1
|
Cheng Q, Lu X, Tai Y, Luo T, Yang R. Light-Driven Microrobots for Targeted Drug Delivery. ACS Biomater Sci Eng 2024; 10:5562-5594. [PMID: 39147594 DOI: 10.1021/acsbiomaterials.4c01191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
As a new micromanipulation tool with the advantages of small size, flexible movement and easy manipulation, light-driven microrobots have a wide range of prospects in biomedical fields such as drug targeting and cell manipulation. Recently, microrobots have been controlled in various ways, and light field has become a research hotspot by its advantages of noncontact manipulation, precise localization, fast response, and biocompatibility. It utilizes the force or deformation generated by the light field to precisely control the microrobot, and combines with the drug release technology to realize the targeted drug application. Therefore, this paper provides an overview of light-driven microrobots with drug targeting to provide new ideas for the manipulation of microrobots. Here, this paper briefly categorizes the driving mechanisms and materials of light-driven microrobots, which mainly include photothermal, photochemical, and biological. Then, typical designs of light-driven microrobots with different driving mechanisms and control strategies for multiple physical fields are summarized. Finally, the applications of microrobots in the fields of drug targeting and bioimaging are presented as well as the future prospects of light-driven microrobots in the biomedical field are demonstrated.
Collapse
Affiliation(s)
- Qilong Cheng
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Xingqi Lu
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Yunhao Tai
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Tingting Luo
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Runhuai Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
2
|
Cao D, Yan Z, Cui D, Khan MY, Duan S, Xie G, He Z, Xing DY, Wang W. A Conceptual Framework to Understand the Self-Assembly of Chemically Active Colloids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10884-10894. [PMID: 38756056 DOI: 10.1021/acs.langmuir.4c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Colloids that generate chemicals, or "chemically active colloids", can interact with their neighbors and generate patterns via forces arising from such chemical gradients. Examples of such assemblies of chemically active colloids are abundant in the literature, but a unified theoretical framework is needed to rationalize the scattered results. Combining experiments, theory, Brownian dynamics, and finite element simulations, we present here a conceptual framework for understanding how immotile, yet chemically active, colloids assemble. This framework is based on the principle of ionic diffusiophoresis and diffusioosmosis and predicts that a chemically active colloid interacts with its neighbors through short- and long-range interactions that can be either repulsive or attractive, depending on the relative diffusivity of the released cations and anions, and the relative zeta potential of a colloidal particle and the planar surface on which it resides. As a result, 4 types of pairwise interactions arise, leading to 4 different types of colloidal assemblies with distinct patterns. Using short-range attraction and long-range attraction (SALR) systems as an example, we show quantitative agreement between the framework and experiments. The framework is then applied to rationalize a wide range of patterns assembled from chemically active colloids in the literature exhibiting other types of pairwise interactions. In addition, the framework can predict what the assembly looks like with minimal experimental information and help infer ionic diffusivity and zeta potential values in systems where these values are inaccessible. Our results represent a solid step toward building a complete theory for understanding and controlling chemically active colloids, from the molecular level to their mesoscopic superstructures and ultimately to the macroscopic properties of the assembled materials.
Collapse
Affiliation(s)
- Dezhou Cao
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Zuyao Yan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Donghao Cui
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Mohd Yasir Khan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shifang Duan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Guoqiang Xie
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Zikai He
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Ding Yu Xing
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| |
Collapse
|
3
|
Liu J, Yang Z, Yan Z, Duan S, Chen X, Cui D, Cao D, Kuang T, Ma X, Wang W. Chemical Micromotors Move Faster at Oil-Water Interfaces. J Am Chem Soc 2024; 146:4221-4233. [PMID: 38305127 DOI: 10.1021/jacs.3c13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Many real-world scenarios involve interfaces, particularly liquid-liquid interfaces, that can fundamentally alter the dynamics of colloids. This is poorly understood for chemically active colloids that release chemicals into their environment. We report here the surprising discovery that chemical micromotors─colloids that convert chemical fuels into self-propulsion─move significantly faster at an oil-water interface than on a glass substrate. Typical speed increases ranged from 3 to 6 times up to an order of magnitude and were observed for different types of chemical motors and interfaces made with different oils. Such speed increases are likely caused by faster chemical reactions at an oil-water interface than at a glass-water interface, but the exact mechanism remains unknown. Our results provide valuable insights into the complex interactions between chemical micromotors and their environments, which are important for applications in the human body or in the removal of organic pollutants from water. In addition, this study also suggests that chemical reactions occur faster at an oil-water interface and that micromotors can serve as a probe for such an effect.
