1
|
Chen W, Wang Y, Wang F, Zhang Z, Li W, Fang G, Wang F. Zinc Chemistries of Hybrid Electrolytes in Zinc Metal Batteries: From Solvent Structure to Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411802. [PMID: 39373284 DOI: 10.1002/adma.202411802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/11/2024] [Indexed: 10/08/2024]
Abstract
Along with the booming research on zinc metal batteries (ZMBs) in recent years, operational issues originated from inferior interfacial reversibility have become inevitable. Presently, single-component electrolytes represented by aqueous solution, "water-in-salt," solid, eutectic, ionic liquids, hydrogel, or organic solvent system are hard to undertake independently the task of guiding the practical application of ZMBs due to their specific limitations. The hybrid electrolytes modulate microscopic interaction mode between Zn2+ and other ions/molecules, integrating vantage of respective electrolyte systems. They even demonstrate original Zn2+ mobility pattern or interfacial chemistries mechanism distinct from single-component electrolytes, providing considerable opportunities for solving electromigration and interfacial problems in ZMBs. Therefore, it is urgent to comprehensively summarize the zinc chemistries principles, characteristics, and applications of various hybrid electrolytes employed in ZMBs. This review begins with elucidating the chemical bonding mode of Zn2+ and interfacial physicochemical theory, and then systematically elaborates the microscopic solvent structure, Zn2+ migration forms, physicochemical properties, and the zinc chemistries mechanisms at the anode/cathode interfaces in each type of hybrid electrolytes. Among of which, the scotoma and amelioration strategies for the current hybrid electrolytes are actively exposited, expecting to provide referenceable insights for further progress of future high-quality ZMBs.
Collapse
Affiliation(s)
- Wenyong Chen
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yanyan Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Fengmei Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Zihao Zhang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Wei Li
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Guozhao Fang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083, China
| | - Fei Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
2
|
Nguyen TKL, Pham-Truong TN. Recent Advancements in Gel Polymer Electrolytes for Flexible Energy Storage Applications. Polymers (Basel) 2024; 16:2506. [PMID: 39274140 PMCID: PMC11398039 DOI: 10.3390/polym16172506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
Since the last decade, the need for deformable electronics exponentially increased, requiring adaptive energy storage systems, especially batteries and supercapacitors. Thus, the conception and elaboration of new deformable electrolytes becomes more crucial than ever. Among diverse materials, gel polymer electrolytes (hydrogels, organogels, and ionogels) remain the most studied thanks to the ability to tune the physicochemical and mechanical properties by changing the nature of the precursors, the type of interactions, and the formulation. Nevertheless, the exploitation of this category of electrolyte as a possible commercial product is still restrained, due to different issues related to the nature of the gels (ionic conductivity, evaporation of filling solvent, toxicity, etc.). Therefore, this review aims to resume different strategies to tailor the properties of the gel polymer electrolytes as well as to provide recent advancements in the field toward the elaboration of deformable batteries and supercapacitors.
