1
|
Zhou Z, Sun Y, Pang J, Long YQ. Advances in the Delivery, Activation and Therapeutics Applications of Bioorthogonal Prodrugs. Med Res Rev 2024. [PMID: 39692238 DOI: 10.1002/med.22095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
Traditional prodrug strategies have been leveraged to overcome many inherent drawbacks of active native drugs in the drug research and development. However, endogenous stimuli such as specific microenvironment or enzymes are relied on to achieve the prodrug activation, resulting in unintended drug release and systemic toxicity. Alternatively, bioorthogonal cleavage reaction-enabled bioorthogonal prodrugs activation via exogenous triggers has emerged as a valuable approach, featuring spatiotemporally controlled drug release. Such bioorthogonal prodrug strategies would ensure targeted drug delivery and/or in situ generation, further circumventing systemic toxicity or premature elimination of active drugs. In recent years, metal-free bioorthogonal cleavage reactions with fast kinetics have boomed in the bioorthogonal prodrug design. Meanwhile, transition-metal-catalyzed and photocatalytic deprotection reactions have also been developed to trigger prodrug activation in biological systems. Besides traditional small molecule prodrugs, gasotransmitters have been successfully delivered to specific organelles or cells via bioorthogonal reactions, and nanosystems have been devised into bioorthogonal triggers as well. Herein, we present an overview of the latest advances in these bioorthogonally-uncaged prodrugs, focused on the delivery, activation and therapeutics applications.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Medicinal Chemistry, Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yuanjun Sun
- Department of Medicinal Chemistry, Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| | - Jing Pang
- Department of Medicinal Chemistry, Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| | - Ya-Qiu Long
- Department of Medicinal Chemistry, Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Spector D, Bubley A, Zharova A, Bykusov V, Skvortsov D, Ipatova D, Erofeev A, Gorelkin P, Vaneev A, Mazur D, Nikitina V, Melnikov M, Pergushov V, Bunin D, Kuzmin V, Kostyukov A, Egorov A, Beloglazkina E, Akasov R, Krasnovskaya O. Light-Responsive Pt(IV) Prodrugs with Controlled Photoactivation and Low Dark Toxicity. ACS APPLIED BIO MATERIALS 2024; 7:3431-3440. [PMID: 38697834 DOI: 10.1021/acsabm.4c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Light-induced release of cisplatin from Pt(IV) prodrugs represents a promising approach for precise control over the antiproliferative activity of Pt-based chemotherapeutic drugs. This method has the potential to overcome crucial drawbacks of conventional cisplatin therapy, such as high general toxicity toward healthy organs and tissues. Herein, we report two Pt(IV) prodrugs with BODIPY-based photoactive ligands Pt-1 and Pt-2, which were designed using carbamate and triazole linkers, respectively. Both prodrugs demonstrated the ability to release cisplatin under blue light irradiation without the requirement of an external reducing agent. Dicarboxylated Pt-2 prodrug turned out to be more stable in the dark and more sensitive to light than its monocarbamate Pt-1 counterpart; these observations were explained using DFT calculations. The investigation of the photoreduction mechanism of Pt-1 and Pt-2 prodrugs using DFT modeling and ΔG0 PET estimation suggests that the photoinduced electron transfer from the singlet excited state of the BODIPY axial ligand to the Pt(IV) center is the key step in the light-induced release of cisplatin from the complexes. Cytotoxicity studies demonstrated that both prodrugs were nontoxic in the dark and toxic to MCF-7 cells under low-dose irradiation with blue light, and the observed effect was solely due to the cisplatin release from the Pt(IV) prodrugs. Our research presents an elegant synthetic approach to light-activated Pt(IV) prodrugs and presents findings that may contribute to the future rational design of photoactivatable Pt(IV) prodrugs.