Collapse
Affiliation(s)
- Jiayu Liu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhou Yang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zuyao Yan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Shifang Duan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xiaowen Chen
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Donghao Cui
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Dezhou Cao
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ting Kuang
- Education Center of Experiments and Innovations, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xing Ma
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
4
|
Chen X, Liu X, Khan MY, Yan Z, Cao D, Duan S, Fu L, Wang W. Reconfigurable Assembly of Planar Colloidal Molecules via Chemical Reaction and Electric Polarization. RESEARCH (WASHINGTON, D.C.) 2024; 7:0490. [PMID: 39351072 PMCID: PMC11440515 DOI: 10.34133/research.0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
Colloidal molecules, ordered structures assembled from micro- and nanoparticles, serve as a valuable model for understanding the behavior of real molecules and for constructing materials with tunable properties. In this work, we introduce a universal strategy for assembling colloidal molecules consisting of a central active particle surrounded by several passive particles as ligands. During the assembly process, active particles attract the surrounding passive particles through phoresis and osmosis resulting from the chemical reactions on the surface of the active particles, while passive particles repel each other due to the electric polarization induced by an alternating current (AC) electric field. By carefully selecting particles of varying structures and sizes, we have assembled colloidal molecules of symmetric and asymmetric dimers, trimers, and multimers. Furthermore, the coordination number of these colloidal molecules can be regulated in real time and in situ by tuning the interaction forces between the constituent particles. Brownian dynamics simulations reproduced the formation of the colloidal molecules and validated that the self-assembly arises from chemically induced attraction and electrical dipolar repulsion. This strategy for reconfigurable colloidal assemblies poses the potential for designing adaptive micro-nanomachines.
Collapse
Affiliation(s)
- Xi Chen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Xianghong Liu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Mohd Yasir Khan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Zuyao Yan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Dezhou Cao
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Shifang Duan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Lingshan Fu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| |
Collapse
|
5
|
Ullattil SG, Pumera M. Light-Powered Self-Adaptive Mesostructured Microrobots for Simultaneous Microplastics Trapping and Fragmentation via in situ Surface Morphing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301467. [PMID: 37309271 DOI: 10.1002/smll.202301467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/23/2023] [Indexed: 06/14/2023]
Abstract
Microplastics, which comprise one of the omnipresent threats to human health, are diverse in shape and composition. Their negative impacts on human and ecosystem health provide ample incentive to design and execute strategies to trap and degrade diversely structured microplastics, especially from water. This work demonstrates the fabrication of single-component TiO2 superstructured microrobots to photo-trap and photo-fragment microplastics. In a single reaction, rod-like microrobots diverse in shape and with multiple trapping sites, are fabricated to exploit the asymmetry of the microrobotic system advantageous for propulsion. The microrobots work synergistically to photo-catalytically trap and fragment microplastics in water in a coordinated fashion. Hence, a microrobotic model of "unity in diversity" is demonstrated here for the phototrapping and photofragmentation of microplastics. During light irradiation and subsequent photocatalysis, the surface morphology of microrobots transformed into porous flower-like networks that trap microplastics for subsequent degradation. This reconfigurable microrobotic technology represents a significant step forward in the efforts to degrade microplastics.
