1
|
Wu C, Zhang Y, Yang HY. Rational Design and Facile Preparation of Palladium-Based Electrocatalysts for Small Molecules Oxidation. CHEMSUSCHEM 2024:e202401127. [PMID: 39211939 DOI: 10.1002/cssc.202401127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Direct liquid fuel cells (DLFCs) can convert the chemical energy of small organic molecules directly into electrical energy, which is a promising technique and always calls for electrocatalysts with high activity, stability and selectivity. Palladium (Pd)-based catalysts for DLFCs have been widely studied with the pursuit of ultra-high performance, however, most of the preparation routes require complex agents, multi-operation steps, even extreme experimental conditions, which are high-cost, energy-consuming, and not conducive to the scalable and sustainable production of catalysts. In this review, the recent progresses on not only the rational design strategies, but also the facile preparation methods of Pd-based electrocatalysts for small molecules oxidation reaction (SMOR) are comprehensively summarized. Based on the principles of green chemistry in material synthesis, the basic rules of "facile method" have been restricted, and the fabrication processes, perks and drawbacks, as well as practical applications of the "real" facile methods have been highlighted. The landscape of this review is to facilitate the mild preparation of efficient Pd-based electrocatalysts for SMOR, that is, to achieve a balance between "facile preparation" and "outstanding performance", thereby to stimulate the huge potential of sustainable nano-electrocatalysts in various research and industrial fields.
Collapse
Affiliation(s)
- Chenshuo Wu
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 819 Xisaishan Road, Huzhou, 313001, China
| | - Yingmeng Zhang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 819 Xisaishan Road, Huzhou, 313001, China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| |
Collapse
|
2
|
Yang H, An N, Kang Z, Menezes PW, Chen Z. Understanding Advanced Transition Metal-Based Two Electron Oxygen Reduction Electrocatalysts from the Perspective of Phase Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400140. [PMID: 38456244 DOI: 10.1002/adma.202400140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Non-noble transition metal (TM)-based compounds have recently become a focal point of extensive research interest as electrocatalysts for the two electron oxygen reduction (2e- ORR) process. To efficiently drive this reaction, these TM-based electrocatalysts must bear unique physiochemical properties, which are strongly dependent on their phase structures. Consequently, adopting engineering strategies toward the phase structure has emerged as a cutting-edge scientific pursuit, crucial for achieving high activity, selectivity, and stability in the electrocatalytic process. This comprehensive review addresses the intricate field of phase engineering applied to non-noble TM-based compounds for 2e- ORR. First, the connotation of phase engineering and fundamental concepts related to oxygen reduction kinetics and thermodynamics are succinctly elucidated. Subsequently, the focus shifts to a detailed discussion of various phase engineering approaches, including elemental doping, defect creation, heterostructure construction, coordination tuning, crystalline design, and polymorphic transformation to boost or revive the 2e- ORR performance (selectivity, activity, and stability) of TM-based catalysts, accompanied by an insightful exploration of the phase-performance correlation. Finally, the review proposes fresh perspectives on the current challenges and opportunities in this burgeoning field, together with several critical research directions for the future development of non-noble TM-based electrocatalysts.
Collapse
Affiliation(s)
- Hongyuan Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Na An
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Prashanth W Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
3
|
Zheng L, Xu L, Gu P, Chen Y. Lattice engineering of noble metal-based nanomaterials via metal-nonmetal interactions for catalytic applications. NANOSCALE 2024; 16:7841-7861. [PMID: 38563756 DOI: 10.1039/d4nr00561a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Noble metal-based nanomaterials possess outstanding catalytic properties in various chemical reactions. However, the increasing cost of noble metals severely hinders their large-scale applications. A cost-effective strategy is incorporating noble metals with light nonmetal elements (e.g., H, B, C, N, P and S) to form noble metal-based nanocompounds, which can not only reduce the noble metal content, but also promote their catalytic performances by tuning their crystal lattices and introducing additional active sites. In this review, we present a concise overview of the recent advancements in the preparation and application of various kinds of noble metal-light nonmetal binary nanocompounds. Besides introducing synthetic strategies, we focus on the effects of introducing light nonmetal elements on the lattice structures of noble metals and highlight notable progress in the lattice strain engineering of representative core-shell nanostructures derived from these nanocompounds. In the meantime, the catalytic applications of the light element-incorporated noble metal-based nanomaterials are discussed. Finally, we discuss current challenges and future perspectives in the development of noble metal-nonmetal based nanomaterials.