Collapse
Affiliation(s)
- Daniil Spector
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Anna Bubley
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Anastasia Zharova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Vladislav Bykusov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Dmitry Skvortsov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Daria Ipatova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alexander Erofeev
- National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Petr Gorelkin
- National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Alexander Vaneev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Dmitrii Mazur
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Vita Nikitina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Mikhail Melnikov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Vladimir Pergushov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Dmitry Bunin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr., 31, bldg. 4, Moscow 119071, Russia
| | - Vladimir Kuzmin
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street 4, Moscow 119334, Russia
| | - Alexey Kostyukov
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street 4, Moscow 119334, Russia
| | - Anton Egorov
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street 4, Moscow 119334, Russia
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Roman Akasov
- I.M. Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia
- Moscow Pedagogical State University, Malaya Pirogovskaya str. 1, Moscow 119435, Russia
| | - Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| |
Collapse
|
3
|
He X, Yu J, Yin R, Zhang P, Xiao C, Chen X. A Nanoscale Trans-Platinum(II)-Based Supramolecular Coordination Self-Assembly with a Distinct Anticancer Mechanism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312488. [PMID: 38301714 DOI: 10.1002/adma.202312488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Drug resistance significantly hampers the clinical application of existing platinum-based anticancer drugs. New platinum medications that possess distinct mechanisms of action are highly desired for the treatment of Pt-resistant cancers. Herein, a nanoscale trans-platinum(II)-based supramolecular coordination self-assembly (Pt-TCPP-BA) is prepared via using trans-[PtCl2(pyridine)(NH3)] (transpyroplatin), tetracarboxylporphyrin (TCPP), and benzoic acid (BA) as building blocks to combat drug resistance in platinum-based chemotherapy. Mechanistic studies indicate that Pt-TCPP-BA shows a hydrogen-peroxide-responsive dissociation behavior along with the generation of bioactive trans-Pt(II) and TCPP-Pt species. Different from cisplatin, these degradation products interact with DNA via interstrand cross-links and small groove binding, and induce significant upregulation of cell-death-related proteins such as p53, cleaved caspase 3, p21, and phosphorylated H2A histone family member X in cisplatin-resistant cancer cells. As a result, Pt-TCPP-BA exhibits potent killing effects against Pt-resistant tumors both in vitro and in vivo. Overall, this work not only provides a new platinum drug for combating drug-resistant cancer but also offers a new paradigm for the development of platinum-based supramolecular anticancer drugs.
Collapse
Affiliation(s)
- Xidong He
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jie Yu
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Renyong Yin
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
4
|
Hu W, Liu R, Zheng K, Wang Z. Highly photoactive Ir(III)-Pt(IV) heterometallic conjugates for anticancer therapy. Chem Commun (Camb) 2024; 60:388-391. [PMID: 38054250 DOI: 10.1039/d3cc04938h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
For the first time, this study reported the photoactivatable activity of Ir(III)-Pt(IV) heterometallic conjugates, which were stable in the dark and activated to release oxaliplatin and Ir within 3 min of irradiation. The conjugates induced apoptosis and immunologic cell death through Pt-DNA binding and reactive oxygen species generation upon irradiation. This work developed photoactivatable heterometallic agents for anticancer therapy.
Collapse
Affiliation(s)
- Wangman Hu
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Rongzhi Liu
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Kai Zheng
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Zhigang Wang
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, China.
| |
Collapse
|
5
|
Deng Z, Chen S, Liu G, Zhu G. Unlocking the potential of platinum drugs: organelle-targeted small-molecule platinum complexes for improved anticancer performance. RSC Chem Biol 2023; 4:1003-1013. [PMID: 38033725 PMCID: PMC10685827 DOI: 10.1039/d3cb00087g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/29/2023] [Indexed: 12/02/2023] Open
Abstract
Platinum-based drugs have revolutionized cancer chemotherapy; however, their therapeutic efficacy has been limited by severe side effects and drug resistance. Recently, approaches that target specific organelles in cancer cells have emerged as attractive alternatives to overcome these challenges. Many studies have validated these strategies and highlighted that organelle-targeted platinum complexes demonstrate increased anticancer activity, the ability to overcome drug resistance, novel molecular mechanisms, or even lower toxicity. This review provides a brief summary of various organelle-targeting strategies that promote the accumulation of platinum complexes in certain intracellular areas, such as the nucleus, mitochondria, endoplasmic reticulum (ER), and lysosomes. Moreover, the mechanisms through which these strategies improve anticancer performance, overcome drug resistance, and alter the action mode of conventional platinum drugs are discussed. By providing an extensive account of platinum complexes targeting different organelles, this review aims to assist researchers in understanding the design principles, identifying potential targets, and fostering innovative ideas for the development of platinum complexes.
Collapse
Affiliation(s)
- Zhiqin Deng
- Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 P. R. China
- School of Medicine, Chongqing University Chongqing 400030 P. R. China
| | - Shu Chen
- Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Gongyuan Liu
- Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 P. R. China
| |
Collapse
|
6
|
Zhong T, Yu J, Pan Y, Zhang N, Qi Y, Huang Y. Recent Advances of Platinum-Based Anticancer Complexes in Combinational Multimodal Therapy. Adv Healthc Mater 2023; 12:e2300253. [PMID: 37097737 DOI: 10.1002/adhm.202300253] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/19/2023] [Indexed: 04/26/2023]
Abstract
Platinum drugs with manifest therapeutic effects are widely used, but their systemic toxicity and the drug resistance acquired by cancer cells limit their clinical applications. Thus, the exploration on appropriate methods and strategies to overcome the limitations of traditional platinum drugs becomes extremely necessary. Combination therapy of platinum drugs can inhibit tumor growth and metastasis in an additive or synergistic manner, and can potentially reduce the systemic toxicity of platinum drugs and overcome platinum-resistance. This review summarizes the various modalities and current progress in platinum-based combination therapy. The synthetic strategies and therapeutic effects of some platinum-based anticancer complexes in the combination of platinum drugs with gene editing, ROS-based therapy, thermal therapy, immunotherapy, biological modelling, photoactivation, supramolecular self-assembly and imaging modality are briefly described. Their potential challenges and prospects are also discussed. It is hoped that this review will inspire researchers to have more ideas for the future development of highly effective platinum-based anti-cancer complexes.