Collapse
Affiliation(s)
- Sanjay Gopal Ullattil
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, 612 00, Czech Republic
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, 612 00, Czech Republic
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 70800, Czech Republic
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 404333, Taiwan
| |
Collapse
|
6
|
Jancik-Prochazkova A, Pumera M. Light-powered swarming phoretic antimony chalcogenide-based microrobots with "on-the-fly" photodegradation abilities. NANOSCALE 2023; 15:5726-5734. [PMID: 36866684 DOI: 10.1039/d3nr00098b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Microrobots are at the forefront of research for biomedical and environmental applications. Whereas a single microrobot exhibits quite low performance in the large-scale environment, swarms of microrobots are representing a powerful tool in biomedical and environmental applications. Here, we fabricated phoretic Sb2S3-based microrobots that exhibited swarming behavior under light illumination without any addition of chemical fuel. The microrobots were prepared in an environmentally friendly way by reacting the precursors with bio-originated templates in aqueous solution in a microwave reactor. The crystalline Sb2S3 material provided the microrobots with interesting optical and semiconductive properties. Because of the formation of reactive oxygen species (ROS) upon light illumination, the microrobots possessed photocatalytic properties. To demonstrate the photocatalytic abilities, industrially used dyes, quinoline yellow and tartrazine were degraded using microrobots in the "on-the-fly" mode. Overall, this proof-of-concept work showed that Sb2S3 photoactive material is suitable for designing swarming microrobots for environmental remediation applications.
Collapse
Affiliation(s)
- Anna Jancik-Prochazkova
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague, Czech Republic.
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague, Czech Republic.
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 621 00, Brno, Czech Republic
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech Republic
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan 40402
| |
Collapse
|
7
|
Gao Q, Yang Z, Zhu R, Wang J, Xu P, Liu J, Chen X, Yan Z, Peng Y, Wang Y, Zheng H, Cai F, Wang W. Ultrasonic Steering Wheels: Turning Micromotors by Localized Acoustic Microstreaming. ACS NANO 2023; 17:4729-4739. [PMID: 36815761 DOI: 10.1021/acsnano.2c11070] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The ability to steer micromotors in specific directions and at precise speeds is highly desired for their use in complex environments. However, a generic steering strategy that can be applied to micromotors of all types and surface coatings is yet to be developed. Here, we report that ultrasound of ∼100 kHz can spin a spherical micromotor so that it turns left or right when moving forward, or that it moves in full circles. The direction and angular speeds of their spinning and the radii of circular trajectories are precisely tunable by varying ultrasound voltages and frequencies, as well as particle properties such as its radius, materials, and coating thickness. Such spinning is hypothesized to originate from the circular microstreaming flows localized around a solid microsphere vibrating in ultrasound. In addition to causing a micromotor to spin, such streaming flows also helped release cargos from a micromotor during a capture-transport-release mission. Localized microstreaming does not depend on or interference with a specific propulsion mechanism and can steer a wide variety of micromotors. This work suggests that ultrasound can be used to steer microrobots in complex, biologically relevant environments as well as to steer microorganisms and cells.
Collapse
Affiliation(s)
- Qiang Gao
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Zhou Yang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Ruitong Zhu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Jinping Wang
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Pengzhao Xu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Jiayu Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Xiaowen Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Zuyao Yan
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Yixin Peng
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Yanping Wang
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Feiyan Cai
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Wei Wang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| |
Collapse
|
8
|
Tejedor AR, Carracedo R, Ramírez J. Molecular dynamics simulations of active entangled polymers reptating through a passive mesh. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Xu G, Huang T, Han Y, Chen Y. Morphologies and dynamics of free surfaces of crystals composed of active particles. SOFT MATTER 2022; 18:8830-8839. [PMID: 36367378 DOI: 10.1039/d2sm00783e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Active matter exhibits various collective motions and nonequilibrium phases, such as crystals; however, their surface properties have been poorly explored. Here, we use Brownian dynamics simulations to investigate the surface morphology and dynamics of two-dimensional active crystals during and after growth. For crystal growth on a substrate, the position and roughness of the crystal surface reach steady states at different times. In the steady state, the surface exhibits superdiffusive behaviour at the short time, and the roughness is insensitive to the roughening process and particle activity. We observe two-stage and three-stage surface roughening at different Péclet numbers. The result of dynamic scaling analysis shows that the surface is similar to anomalous roughening, which is distinct from the normal roughening typically found in conventional passive systems. Capillary wave theory for a thermal equilibrium system can describe the active surface fluctuations only in the long-wavelength regime, indicating that active particles mainly drive the surface out of equilibrium locally. These similarities and differences between the active and passive crystal surfaces are essential for understanding active crystals and interfaces.
