavin-binding FPs is limited compared to GFP-like FPs creating a need for their further enhancement and optimization. In this study, we applied a directed molecular evolution approach to develop a pair of flavin-binding FPs, named miniGFP1 and miniGFP2. The miniGFP proteins are characterized by cyan-green fluorescence with excitation/emission maxima at 450/499 nm and a molecular size of ∼13 kDa. We carried out systematic benchmarking of miniGFPs in Escherichia coli and cultured mammalian cells against spectrally similar FPs including GFP-like FP, bilirubin-binding FP, and bright flavin-binding FPs. The miniGFPs proteins exhibited improved photochemical properties compared to other flavin-binding FPs enabling long-term live cell imaging. We demonstrated the utility of miniGFPs for live cell imaging in bacterial culture under anaerobic conditions and in CHO cells under hypoxia. The miniGFPs’ fluorescence was highly sensitive to Cu(II) ions in solution with Kd values of 67 and 68 nM for miniGFP1 and miniGFP2, respectively. We also observed fluorescence quenching of miniGFPs by the reduced form of Cu(I) suggesting its potential application as an optical indicator for Cu(I) and Cu(II). In addition, miniGFPs showed the ability to selectively bind exogenous flavin mononucleotide demonstrating a potential for utilization as a selective fluorescent flavin indicator. Altogether, miniGFPs can serve as a multisensing platform for fluorescence biosensor development for in vitro and in-cell applications.
Collapse
Affiliation(s)
- Guo-Teng Liang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Cuixin Lai
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Zejun Yue
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences, Xi’an Jiao Tong University, Xi’an, Shaanxi, China
| | - Hanbin Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Danyang Li
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Zhong Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xingyu Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Liang Tao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Fedor V. Subach
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Kiryl D. Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- *Correspondence: Kiryl D. Piatkevich,
| |
Collapse
|
7
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
8
|
Photoluminescence Sensing of Chloride Ions in Sea Sand Using Alcohol-Dispersed CsPbBr3@SiO2 Perovskite Nanocrystal Composites. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, CsPbBr3@SiO2 perovskite nanocrystal composites (CsPbBr3@SiO2 PNCCs) were synthesized by a benzyl bromide nucleophilic substitution strategy. Homogeneous halide exchange between CsPbBr3@SiO2 PNCCs and Cl− solution (aqueous phase) was applied to the determination of Cl− in sea sand samples. Fast halide exchange with Cl− in the aqueous phase without any magnetic stirring or pH regulation resulted in the blue shift of the photoluminescence (PL) wavelength and vivid PL color changes from green to blue. The results show that the PL sensing of Cl− in aqueous samples could be implemented by using the halide exchange of CsPbBr3@SiO2 PNCCs. A linear relationship between the PL wavelength shift and the Cl− concentration in the range of 0 to 3.0% was found, which was applied to the determination of Cl− concentration in sea sand samples. This method greatly simplifies the detection process and provides a new idea for further broadening PL sensing using the CsPbBr3 PNC halide.
Collapse
|
9
|
Chi H, Zhou Q, Tutol JN, Phelps SM, Lee J, Kapadia P, Morcos F, Dodani SC. Coupling a Live Cell Directed Evolution Assay with Coevolutionary Landscapes to Engineer an Improved Fluorescent Rhodopsin Chloride Sensor. ACS Synth Biol 2022; 11:1627-1638. [PMID: 35389621 PMCID: PMC9184236 DOI: 10.1021/acssynbio.2c00033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our understanding of chloride in biology has been accelerated through the application of fluorescent protein-based sensors in living cells. These sensors can be generated and diversified to have a range of properties using laboratory-guided evolution. Recently, we established that the fluorescent proton-pumping rhodopsin wtGR from Gloeobacter violaceus can be converted into a fluorescent sensor for chloride. To unlock this non-natural function, a single point mutation at the Schiff counterion position (D121V) was introduced into wtGR fused to cyan fluorescent protein (CFP) resulting in GR1-CFP. Here, we have integrated coevolutionary analysis with directed evolution to understand how the rhodopsin sequence space can be explored and engineered to improve this starting point. We first show how evolutionary couplings are predictive of functional sites in the rhodopsin family and how a fitness metric based on a sequence can be used to quantify the known proton-pumping activities of GR-CFP variants. Then, we couple this ability to predict potential functional outcomes with a screening and selection assay in live Escherichia coli to reduce the mutational search space of five residues along the proton-pumping pathway in GR1-CFP. This iterative selection process results in GR2-CFP with four additional mutations: E132K, A84K, T125C, and V245I. Finally, bulk and single fluorescence measurements in live E. coli reveal that GR2-CFP is a reversible, ratiometric fluorescent sensor for extracellular chloride with an improved dynamic range. We anticipate that our framework will be applicable to other systems, providing a more efficient methodology to engineer fluorescent protein-based sensors with desired properties.