Collapse
Affiliation(s)
- Tianyuan Zhong
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| | - Jie Yu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| | - Yong Pan
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| | - Ning Zhang
- The Second Affiliated Hospital of Harbin Medical University, Department of Orthopedics, Harbin, 150000, China
| | - Yanxin Qi
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| | - Yubin Huang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
7
|
Wan X, Zhang Y, Nie Y, Zhang K, Jin Z, Zhang Z, Gan L, Liu X, He J. A narrative review: progress in transition metal-mediated bioorthogonal catalysis for the treatment of solid tumors. Transl Cancer Res 2023; 12:2181-2196. [PMID: 37701121 PMCID: PMC10493806 DOI: 10.21037/tcr-23-345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/21/2023] [Indexed: 09/14/2023]
Abstract
Background and Objective Transition metals are commonly used catalysts in bioorthogonal chemistry and have attracted extensive attention in biochemistry because of their efficient catalytic performance. In recent years, transition metal-mediated cycloaddition reactions, bond cleavage, and formation reactions are being actively explored for tumor treatment. However, the direct application of transition metals in complex biological environments has several problems, including poor solubility, toxicity, and easy inactivation. The combination of transition metals and nanomaterials can solve those problems by playing a bioorthogonal catalytic role in tumor treatment. In this review, we summarize some research on the application of transition metals modified by nanomaterials in tumor therapy and discuss the potential and challenges of transition metal-mediated bioorthogonal therapy in comprehensive tumor therapy. Methods English literature on transition metal in cancer treatment was searched in PubMed and Web of Science. The main search terms were "cancer treatment", "bioorthogonal reaction", "transition metal", "bioorthogonal catalysis", etc. Key Content and Findings This review summarizes research on several major transition metals that can be used for bioorthogonal catalysis with the assistance of nanomaterials in anti-tumor therapy. In addition, bioorthogonal catalysis is a new supplement to antitumor therapy. We have compiled the potential challenges of the clinical application of transition metal-based nanocatalysts, which lays the foundation for future research related to medicinal chemistry and targeted cancer therapy. Conclusions Most of the transition metals still have a lot of room for exploration in cancer treatment research. We still need more research to confirm the feasibility of in vivo and clinical trials.
Collapse
Affiliation(s)
- Xiaotian Wan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Yiwen Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Yueli Nie
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Keyong Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Ze Jin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Zhikun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Lu Gan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
- Department of Science and Education, The First People’s Hospital of Changde City, Changde, China
| |
Collapse
|
8
|
Jayawardhana AMDS, Bhandari S, Kaspi-Kaneti AW, Kshetri M, Qiu Z, Cheline M, Shen H, Dunietz BD, Zheng YR. Visible light-activatable platinum(IV) prodrugs harnessing CD36 for ovarian cancer therapy. Dalton Trans 2023; 52:10942-10950. [PMID: 37490033 PMCID: PMC11298056 DOI: 10.1039/d3dt01292a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
We hereby engineered photoactivatable Pt(IV) metallodrugs that harness CD36 to target ovarian cancer cells. Pt(IV) compounds mimic the structure of fatty acids and take advantage of CD36 as a "Trojan horse" to gain entry into the cells. We confirmed that CD36-dependent entry occurs using graphite furnace atomic absorption spectroscopy with ovarian cancer cells expressing different levels of CD36 and a CD36 inhibitor, SSO. Once the Pt(IV) metallodrugs enter the cancer cells, they can be activated to form Pt(II) with characteristics of cisplatin under visible light (490 nm) irradiation, promoting photoinduced electron transfer from the attached fluorophore to the metal center. This light-induced activation can increase the cytotoxicity of the Pt(IV) metallodrugs by up to 20 times toward ovarian cancer cells, inducing DNA damage and enabling efficient elimination of drug-resistant cancer cells.
