1
|
Chen Y, Song X, Wang Y, Huang Y, Wang Y, Zhu C. The effect of Pluronic P123 on shape memory of cross-linked polyurethane/poly(l-lactide) biocomposite. Int J Biol Macromol 2024; 259:128788. [PMID: 38154706 DOI: 10.1016/j.ijbiomac.2023.128788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 12/30/2023]
Abstract
Polyurethane (PU) and poly(l-lactide) (PLLA) have attracted increasing attention in the development of shape memory polymers (SMPs) due to their good biocompatibility and degradability. Although Pluronic P123 can be used to tune polymeric surface hydrophilicity, its effect on SM performance is a mystery. In this study, a soluble cross-linked PU is synthesized as the switching phase and combined with PLLA and P123 to construct a hydrothermally responsive SM composite. The water contact angle of PU/PLLA/P123 decreases from 22.7° to 5.1° within 2 min. PU and P123 form the switching group, which enhances the SM behavior of the composite. The shape fixity (Rf) and shape recovery (Rr) of PU/PLLA/P123 are 94.4 % and 98 % in 55 °C water, respectively, and the shape recovery time is only 10 s. P123 plays the role of "turbine" in the SM process. PU/PLLA/P123 exhibits a balance between stiffness and elasticity, and good degradability. Furthermore, PU/PLLA/P123 is also biocompatible and beneficial to cell proliferation and growth. Therefore, it offers an alternative approach to developing hydrothermally responsive SM biocomposites based on P123, PU and PLLA for biomedical applications.
Collapse
Affiliation(s)
- Youhua Chen
- School of Chemical Engineering, Changchun University of Technology, China
| | - Xiaofeng Song
- School of Chemical Engineering, Changchun University of Technology, China; Jiangxi Center of Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, China.
| | - Ying Wang
- School of Chemical Engineering, Changchun University of Technology, China
| | - Yuan Huang
- School of Chemical Engineering, Changchun University of Technology, China
| | - Yanhe Wang
- Jiangxi Center of Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, China
| | - Chuanming Zhu
- School of Chemical Engineering, Changchun University of Technology, China
| |
Collapse
|
2
|
Zhang J, Singh V, Huang W, Mandal P, Tiwari MK. Self-Healing, Robust, Liquid-Repellent Coatings Exploiting the Donor-Acceptor Self-Assembly. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8699-8708. [PMID: 36735767 PMCID: PMC9940105 DOI: 10.1021/acsami.2c20636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Liquid-repellent coatings with rapid self-healing and strong substrate adhesion have tremendous potential for industrial applications, but their formulation is challenging. We exploit synergistic chemistry between donor-acceptor self-assembly units of polyurethane and hydrophobic metal-organic framework (MOF) nanoparticles to overcome this challenge. The nanocomposite features a nanohierarchical morphology with excellent liquid repellence. Using polyurethane as a base polymer, the incorporated donor-acceptor self-assembly enables high strength, excellent self-healing property, and strong adhesion strength on multiple substrates. The interaction mechanism of donor-acceptor self-assembly was revealed via density functional theory and infrared spectroscopy. The superhydrophobicity of polyurethane was achieved by introducing alkyl-functionalized MOF nanoparticles and post-application silanization. The combination of the self-healing polymer and nanohierarchical MOF nanoparticles results in self-cleaning capability, resistance to tape peel and high-speed liquid jet impacts, recoverable liquid repellence over a self-healed notch, and low ice adhesion up to 50 icing/deicing cycles. By exploiting the porosity of MOF nanoparticles in our nanocomposites, fluorine-free, slippery liquid-infused porous surfaces with stable, low ice adhesion strengths were also achieved by infusing silicone oil into the coatings.
Collapse
Affiliation(s)
- Jianhui Zhang
- Nanoengineered
Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, U.K.
- Wellcome/EPSRC
Centre for Interventional and Surgical Sciences, University College London, London W1W 7TS, U.K.
| | - Vikramjeet Singh
- Nanoengineered
Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, U.K.
- Wellcome/EPSRC
Centre for Interventional and Surgical Sciences, University College London, London W1W 7TS, U.K.
| | - Wei Huang
- Nanoengineered
Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, U.K.
- Wellcome/EPSRC
Centre for Interventional and Surgical Sciences, University College London, London W1W 7TS, U.K.
| | - Priya Mandal
- Nanoengineered
Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, U.K.
- Wellcome/EPSRC
Centre for Interventional and Surgical Sciences, University College London, London W1W 7TS, U.K.
| | - Manish K. Tiwari
- Nanoengineered
Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, U.K.