Collapse
Affiliation(s)
- Guoqing Xu
- Center of Soft Matter Physics and Its Applications, Beihang University, Beijing 100191, China.
- School of Physics, Beihang University, Beijing 100191, China
| | - Tao Huang
- Faculty of Science, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Yilong Han
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | - Yong Chen
- Center of Soft Matter Physics and Its Applications, Beihang University, Beijing 100191, China.
- School of Physics, Beihang University, Beijing 100191, China
| |
Collapse
|
10
|
Li J, He X, Jiang H, Xing Y, Fu B, Hu C. Enhanced and Robust Directional Propulsion of Light-Activated Janus Micromotors by Magnetic Spinning and the Magnus Effect. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36027-36037. [PMID: 35916408 DOI: 10.1021/acsami.2c08464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Advances in the versatile design and synthesis of nanomaterials have imparted diverse functionalities to Janus micromotors as autonomous vehicles. However, a significant challenge remains in maneuvering Janus micromotors by following desired trajectories for on-demand motility and intelligent control due to the inherent rotational Brownian motion. Here, we present the enhanced and robust directional propulsion of light-activated Fe3O4@TiO2/Pt Janus micromotors by magnetic spinning and the Magnus effect. Once exposed to a low-intensity rotating magnetic field, the micromotors become physically actuated, and their rotational Brownian diffusion is quenched by the magnetic rotation. Photocatalytic propulsion can be triggered by unidirectional irradiation based on a self-electrophoretic mechanism. Thus, a transverse Magnus force can be generated due to the rotational motion and ballistic motion (photocatalytic propulsion) of the micromotors. Both the self-electrophoretic propulsion and the Magnus force are periodically changed due to the magnetic rotation, which results in an overall directed motion moving toward a trajectory with a deflection angle from the direction of incident light with enhanced speed, maneuverability, and steering robustness. Our study illustrates the admirable directional motion capabilities of light-driven Janus micromotors based on magnetic spinning and the Magnus effect, which unfolds a new paradigm for addressing the limitations of directionality control in the current asymmetric micromotors.
Collapse
Affiliation(s)
- Jianjie Li
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoli He
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huaide Jiang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Xing
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bi Fu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chengzhi Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
11
|
Liu Q, Meng S, Zheng T, Liu Y, Ma X, Feng H. Alkaline-Driven Liquid Metal Janus Micromotor with a Coating Material-Dependent Propulsion Mechanism. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35897-35904. [PMID: 34296849 DOI: 10.1021/acsami.1c07288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Micro/nanomotors have achieved huge progress in driving power divergence and accurate maneuver manipulations in the last two decades. However, there are still several obstacles to the potential biomedical applications, with respect to their biotoxicity and biocompatibility. Gallium- and indium-based liquid metal (LM) alloys are outstanding candidates for solving these issues due to their good biocompatibility and low biotoxicity. Hereby, we fabricate LM Janus micromotors (LMJMs) through ultrasonically dispersing GaInSn LM into microparticles and sputtering different materials as demanded to tune their moving performance. These LMJMs can move in alkaline solution due to the reaction between Ga and NaOH. There are two driving mechanisms when sputtering materials are metallic or nonmetallic. One is self-electrophoresis when sputtering materials are metallic, and the other one is self-diffusiophoresis when sputtering materials are nonmetallic. Our LMJMs can flip between those two modes by varying the deposited materials. The self-electrophoresis-driven LMJMs' moving speed is much faster than the self-diffusiophoresis-driven LMJMs' speed. The reason is that the former occurs galvanic corrosion reaction, while the latter is correlated to chemical corrosion reaction. The switching of the driving mechanism of the LMJMs can be used to fit into different biochemical application scenarios.