Collapse
Affiliation(s)
- Long Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China.
| | - Lei Xu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ping Gu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Han P, Yang X, Wu L, Jia H, Chen J, Shi W, Cheng G, Luo W. A Highly-Efficient Boron Interstitially Inserted Ru Anode Catalyst for Anion Exchange Membrane Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304496. [PMID: 37934652 DOI: 10.1002/adma.202304496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/08/2023] [Indexed: 11/09/2023]
Abstract
Developing high-performance electrocatalysts for alkaline hydrogen oxidation reaction (HOR) is crucial for the commercialization of anion exchange membrane fuel cells (AEMFCs). Here, boron interstitially inserted ruthenium (B-Ru/C) is synthesized and used as an anode catalyst for AEMFC, achieving a peak power density of 1.37 W cm-2 , close to the state-of-the-art commercial PtRu catalyst. Unexpectedly, instead of the monotonous decline of HOR kinetics with pH as generally believed, an inflection point behavior in the pH-dependent HOR kinetics on B-Ru/C is observed, showing an anomalous behavior that the HOR activity under alkaline electrolyte surpasses acidic electrolyte. Experimental results and density functional theory calculations reveal that the upshifted d-band center of Ru after the intervention of interstitial boron can lead to enhanced adsorption ability of OH and H2 O, which together with the reduced energy barrier of water formation, contributes to the outstanding alkaline HOR performance with a mass activity of 1.716 mA µgPGM -1 , which is 13.4-fold and 5.2-fold higher than that of Ru/C and commercial Pt/C, respectively.
Collapse
Affiliation(s)
- Pengyu Han
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Xinyi Yang
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Liqing Wu
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Hongnan Jia
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Jingchao Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| | - Wenwen Shi
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| | - Gongzhen Cheng
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| |
Collapse
|
5
|
Hedouin G, Sharma S, Kaur K, Choudhary RH, Jasinski JB, Gallou F, Handa S. Ligand-Free Ultrasmall Recyclable Iridium(0) Nanoparticles for Regioselective Aromatic Hydrogenation of Phosphine Oxide Scaffolds: An Easy Access to New Phosphine Ligands. Angew Chem Int Ed Engl 2023; 62:e202307139. [PMID: 37279182 DOI: 10.1002/anie.202307139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023]
Abstract
Herein, we developed the recyclable ligand-free iridium (Ir)-hydride based Ir0 nanoparticles (NPs) for the first regioselective partial hydrogenation of PV -substituted naphthalenes. Both the isolated and in situ generated NPs are catalytically active. A control nuclear magnetic resonance (NMR) study revealed the presence of metal-surface-bound hydrides, most likely formed from Ir0 species. A control NMR study confirmed that hexafluoroisopropanol as a solvent was accountable for substrate activation via hydrogen bonding. High-resolution transmission electron microscopy of the catalyst supports the formation of ultrasmall NPs, and X-ray photoelectron spectroscopy confirmed the dominance of Ir0 in the NPs. The catalytic activity of NPs is broad as showcased by highly regioselective aromatic ring reduction in various phosphine oxides or phosphonates. The study also showcased a novel pathway toward preparing bis(diphenylphosphino)-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl (H8 -BINAP) and its derivatives without losing enantioselectivity during catalytic events.