Collapse
Affiliation(s)
| | - Srijana Bhandari
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| | - Ariela W Kaspi-Kaneti
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| | - Man Kshetri
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| | - Zihan Qiu
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| | - May Cheline
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| | - Hao Shen
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| | - Yao-Rong Zheng
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
9
|
Liu G, Zhang Y, Yao H, Deng Z, Chen S, Wang Y, Peng W, Sun G, Tse MK, Chen X, Yue J, Peng YK, Wang L, Zhu G. An ultrasound-activatable platinum prodrug for sono-sensitized chemotherapy. SCIENCE ADVANCES 2023; 9:eadg5964. [PMID: 37343091 DOI: 10.1126/sciadv.adg5964] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023]
Abstract
Despite the great success achieved by photoactivated chemotherapy, eradicating deep tumors using external sources with high tissue penetration depth remains a challenge. Here, we present cyaninplatin, a paradigm of Pt(IV) anticancer prodrug that can be activated by ultrasound in a precise and spatiotemporally controllable manner. Upon sono-activation, mitochondria-accumulated cyaninplatin exhibits strengthened mitochondrial DNA damage and cell killing efficiency, and the prodrug overcomes drug resistance as a consequence of combined effects from released Pt(II) chemotherapeutics, the depletion of intracellular reductants, and the burst of reactive oxygen species, which gives rise to a therapeutic approach, namely sono-sensitized chemotherapy (SSCT). Guided by high-resolution ultrasound, optical, and photoacoustic imaging modalities, cyaninplatin realizes the overall theranostics of tumors in vivo with superior efficacy and biosafety. This work highlights the practical utility of ultrasound to precisely activate Pt(IV) anticancer prodrugs for the eradication of deep tumor lesions and broadens the biomedical uses of Pt coordination complexes.
Collapse
Affiliation(s)
- Gongyuan Liu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P.R. China
| | - Yachao Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, P.R. China
| | - Houzong Yao
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P.R. China
| | - Zhiqin Deng
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P.R. China
| | - Shu Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P.R. China
| | - Yue Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, P.R. China
| | - Wang Peng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, P.R. China
| | - Guohan Sun
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P.R. China
| | - Man-Kit Tse
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P.R. China
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, University of Edinburgh, UK
| | - Jianbo Yue
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, P.R. China
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan 215316, P.R. China
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P.R. China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, P.R. China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P.R. China
| |
Collapse
|
10
|
Deng Z, Zhu G. Beyond mere DNA damage: Recent progress in platinum(IV) anticancer complexes containing multi-functional axial ligands. Curr Opin Chem Biol 2023; 74:102303. [PMID: 37075513 DOI: 10.1016/j.cbpa.2023.102303] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 04/21/2023]
Abstract
The clinical application of Pt-based anticancer drugs has inspired the development of novel chemotherapeutic metallodrugs with improved efficacies. Pt(IV) prodrugs are one of the most promising successors of Pt(II) drugs and have displayed great anticancer performance. In particular, judicious modification of axial ligands endows Pt(IV) complexes with unique properties that enable them to overcome the limitations of conventional Pt(II) drugs. Herein, we summarize recent developments in Pt(IV) anticancer complexes, with a focus on their axial functionalization with other anticancer agents, immunotherapeutic agents, photosensitive ligands, peptides, and theranostic agents. We hope that this concise view of recently reported Pt(IV) coordination complexes will help researchers to design next-generation multi-functional anticancer agents based on a comprehensive Pt(IV) platform.
Collapse
Affiliation(s)
- Zhiqin Deng
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, PR China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, PR China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, PR China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, PR China.
| |
Collapse
|
11
|
Krasnovskaya OO, Akasov RA, Spector DV, Pavlov KG, Bubley AA, Kuzmin VA, Kostyukov AA, Khaydukov EV, Lopatukhina EV, Semkina AS, Vlasova KY, Sypalov SA, Erofeev AS, Gorelkin PV, Vaneev AN, Nikitina VN, Skvortsov DA, Ipatova DA, Mazur DM, Zyk NV, Sakharov DA, Majouga AG, Beloglazkina EK. Photoinduced Reduction of Novel Dual-Action Riboplatin Pt(IV) Prodrug. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12882-12894. [PMID: 36854172 DOI: 10.1021/acsami.3c01771] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Controlled photoreduction of Pt(IV) prodrugs is a challenging task due to the possibility of targeted light-controlled activation of anticancer agents without affecting healthy tissues. Also, a conjugation of photosensitizers and clinically used platinum drugs into one Pt(IV) prodrug allows combining photodynamic therapy and chemotherapy approaches into one molecule. Herein, we designed the cisplatin-based Pt(IV) prodrug Riboplatin with tetraacetylriboflavin in the axial position. A novel Pt(IV) prodrug is able to act both as a photodynamic therapy (PDT) agent through the conversion of ground-state 3O2 to excited-state 1O2 and as an agent of photoactivated chemotherapy (PACT) through releasing of cisplatin under gentle blue light irradiation, without the requirement of a reducing agent. The light-induced behavior of Riboplatin was investigated using an electrochemical sensor in MCF-7 tumor spheroids. Photocontrolled cisplatin release and ROS generation were detected electrochemically in real time. This appears to be the first confirmation of simultaneous photoactivated release of anticancer drug cisplatin and ROS from a dual-action Pt(IV) prodrug observed from the inside of living tumor spheroids.