Collapse
Affiliation(s)
- Qing Liu
- Sauvage Laboratory for Smart Materials, Flexible Printed Electronic Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Shuaishuai Meng
- Sauvage Laboratory for Smart Materials, Flexible Printed Electronic Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Tingting Zheng
- Peking University Shenzhen Hospital & Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, Shenzhen 518036, China
| | - Yaming Liu
- Sauvage Laboratory for Smart Materials, Flexible Printed Electronic Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, Flexible Printed Electronic Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Huanhuan Feng
- Sauvage Laboratory for Smart Materials, Flexible Printed Electronic Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
12
|
Martin-Roca J, Martinez R, Alexander LC, Diez AL, Aarts DGAL, Alarcon F, Ramírez J, Valeriani C. Characterization of MIPS in a suspension of repulsive active Brownian particles through dynamical features. J Chem Phys 2021; 154:164901. [PMID: 33940816 DOI: 10.1063/5.0040141] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We study a two-dimensional system composed by Active Brownian Particles (ABPs), focusing on the onset of Motility Induced Phase Separation (MIPS), by means of molecular dynamics simulations. For a pure hard-disk system with no translational diffusion, the phase diagram would be completely determined by their density and Péclet number. In our model, two additional effects are present: translational noise and the overlap of particles; we study the effects of both in the phase space. As we show, the second effect can be mitigated if we use, instead of the standard Weeks-Chandler-Andersen potential, a stiffer potential: the pseudo-hard sphere potential. Moreover, in determining the boundary of our phase space, we explore different approaches to detect MIPS and conclude that observing dynamical features, via the non-Gaussian parameter, is more efficient than observing structural ones, such as through the local density distribution function. We also demonstrate that the Vogel-Fulcher equation successfully reproduces the decay of the diffusion as a function of density, with the exception of very high densities. Thus, in this regard, the ABP system behaves similar to a fragile glass.
Collapse
Affiliation(s)
- José Martin-Roca
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Raul Martinez
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Lachlan C Alexander
- Physical and Theoretical Chemistry Department, University of Oxford, Oxford, United Kingdom
| | - Angel Luis Diez
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Dirk G A L Aarts
- Physical and Theoretical Chemistry Department, University of Oxford, Oxford, United Kingdom
| | - Francisco Alarcon
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jorge Ramírez
- Departamento de Ingeniería Química, ETSI Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain
| | - Chantal Valeriani
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
13
|
Xiao Z, Duan S, Xu P, Cui J, Zhang H, Wang W. Synergistic Speed Enhancement of an Electric-Photochemical Hybrid Micromotor by Tilt Rectification. ACS NANO 2020; 14:8658-8667. [PMID: 32530617 DOI: 10.1021/acsnano.0c03022] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A hybrid micromotor is an active colloid powered by more than one power source, often exhibiting expanded functionality and controllability than those of a singular energy source. However, these power sources are often applied orthogonally, leading to stacked propulsion that is just a sum of two independent mechanisms. Here, we report that TiO2-Pt Janus micromotors, when subject to both UV light and AC electric fields, move up to 90% faster than simply adding up the speed powered by either source. This unexpected synergy between light and electric fields, we propose, arises from the fact that an electrokinetically powered TiO2-Pt micromotor moves near a substrate with a tilted Janus interface that, upon the application of an electric field, becomes rectified to be vertical to the substrate. Control experiments with magnetic fields and three types of micromotors unambiguously and quantitatively show that the tilting angle of a micromotor correlates positively with its instantaneous speed, reaching maximum at a vertical Janus interface. Such "tilting-induced retardation" could affect a wide variety of chemically powered micromotors, and our findings are therefore helpful in understanding the dynamics of micromachines in confinement.
Collapse
Affiliation(s)
- Zuyao Xiao
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Shifang Duan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Pengzhao Xu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jingqin Cui
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Hepeng Zhang
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|