Collapse
|
10
|
Ji K, Baek K, Peng W, Alberto KA, Torabifard H, Nielsen SO, Dodani SC. Biophysical and in silico characterization of NrtA: a protein-based host for aqueous nitrate and nitrite recognition. Chem Commun (Camb) 2022; 58:965-968. [PMID: 34937073 PMCID: PMC9197583 DOI: 10.1039/d1cc05879g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nitrate and nitrite are key components of the global nitrogen cycle. As such, Nature has evolved proteins as biological supramolecular hosts for the recognition, translocation, and transformation of both nitrate and nitrite. To understand the supramolecular principles that govern these anion-protein interactions, here, we employ a hybrid biophysical and in silico approach to characterize the thermodynamic properties and protein dynamics of NrtA from the cyanobacterium Synechocystis sp. PCC 6803 for the recognition of nitrate and nitrite.
Collapse
Affiliation(s)
- Ke Ji
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Kiheon Baek
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Weicheng Peng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Kevin A Alberto
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Hedieh Torabifard
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Steven O Nielsen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Sheel C Dodani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
11
|
JIANG WJ, LI W, TANG MH, TAN YX, NAN XL, TAN YL. Syntheses, crystal structures and quantum chemistry of two Th(IV) complexes based on the diacylhydrazone ligand. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Yoon SA, Park SY, Cha Y, Gopala L, Lee MH. Strategies of Detecting Bacteria Using Fluorescence-Based Dyes. Front Chem 2021; 9:743923. [PMID: 34458240 PMCID: PMC8397417 DOI: 10.3389/fchem.2021.743923] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Identification of bacterial strains is critical for the theranostics of bacterial infections and the development of antibiotics. Many organic fluorescent probes have been developed to overcome the limitations of conventional detection methods. These probes can detect bacteria with "off-on" fluorescence change, which enables the real-time imaging and quantitative analysis of bacteria in vitro and in vivo. In this review, we outline recent advances in the development of fluorescence-based dyes capable of detecting bacteria. Detection strategies are described, including specific interactions with bacterial cell wall components, bacterial and intracellular enzyme reactions, and peptidoglycan synthesis reactions. These include theranostic probes that allow simultaneous bacterial detection and photodynamic antimicrobial effects. Some examples of other miscellaneous detections in bacteria have also been described. In addition, this review demonstrates the validation of these fluorescent probes using a variety of biological models such as gram-negative and -positive bacteria, antibiotic-resistant bacteria, infected cancer cells, tumor-bearing, and infected mice. Prospects for future research are outlined by presenting the importance of effective in vitro and in vivo detection of bacteria and development of antimicrobial agents.
Collapse
Affiliation(s)
| | | | | | | | - Min Hee Lee
- Department of Chemistry, Sookmyung Women’s University, Seoul, South Korea
| |
Collapse
|
13
|
Baek K, Ji K, Peng W, Liyanaarachchi SM, Dodani SC. The design and evolution of fluorescent protein-based sensors for monoatomic ions in biology. Protein Eng Des Sel 2021; 34:gzab023. [PMID: 34581820 PMCID: PMC8477612 DOI: 10.1093/protein/gzab023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Living cells rely on a finely tuned symphony of inorganic ion gradients composed of both cations and anions. This delicate balance is maintained by biological receptors all acting in concert to selectively recognize and position ions for homeostasis. These dynamic processes can be intercepted and visualized with optical microscopy at the organismal, tissue, cellular and subcellular levels using fluorescent protein-based biosensors. Since the first report of such tool for calcium (Ca2+) in 1997, outstanding biological questions and innovations in protein engineering along with associated fields have driven the development of new biosensors for Ca2+ and beyond. In this Review, we summarize a workflow that can be used to generate fluorescent protein-based biosensors to study monoatomic ions in biology. To showcase the scope of this approach, we highlight recent advances reported for Ca2+ biosensors and in detail discuss representative case studies of biosensors reported in the last four years for potassium (K+), magnesium (Mg2+), copper (Cu2+/+), lanthanide (Ln3+) and chloride (Cl-) ions.
Collapse
Affiliation(s)
- Kiheon Baek
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Ke Ji
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Weicheng Peng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Sureshee M Liyanaarachchi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Sheel C Dodani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| |
Collapse
|