Collapse
Affiliation(s)
- Olga O Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Roman A Akasov
- I.M. Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia
- Federal Scientific Research Center "Crystallography and Photonics" Russian Academy of Sciences, Leninskiy Prospect 59, Moscow 119333, Russia
| | - Daniil V Spector
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Kirill G Pavlov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Anna A Bubley
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Vladimir A Kuzmin
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street, 4, Moscow 119334, Russia
| | - Alexey A Kostyukov
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street, 4, Moscow 119334, Russia
| | - Evgeny V Khaydukov
- I.M. Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia
- Federal Scientific Research Center "Crystallography and Photonics" Russian Academy of Sciences, Leninskiy Prospect 59, Moscow 119333, Russia
| | - Elena V Lopatukhina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alevtina S Semkina
- Pirogov Russian National Research Medical University (RNRMU), Ostrovitianov 1, Moscow 117997, Russia
- Department of Basic and Applied Neurobiology, Serbsky National Medical Research Center for Psychiatry and Narcology, Kropot-kinskiy 23, Moscow 119034, Russia
| | - Kseniya Yu Vlasova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- Pirogov Russian National Research Medical University (RNRMU), Ostrovitianov 1, Moscow 117997, Russia
| | - Sergey A Sypalov
- Core Facility Center "Arktika", Northern (Arctic) Federal University, Arkhangelsk 163002, Russia
| | - Alexander S Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Petr V Gorelkin
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Alexander N Vaneev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Vita N Nikitina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Dmitrii A Skvortsov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Daria A Ipatova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Dmitrii M Mazur
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Nikolay V Zyk
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Dmitry A Sakharov
- Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russia
| | - Alexander G Majouga
- Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russia
| | - Elena K Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| |
Collapse
|
12
|
Spector D, Pavlov K, Beloglazkina E, Krasnovskaya O. Recent Advances in Light-Controlled Activation of Pt(IV) Prodrugs. Int J Mol Sci 2022; 23:14511. [PMID: 36498837 PMCID: PMC9739791 DOI: 10.3390/ijms232314511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Pt(IV) prodrugs remain one of the most promising alternatives to conventional Pt(II) therapy due to their versatility in axial ligand choice and delayed mode of action. Selective activation from an external source is especially attractive due to the opportunity to control the activity of an antitumor drug in space and time and avoid damage to normal tissues. In this review, we discuss recent advances in photoabsorber-mediated photocontrollable activation of Pt(IV) prodrugs. Two main approaches developed are the focus of the review. The first one is the photocatalytic strategy based on the flavin derivatives that are not covalently bound to the Pt(IV) substrate. The second one is the conjugation of photoactive molecules with the Pt(II) drug via axial position, yielding dual-action Pt(IV) molecules capable of the controllable release of Pt(II) cytotoxic agents. Thus, Pt(IV) prodrugs with a light-controlled mode of activation are non-toxic in the absence of light, but show high antiproliferative activity when irradiated. The susceptibility of Pt(IV) prodrugs to photoreduction, photoactivation mechanisms, and biological activity is considered in this review.
Collapse
Affiliation(s)
- Daniil Spector
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1,3, 119991 Moscow, Russia
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 101000 Moscow, Russia
| | - Kirill Pavlov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1,3, 119991 Moscow, Russia
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1,3, 119991 Moscow, Russia
| | - Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1,3, 119991 Moscow, Russia
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 101000 Moscow, Russia
| |
Collapse
|
13
|
The role of Platinum(IV)-based antitumor drugs and the anticancer immune response in medicinal inorganic chemistry. A systematic review from 2017 to 2022. Eur J Med Chem 2022; 243:114680. [PMID: 36152386 DOI: 10.1016/j.ejmech.2022.114680] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022]
Abstract
Platinum-based antitumor drugs have been used in many types of tumors due to its broad antitumor spectrum in clinic. Encouraged by the cisplatin's (CDDP) worldwide success in cancer chemotherapy, the research in platinum-based antitumor drugs has evolved from traditional platinum drug to multi-ligand and multifunctional platinum prodrugs over half a century. With the rapid development of metal drugs and the anticancer immune response, challenges and opportunities in platinum drug research have been shifted from traditional platinum-based drugs to platinum-based hybrids and the direction of development is tending toward photodynamic therapy, nano-delivery therapy, drug combination, targeted therapy, diagnostic therapy, immune-combination therapy and tumor stem cell therapy. In this review, we first exhaustively overviewed the role of platinum-based antitumor prodrugs and the anticancer immune response in medicinal inorganic chemistry based on the special nanomaterials, the modification of specific ligands, and the multiple functions obtained that are beneficial for tumor therapy in the last five years. We also categorized them according to drug potency and function. There hasn't been a comprehensive evaluation of precursor platinum drugs in prior articles. And a multifarious approach to distinguish and detail the variety of alterations of platinum-based precursors in various valence states also hasn't been summarized. In addition, this review points out the main problems at the interface of chemistry, biology, and medicine from their action mechanisms for current platinum drug development, and provides up-to-date potential strategies from drug design perspectives to circumvent those drawbacks. And a promising idea is also enlightened for researchers in the development and discovery of platinum prodrugs.