Collapse
Affiliation(s)
- Gaspard Hedouin
- Department of Chemistry, University of Louisville, 2320 S. Brook Street, Louisville, KY 40292, USA
| | - Sudripet Sharma
- Department of Chemistry, University of Louisville, 2320 S. Brook Street, Louisville, KY 40292, USA
| | - Karanjeet Kaur
- Department of Chemistry, University of Louisville, 2320 S. Brook Street, Louisville, KY 40292, USA
| | - Ramesh Hiralal Choudhary
- Department of Chemistry, University of Louisville, 2320 S. Brook Street, Louisville, KY 40292, USA
| | - Jacek B Jasinski
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, USA
| | - Fabrice Gallou
- Chemical & Analytical Development, Novartis Pharma AG, 4056, Basel, Switzerland
| | - Sachin Handa
- Department of Chemistry, University of Louisville, 2320 S. Brook Street, Louisville, KY 40292, USA
- Department of Chemistry, University of Missouri, 601 S College Ave # 125, Columbia, MO 65211, USA
| |
Collapse
|
6
|
Yu Q, Zhou J, Wang W, Li DC, Sun X, Wang GH. Space-Confined Carbon-Doped Pd Nanoparticles as a Highly Efficient Catalyst for Selective Phenol Hydrogenation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Qun Yu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhou
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenquan Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - De-Chang Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xiaoyan Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Guang-Hui Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
7
|
Li H, Qin X, Zhang XG, Jiang K, Cai WB. Boron-Doped Platinum-Group Metals in Electrocatalysis: A Perspective. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hong Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai200438, People’s Republic of China
| | - Xianxian Qin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai200438, People’s Republic of China
| | - Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang453007, People’s Republic of China
| | - Kun Jiang
- Interdisciplinary Science Research Center, Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| | - Wen-Bin Cai
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai200438, People’s Republic of China
| |
Collapse
|
8
|
Nakaya Y, Furukawa S. Catalysis of Alloys: Classification, Principles, and Design for a Variety of Materials and Reactions. Chem Rev 2022; 123:5859-5947. [PMID: 36170063 DOI: 10.1021/acs.chemrev.2c00356] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alloying has long been used as a promising methodology to improve the catalytic performance of metallic materials. In recent years, the field of alloy catalysis has made remarkable progress with the emergence of a variety of novel alloy materials and their functions. Therefore, a comprehensive disciplinary framework for catalytic chemistry of alloys that provides a cross-sectional understanding of the broad research field is in high demand. In this review, we provide a comprehensive classification of various alloy materials based on metallurgy, thermodynamics, and inorganic chemistry and summarize the roles of alloying in catalysis and its principles with a brief introduction of the historical background of this research field. Furthermore, we explain how each type of alloy can be used as a catalyst material and how to design a functional catalyst for the target reaction by introducing representative case studies. This review includes two approaches, namely, from materials and reactions, to provide a better understanding of the catalytic chemistry of alloys. Our review offers a perspective on this research field and can be used encyclopedically according to the readers' individual interests.
Collapse
Affiliation(s)
- Yuki Nakaya
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Chiyoda, Tokyo 102-0076, Japan
| |
Collapse
|
9
|
Abdalkareem Jasim S, Mohsen AM, Hussien M, Catalan Opulencia MJ, Majdi A, Urunbaevna Tillaeva G, Kadhim MM, Yasin G. Tribromide immobilized on surface of magnetic nanoparticles modified tris(triazine-triamine): A versatile and highly active catalyst for oxidation of sulfides and oxidative coupling of thiols. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2116636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Ahmed M. Mohsen
- Department of Biology, College of Science, Al-Qasim Green University, Al-Qasim, Iraq
| | - Mohamed Hussien
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | | - Ali Majdi
- Department of Building and Construction Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | | | - Mustafa M. Kadhim
- Department of Pharmacy, Osol Aldeen University College, Baghdad, Iraq
| | | |
Collapse
|
10
|
Piqué O, Koleva IZ, Bruix A, Viñes F, Aleksandrov HA, Vayssilov GN, Illas F. Charting the Atomic C Interaction with Transition Metal Surfaces. ACS Catal 2022; 12:9256-9269. [PMID: 36718273 PMCID: PMC9880994 DOI: 10.1021/acscatal.2c01562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/28/2022] [Indexed: 02/02/2023]
Abstract
Carbon interaction with transition metal (TM) surfaces is a relevant topic in heterogeneous catalysis, either for its poisoning capability, for the recently attributed promoter role when incorporated in the subsurface, or for the formation of early TM carbides, which are increasingly used in catalysis. Herein, we present a high-throughput systematic study, adjoining thermodynamic plus kinetic evidence obtained by extensive density functional calculations on surface models (324 diffusion barriers located on 81 TM surfaces in total), which provides a navigation map of these interactions in a holistic fashion. Correlation between previously proposed electronic descriptors and ad/absorption energies has been tested, with the d-band center being found the most suitable one, although machine learning protocols also underscore the importance of the surface energy and the site coordination number. Descriptors have also been tested for diffusion barriers, with ad/absorption energies and the difference in energy between minima being the most appropriate ones. Furthermore, multivariable, polynomial, and random forest regressions show that both thermodynamic and kinetic data are better described when using a combination of different descriptors. Therefore, looking for a single perfect descriptor may not be the best quest, while combining different ones may be a better path to follow.