Collapse
Affiliation(s)
- Thi Khanh Ly Nguyen
- Laboratory of Physical Chemistry of Polymers and Interfaces (LPPI), CY Cergy Paris Université, F-95000 Cergy, France
| | - Thuan-Nguyen Pham-Truong
- Laboratory of Physical Chemistry of Polymers and Interfaces (LPPI), CY Cergy Paris Université, F-95000 Cergy, France
| |
Collapse
|
3
|
Li Y, Yuan J, Qiao Y, Xu H, Zhang Z, Zhang W, He G, Chen H. Recent progress in structural modification of polymer gel electrolytes for use in solid-state zinc-ion batteries. Dalton Trans 2023; 52:11780-11796. [PMID: 37593775 DOI: 10.1039/d3dt01764h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Zinc-ion batteries are one of the promising energy storage devices, which have the advantages of environmental friendliness, high safety and low price and are expected to be used in large-scale battery application fields. However, four prominent water-induced adverse reactions, including zinc dendrite formation, zinc corrosion, passivation and the hydrogen evolution reaction in aqueous systems, seriously shorten the cycling life of zinc-ion batteries and greatly hinder their development. Based on this, polymer gel electrolytes have been developed to alleviate these issues due to their unique network structure, which can reduce water activity and suppress water-induced side reactions. Based on the challenges of polymer gel electrolytes, this review systematically summarizes the latest research progress in the use of additives in them and explores new perspectives in response to the existing problems with polymer electrolytes. In order to expand the performance of polymer gel electrolytes in zinc-ion batteries, a range of different types of additives are added via physical/chemical crosslinking, such as organic or inorganic substances, natural plants, etc. In addition, different types of additives and polymerization crosslinking from different angles essentially improve the ionic conductivity of the gel electrolyte, inhibit the growth of zinc dendrites, and reduce hydrogen evolution and oxygen-absorbed corrosion. After these modifications of polymer gel electrolytes, a more stable and superior electrochemical performance of zinc-ion batteries can be obtained, which provides some strategies for solid-state zinc-ion batteries.
Collapse
Affiliation(s)
- Yifan Li
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Jingjing Yuan
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Yifan Qiao
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Zhihao Zhang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Wenyao Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|
4
|
Liu Q, Yang L, Ling W, Guo B, Chen L, Wang J, Zhang J, Wang W, Mo F. Organic electrochromic energy storage materials and device design. Front Chem 2022; 10:1001425. [PMID: 36212068 PMCID: PMC9538391 DOI: 10.3389/fchem.2022.1001425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
While not affecting electrochemical performance of energy storage devices, integrating multi-functional properties such as electrochromic functions into energy storage devices can effectively promote the development of multifunctional devices. Compared with inorganic electrochromic materials, organic materials possess the significant advantages of facile preparation, low cost, and large color contrast. Specifically, most polymer materials show excellent electrochemical properties, which can be widely used in the design and development of energy storage devices. In this article, we focus on the application of organic electrochromic materials in energy storage devices. The working mechanisms, electrochemical performance of different types of organics as well as the shortcomings of organic electrochromic materials in related devices are discussed in detail.
Collapse
Affiliation(s)
- Qingjiang Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Liangliang Yang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Wei Ling
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Binbin Guo
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China
| | - Lina Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Jiaqi Wang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Jiaolong Zhang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, China
- *Correspondence: Jiaolong Zhang, ; Funian Mo,
| | - Wenhui Wang
- Department of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Funian Mo
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China
- *Correspondence: Jiaolong Zhang, ; Funian Mo,
| |
Collapse
|
5
|
Zhang S, Li Z, Huang P, Lu Y, Wang P. Silica Nanoparticles Reinforced Ionogel as Nonvolatile and Stretchable Conductors. MEMBRANES 2020; 10:membranes10110354. [PMID: 33227897 PMCID: PMC7699213 DOI: 10.3390/membranes10110354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 06/11/2023]
Abstract
Ionogels combine the advantages of being conductive, stretchable, transparent and nonvolatile, which makes them suitable to be applied as conductors for flexible electronic devices. In this paper, a series of ionogels based on 1-ethyl-3-methylimidazolium ethyl-sulfate ([C2mim][EtSO4]) and polyacrylic networks were prepared. Silica nanoparticles (SNPs) were dispersed into the ionogel matrix to enhance its mechanical properties. The thermal, mechanical and electrical properties of the ionogels with various contents of crosslinking agents and SNPs were studied. The results show that a small amount of SNP doping just increases the breaking strain/stress and the nonvolatility of ionogels, as well as maintaining adequate conductivity and a high degree of transparency. Furthermore, the experimental results demonstrate that SNP-reinforced ionogels can be applied as conductors for dielectric elastomer actuators and stretchable wires, as well as for signal transmission.
Collapse
Affiliation(s)
| | - Zhen Li
- Correspondence: (Z.L.); (P.W.)
| | | | | | | |
Collapse
|