Collapse
|
14
|
Huang J, Ding W, Zhu X, Li B, Zeng F, Wu K, Wu X, Wang F. Ligand Evolution in the Photoactivatable Platinum(IV) Anticancer Prodrugs. Front Chem 2022; 10:876410. [PMID: 35755267 PMCID: PMC9218644 DOI: 10.3389/fchem.2022.876410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Photoactivatable Pt(IV) anticancer prodrugs with the structure of [PtIV(N1)(N2)(L1)(L2)(A1)(A2)], where N1 and N2 are non-leaving nitrogen donor ligands, L1 and L2 are leaving ligands, and A1 and A2 are axial ligands, have attracted increasing attention due to their promising photo-cytotoxicity even to cisplatin-resistant cancer cells. These photochemotherapeutic prodrugs have high dark-stability under physiological conditions, while they can be activated by visible light restrained at the disease areas, as a consequence showing higher spatial and temporal controllability and much more safety than conventional chemotherapy. The coordinated ligands to the Pt center have been proved to be pivotal in determining the function and activity of the photoactivatable Pt(IV) prodrugs. In this review, we will focus on the development of the coordinated ligands in such Pt(IV) prodrugs and discuss the effects of diverse ligands on their photochemistry and photoactivity as well as the future evolution directions of the ligands. We hope this review can help to facilitate the design and development of novel photoactivatable Pt(IV) anticancer prodrugs.
Collapse
Affiliation(s)
- Jingjing Huang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Weize Ding
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Xingfan Zhu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Bingbing Li
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Fangang Zeng
- School of Environment and Natural Resources, Renmin University of China, Beijing, China
| | - Kui Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoqin Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Fuyi Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Tu Y, Li HM, Wang MM, Su Y, Liu HK, Su Z. Dual Mitochondria‐ and DNA‐Targeting Coumarin‐Pt(IV) Prodrug for the enhancement of Anticancer Performance. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ying Tu
- Nanjing Normal University Chemistry CHINA
| | | | | | - Yan Su
- Nanjing Normal University Chemistry CHINA
| | | | - Zhi Su
- Nanjing Normal University Chemistry Wenyuan Rd. #1 210093 Nanjing CHINA
| |
Collapse
|
16
|
Jiang J, Cao B, Chen Y, Luo H, Xue J, Xiong X, Zou T. Alkylgold(III) Complexes Undergo Unprecedented Photo-Induced β-Hydride Elimination and Reduction for Targeted Cancer Therapy. Angew Chem Int Ed Engl 2022; 61:e202201103. [PMID: 35165986 DOI: 10.1002/anie.202201103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/07/2022]
Abstract
Spatiotemporally controllable activation of prodrugs within tumors is highly desirable for cancer therapy to minimize toxic side effects. Herein we report that stable alkylgold(III) complexes can undergo unprecedented photo-induced β-hydride elimination, releasing alkyl ligands and forming gold(III)-hydride intermediates that could be quickly converted into bioactive [AuIII -S] adducts; meanwhile, the remaining alkylgold(III) complexes can photo-catalytically reduce [AuIII -S] into more bioactive AuI species. Such photo-reactivities make it possible to functionalize gold complexes on the auxiliary alkyl ligands without attenuating the metal-biomacromolecule interactions. As a result, the gold(III) complexes containing glucose-functionalized alkyl ligands displayed efficient and tumor-selective uptake; notably, after one- or two-photon activation, the complexes exhibited high thioredoxin reductase (TrxR) inhibition, potent cytotoxicity, and strong antiangiogenesis and antitumor activities in vivo.
Collapse
Affiliation(s)
- Jia Jiang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education Division, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Yuting Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hejiang Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jiaying Xue
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xiaolin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
17
|
Yao H, Zhu G. A platinum-based fluorescent "turn on" sensor to decipher the reduction of platinum(IV) prodrugs. Dalton Trans 2022; 51:5394-5398. [PMID: 35244663 DOI: 10.1039/d2dt00124a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We report a strategy to use a fluorescence "turn on" sensor to quantify the reduction of platinum(IV) prodrugs in a real-time mode by simply and conveniently monitoring the fluorescence intensity. Proteins with high molecular weights, especially those between 10 and 100 kDa, contribute more to the reduction of the platinum(IV) complex in cell extracts.