Collapse
Affiliation(s)
- Oriol Piqué
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1, 08028 Barcelona, Spain
| | - Iskra Z. Koleva
- Faculty
of Chemistry and Pharmacy, University of
Sofia, 1126 Sofia, Bulgaria
| | - Albert Bruix
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1, 08028 Barcelona, Spain
| | - Francesc Viñes
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1, 08028 Barcelona, Spain
| | | | - Georgi N. Vayssilov
- Faculty
of Chemistry and Pharmacy, University of
Sofia, 1126 Sofia, Bulgaria
| | - Francesc Illas
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
11
|
Wahidah H, Hong JW. Phosphorus‐doped
Pt nanowires as efficient catalysts for electrochemical hydrogen evolution and methanol oxidation reaction. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Jong Wook Hong
- Department of Chemistry University of Ulsan Ulsan South Korea
| |
Collapse
|
12
|
Chen H, Wu Q, Wang Y, Zhao Q, Ai X, Shen Y, Zou X. d-sp orbital hybridization: a strategy for activity improvement of transition metal catalysts. Chem Commun (Camb) 2022; 58:7730-7740. [PMID: 35758107 DOI: 10.1039/d2cc02299k] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Orbital hybridization to regulate the electronic structures and surface chemisorption properties of transition metals has been extensively investigated for searching high-performance catalysts toward various reactions. Unlike conventional d-d hybridization, the d-sp hybridization interaction between transition metals and p-block elements could result in surprising electronic properties and catalytic activities. This feature article highlights the recent progress in the development of high-performance transition metal-based catalysts through the extraordinary d-sp hybridization strategy, particularly for energy-related electrocatalytic applications. We start by giving an introduction of fundamental concepts associated with electronic structures of transition metal catalysts, including the Sabatier principle, d-band theory, electronic descriptor, as well as the comparison of d-d hybridization and d-sp hybridization strategies. Then, we summarize the theoretical and experimental advances in d-sp hybridization catalysts, including p-block element-doped metal catalysts, intermetallic catalysts and supported metal catalysts, with emphasis on the important roles of d-sp hybridization in tuning catalytic performances. Finally, we present existing challenges and future development prospects for the rational design of advanced d-sp hybridization catalysts.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Qiannan Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Yanfei Wang
- Petrochina Petrochemical Research Institute, Beijing 102206, China
| | - Qinfeng Zhao
- Petrochina Petrochemical Research Institute, Beijing 102206, China
| | - Xuan Ai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Yucheng Shen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| |
Collapse
|
13
|
Mao Z, Ding C, Liu X, Zhang Q, Qin X, Li H, Yang F, Li Q, Zhang XG, Zhang J, Cai WB. Interstitial B-Doping in Pt Lattice to Upgrade Oxygen Electroreduction Performance. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Zijie Mao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Chen Ding
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Xuan Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qing Zhang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Xianxian Qin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Hong Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Fan Yang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junliang Zhang
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen-Bin Cai
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
14
|
Boron: A key functional component for designing high-performance heterogeneous catalysts. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Light alloying element-regulated noble metal catalysts for energy-related applications. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63899-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Zhang C, Liu W, Chen C, Ni P, Wang B, Jiang Y, Lu Y. Emerging interstitial/substitutional modification of Pd-based nanomaterials with nonmetallic elements for electrocatalytic applications. NANOSCALE 2022; 14:2915-2942. [PMID: 35138321 DOI: 10.1039/d1nr06570j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Palladium (Pd)-based nanomaterials have been identified as potential candidates for various types of electrocatalytic reaction, but most of them typically exhibit unsatisfactory performances. Recently, extensive theoretical and experimental studies have demonstrated that the interstitial/substitutional modification of Pd-based nanomaterials with nonmetallic atoms (H, B, C, N, P, S) has a significant impact on their electronic structure and thus leads to the rapid development of one kind of promising catalyst for various electrochemical reactions. Considering the remarkable progress in this area, we highlight the most recent progress regarding the innovative synthesis and advanced characterization methods of nonmetallic atom-doped Pd-based nanomaterials and provide insights into their electrochemical applications. What's more, the unique structure- and component-dependent electrochemical performance and the underlying mechanisms are also discussed. Furthermore, a brief conclusion about the recent progress achieved in this field as well as future perspectives and challenges are provided.