Collapse
Affiliation(s)
- Houzong Yao
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China. .,City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China. .,City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| |
Collapse
|
18
|
Davighi MG, Clemente F, Matassini C, Cardona F, Nielsen MB, Goti A, Morrone A, Paoli P, Cacciarini M. Photoswitchable inhibitors of human β-glucocerebrosidase. Org Biomol Chem 2022; 20:1637-1641. [PMID: 35107482 DOI: 10.1039/d1ob02159a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Light-switchable inhibitors of the enzyme β-glucocerebrosidase (GCase) have been developed by anchoring a specific azasugar to a dihydroazulene or an azobenzene responsive moiety. Their inhibitory effect towards human GCase, before and after irradiation are reported, and the effect on thermal denaturation of recombinant GCase and cytotoxicity were studied on selected candidates.
Collapse
Affiliation(s)
- Maria Giulia Davighi
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy.
| | - Francesca Clemente
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy.
| | - Camilla Matassini
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy.
| | - Francesca Cardona
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy. .,Associated with LENS, via N. Carrara 1, 50019 Sesto F.no (FI), Italy
| | - Mogens Brøndsted Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Andrea Goti
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy. .,Associated with LENS, via N. Carrara 1, 50019 Sesto F.no (FI), Italy
| | - Amelia Morrone
- Paediatric Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, and Department of Neurosciences, Pharmacology and Child Health. University of Florence, Viale Pieraccini 24, 50139 Firenze, Italy
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Firenze, Italy
| | - Martina Cacciarini
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy.
| |
Collapse
|
19
|
Zhang H, Zhang Y, Cao J, Ma L, Chen T. Stable high-oxidation-state complex in situ Mn(V)-Mn(III) transition to achieve highly efficient cervical cancer therapy. Chem Commun (Camb) 2022; 58:3759-3762. [PMID: 35103726 DOI: 10.1039/d1cc06819a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Designing metal complexes to target the vulnerable redox balance in cancer cells is a promising strategy to realize successful cancer therapy. The synthesized stable nitridomanganese(V) complex MnV(N) (salen) not only reacts with GSH to achieve in situ Mn(V)-Mn(III) transformation to down-regulate the antioxidant system, but also catalyzes H2O2 to higher oxidation capacity ROS to up-regulate the intracellular oxidative level, finally resulting in cancer cell death.
Collapse
Affiliation(s)
- Hanjie Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Yuequn Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Jianrong Cao
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Li Ma
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Tianfeng Chen
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
20
|
Mu M, Gao H. DFT Study on the Substituent Effect of Anticancer Picoline-Diazido-Pt(IV) Compounds. Front Oncol 2022; 11:749178. [PMID: 35083137 PMCID: PMC8784384 DOI: 10.3389/fonc.2021.749178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/10/2021] [Indexed: 01/03/2023] Open
Abstract
The geometric structure of azido Pt(IV) compounds containing picoline was calculated by using density functional theory(DFT) at the LSDA/SDD level. The ESP distribution shows the possible reaction sites of the compounds. In addition, the frequency calculation results assigned the infrared spectra of these compounds, and specified important stretching and bending vibrations. The HOMO-LUMO energy gaps of these compounds are also calculated to explain the charge transfer of the molecules. The distribution of Mulliken charges and natural atomic charges of these atoms is also calculated. Natural bond orbital(NBO) analysis explains the intramolecular interactions and their electron density.
Collapse
Affiliation(s)
- Meilin Mu
- School of Life Science, Ludong University, Yantai, China
| | - Hongwei Gao
- School of Life Science, Ludong University, Yantai, China
| |
Collapse
|
21
|
Li Y, Wang Z, Qi Y, Tang Z, Li X, Huang Y. A red-light activatable and mitochondrion-targeting PtIV complex to overcome drug resistance. Chem Commun (Camb) 2022; 58:8404-8407. [DOI: 10.1039/d2cc02607d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The therapeutic effects of platinum anticancer drugs are commonly whittled away by drug resistance, which is associated with drug efflux and the nucleotide excision repair (NER) pathway. Activation of drugs...
Collapse
|
22
|
Zhu C, Kou T, Kadi AA, Li J, Zhang Y. Molecular platforms based on biocompatible photoreactions for photomodulation of biological targets. Org Biomol Chem 2021; 19:9358-9368. [PMID: 34632469 DOI: 10.1039/d1ob01613j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoirradiation provides a convenient and biocompatible approach for spatiotemporal modulation of biological systems with photoresponsive components. The construction of molecular platforms with a photoresponse to be integrated into biomolecules for photomodulation has been of great research interest in optochemical biology. In this review, we summarize typical molecular platforms that are integratable with biomolecules for photomodulation purposes. We categorize these molecular platforms according to their excitation light source, namely ultraviolet (UV), visible (Vis) or near-infrared (NIR) light. The protype chemistry of these molecular platforms is introduced along with an overview of their most recent applications for spatiotemporal regulation of biomolecular function in living cells or mice models. Challenges and the outlook are also presented. We hope this review paper will contribute to further progress in the development of molecular platforms and their biomedical use.
Collapse
Affiliation(s)
- Chenghong Zhu
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Tianzhang Kou
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Kingdom of Saudi Arabia.
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
23
|
Huang Z, King AP, Lovett J, Lai B, Woods JJ, Harris HH, Wilson JJ. Photochemistry and in vitro anticancer activity of Pt(IV)Re(I) conjugates. Chem Commun (Camb) 2021; 57:11189-11192. [PMID: 34622255 DOI: 10.1039/d1cc04669a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The photophysical and photochemical properties of two Pt(IV)Re(I) conjugates were studied via both experimental and computational methods. Both conjugates exhibit modest photocytotoxicity against ovarian cancer cells. X-ray fluorescence microscopy showed that Pt and Re colocalize in cells whether they had been irradiated or not. This work demonstrates the potential of photoactivated multilimetallic agents for combating cancer.
Collapse
Affiliation(s)
- Zhouyang Huang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | - A Paden King
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | - James Lovett
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia
| | - Barry Lai
- Advanced Photon Source, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Joshua J Woods
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA. .,Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
24
|
Research progress of azido-containing Pt(IV) antitumor compounds. Eur J Med Chem 2021; 227:113927. [PMID: 34695775 DOI: 10.1016/j.ejmech.2021.113927] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
Cancer is a long-known incurable disease, and the medical use of cisplatin has been a significant discovery. However, the side-effects of cisplatin necessitate the development of new and improved drug. Therefore, in this study, we focused on the photoactivatable Pt(IV) compounds Pt[(X1)(X2)(Y1)(Y2)(N3)2], which have a completely novel mechanism of action. Pt(IV) can efficiently overcome the side-effects of cisplatin and other drugs. Here, we have demonstrated, summarized and discussed the effects and mechanism of these compounds. Compared to the relevant articles in the literature, we have provided a more detailed introduction and a made comprehensive classification of these compounds. We believe that our results can effectively provide a reference for the development of these drugs.
Collapse
|
25
|
Yao H, Gunawan YF, Liu G, Tse MK, Zhu G. Optimization of axial ligands to promote the photoactivation of BODIPY-conjugated platinum(IV) anticancer prodrugs. Dalton Trans 2021; 50:13737-13747. [PMID: 34519297 DOI: 10.1039/d1dt02362d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carboplatin-based platinum(IV) prodrugs containing axial carboxylates are relatively resistant to reduction to release active platinum(II) species and kill cancer cells. To facilitate the activation process, a boron dipyrromethene (BODIPY) ligand has been utilized as a photoabsorber at the axial position to photoactivate carboplatin-based platinum(IV) complexes. However, the influence of the axial ligands on the photoactivation rate of the platinum center and the subsequent biological activity are still unknown. In this study, we report the design and synthesis of a series of carboplatin-based photoactivable platinum(IV) prodrugs containing BODIPY axial ligands with different lengths. The resulting BODIPY-conjugated platinum(IV) prodrugs OH2C-OH8C bearing hydroxido ligands at the opposite axial position are slightly less stable in the dark than the corresponding prodrugs AC2C-AC8C containing acetato ligands. The prodrugs OH3C-OH8C can be photoactivated under irradiation in eight minutes, and the photoactivation rate is further improved in prodrugs AC3C-AC8C where only twenty seconds are needed. Moreover, the prodrug AC3C, in which the linker between the BODIPY photoabsorber and the platinum center has an appropriate length, is photoactivated the quickest among the acetylated prodrugs AC2C-AC8C. The high cellular accumulation may contribute more to the moderate photocytotoxicity of these prodrugs. Our research highlights the way to promote the photoactivation of BODIPY-conjugated platinum(IV) anticancer prodrugs by optimization of axial ligands and may contribute to the future rational design of photoactivable platinum-based complexes.
Collapse
Affiliation(s)
- Houzong Yao
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| | - Yuliana F Gunawan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China.
| | - Gongyuan Liu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| | - Man-Kit Tse
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China.
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| |
Collapse
|
26
|
Xu Z, Wang Z, Deng Z, Zhu G. Recent advances in the synthesis, stability, and activation of platinum(IV) anticancer prodrugs. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213991] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|