Collapse
Affiliation(s)
- Chenghui Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Wendong Liu
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Chuanxia Chen
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Pengjuan Ni
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Bo Wang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Yuanyuan Jiang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
17
|
Chen T, Foo C, Zheng JJW, Fang H, Nellist P, Tsang SCE. Direct Visualization of Substitutional Li Doping in Supported Pt Nanoparticles and Their Ultra-selective Catalytic Hydrogenation Performance. Chemistry 2021; 27:12041-12046. [PMID: 34159657 DOI: 10.1002/chem.202101470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 11/08/2022]
Abstract
It has only recently been established that doping light elements (lithium, boron, and carbon) into supported transition metals can fill interstitial sites, which can be observed by the expanded unit cell. As an example, interstitial lithium (int Li) can block H filling octahedral interstices of palladium metal lattice, which improves partial hydrogenation of alkynes to alkenes under hydrogen. In contrast, herein, we report int Li is not found in the case of Pt/C. Instead, we observe for the first time a direct 'substitution' of Pt with substitutional lithium (sub Li) in alternating atomic columns using scanning transmission electron microscopy-annular dark field (STEM-ADF). This ordered substitutional doping results in a contraction of the unit cell as shown by high-quality synchrotron X-ray diffraction (SXRD). The electron donation of d-band of Pt without higher orbital hybridizations by sub Li offers an alternative way for ultra-selectivity in catalytic hydrogenation of carbonyl compounds by suppressing the facile CO bond breakage that would form alcohols.
Collapse
Affiliation(s)
- Tianyi Chen
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, OX1 3QR, Oxford, UK.,Department of Materials, University of Oxford, OX1 PH, Oxford, UK
| | - Christopher Foo
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, OX1 3QR, Oxford, UK
| | - Jianwei J W Zheng
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, OX1 3QR, Oxford, UK
| | - Huihuang Fang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, OX1 3QR, Oxford, UK
| | - Peter Nellist
- Department of Materials, University of Oxford, OX1 PH, Oxford, UK
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, OX1 3QR, Oxford, UK
| |
Collapse
|
18
|
Duan XP, Chen T, Chen T, Huang L, Ye L, Lo BTW, Yuan Y, Edman Tsang SC. Intercalating lithium into the lattice of silver nanoparticles boosts catalytic hydrogenation of carbon-oxygen bonds. Chem Sci 2021; 12:8791-8802. [PMID: 34257879 PMCID: PMC8246077 DOI: 10.1039/d1sc01700d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/22/2021] [Indexed: 12/28/2022] Open
Abstract
Coinage metal nanoparticles with high dispersion can serve as highly efficient heterogeneous catalysts. However, owing to their low melting point, poor thermal stability remains a major obstacle towards their application under reaction conditions. It is a common practice to use porous inorganic templates such as mesoporous silica SBA-15 to disperse Ag nanoparticles (NPs) against aggregation but their stability is far from satisfactory. Here, we show that the catalytic activity for hydrogenation of dimethyl oxalate (DMO) to methyl glycolate (MG) over Ag NPs dispersed on SBA-15 silica can be further promoted by incorporation of alkali metal ions at small loading, which follows the inverse order of their cationic size: Li+ > Na+ > K+ > Rb+. Among these, 5Ag1-Li0.05/SBA-15 can double the MG yield compared to pristine 5Ag/SBA-15 under identical conditions with superior thermal stability. Akin to the effect of an ionic surfactant on stabilization of a micro-emulsion, the cationic charge of an alkali metal ion can maintain dispersion and modulate the surface valence of Ag NPs. Interstitial Li in the octahedral holes of the face center packed Ag lattice is for the first time confirmed by X-ray pair distribution function and electron ptychography. It is believed that this interstitial-stabilization of coinage metal nanoparticles could be broadly applicable to multi-metallic nanomaterials for a broad range of C-O bond activating catalytic reactions of esters.
Collapse
Affiliation(s)
- Xin-Ping Duan
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford Oxford OX1 3QR UK
- Department of Chemistry, Xiamen University Xiamen 361005 China
| | - Tianyi Chen
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford Oxford OX1 3QR UK
| | - Tianxiang Chen
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University Hong Kong China
| | - Lele Huang
- Department of Chemistry, Xiamen University Xiamen 361005 China
| | - Li Ye
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford Oxford OX1 3QR UK
- Department of Chemistry, Fudan University (Jiangwan Campus) Shanghai China
| | - Benedict T W Lo
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University Hong Kong China
| | - Youzhu Yuan
- Department of Chemistry, Xiamen University Xiamen 361005 China
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford Oxford OX1 3QR UK
| |
Collapse
|