- Wellcome/EPSRC
Centre for Interventional and Surgical Sciences, University College London, London W1W 7TS, U.K.
| |
Collapse
|
3
|
Shen X, Dong Z, Sim C, Li Y. A Comparative Study on the Self-Healing Characterizations and Formulation Optimization of Polyurea Coating. Polymers (Basel) 2022; 14:polym14173520. [PMID: 36080594 PMCID: PMC9460880 DOI: 10.3390/polym14173520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Self-healing materials, especially self-healing polyurea/polyurethane, to replace traditional coating has been of increasing interest in the past decade. The frequency of regular maintenance work can also be reduced as the coating is capable of forming bonds at ruptured sites. This reduces the cost of maintenance and the risk involved in workers engaging in maintenance work. The extremely short curing time of polyurea coating could potentially outweigh the cost due to its short down time. With a high self-healing efficiency, self-healing polyurea could be the ultimate choice of protective coating. This report aims to find the optimum formulation for fabrication of polyurea with a high self-healing efficiency. This is conducted by changing the composition of the components chosen for formulation of polyurea. The choice of isocyanate and amine is varied to explore its impact on chain mobility and microphase separation, which are important factors affecting self-healing efficiency. A series of characterizations, including ATR-FTIR, DSC, optical microscope and mechanical tester, is used to analyze the factors affecting the self-healing efficiency of fabricated polyurea and to eventually determine the best formulation. The ideal formulation of toluene 2,4 diisocyanate-amine (TDI-P1000) polyurea managed to achieve a self-healing of 42%. Further studies could be done to include multiple healing mechanisms after different area of polyurea to boost its self-healing efficiency after repeated healing.
Collapse
Affiliation(s)
- Xinrui Shen
- Department of Natural Sciences, University of Manchester, Manchester M13 9PL, UK
- School of Materials Science & Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Zhenyuan Dong
- School of Materials Science & Engineering, Nanyang Technological University, Singapore 639798, Singapore
- School of Civil, Aerospace and Mechanical Engineering, University of Bristol, Bristol BS8 1QU, UK
| | - Celine Sim
- School of Materials Science & Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yuanzhe Li
- School of Materials Science & Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Correspondence:
| |
Collapse
|
4
|
Liu X, Wu J, Tang Z, Wu J, Huang Z, Yin X, Du J, Lin X, Lin W, Yi G. Photoreversible Bond-Based Shape Memory Polyurethanes with Light-Induced Self-Healing, Recyclability, and 3D Fluorescence Encryption. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33829-33841. [PMID: 35830501 DOI: 10.1021/acsami.2c07767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing a shape memory polyurethane with high mechanical properties, excellent self-healing has become a huge challenge for the development of smart materials. Herein, we report the design and fabrication of a shape memory polyurethane network terminated with coumarin units (HEOMC-PU) to address this conundrum. The synthesized HEOMC-PU exhibits exceptional mechanical performance with a breaking elongation of 746% and toughness of 55.5 MJ·m-3. By utilizing the dynamically reversible behavior of coumarin units to repair the damaged network, the efficient self-healing performance (99.2%) of HEOMC-PU is obtained. In addition, the prepared network and light-induced dynamic reversibility endow the HEOMC-PU with both liquid-state remoldability and solid-state plasticity, respectively, enabling polyurethane to be recycled and processed multiple times. Furthermore, based on the fluorescence responsive characteristic of coumarin, HEOMC-PU with a fluorescent pattern can be deformed into specific three-dimensional configurations by combining photolithography, self-healing, and the shape memory effect. Such a multilevel and multidimensional anti-counterfeiting platform with rewritable fluorescent patterns and reconfigurable shapes can open up a new encryption approach for future intelligent anti-counterfeiting.
Collapse
Affiliation(s)
- Xiaochun Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianyu Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zilun Tang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianxin Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhiyi Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xingshan Yin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiahao Du
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaofeng Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China
| | - Wenjing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China
| | - Guobin Yi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China
| |
Collapse
|
5
|
Mini-Review of Self-Healing Mechanism and Formulation Optimization of Polyurea Coating. Polymers (Basel) 2022; 14:polym14142808. [PMID: 35890583 PMCID: PMC9316374 DOI: 10.3390/polym14142808] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
Self-healing polymers are categorized as smart materials that are capable of surface protection and prevention of structural failure. Polyurethane/polyurea, as one of the representative coatings, has also attracted attention for industrial applications. Compared with polyurethane, polyurea coating, with a similar formation process, provides higher tensile strength and requires shorter curing time. In this paper, extrinsic and intrinsic mechanisms are reviewed to address the efficiency of the self-healing process. Moreover, formulation optimization and strategic improvement to ensure self-healing within a shorter period of time with acceptable recovery of mechanical strength are also discussed. The choice and ratio of diisocyanates, as well as the choice of chain extender, are believed to have a crucial effect on the acceleration of the self-healing process and enhance self-healing efficiency during the preparation of polyurea coatings.
Collapse
|
6
|
Zhang S, Xu XQ, Liao S, Pan Q, Ma X, Wang Y. Controllable Degradation of Polyurethane Thermosets with Silaketal Linkages in Response to Weak Acid. ACS Macro Lett 2022; 11:868-874. [PMID: 35762900 DOI: 10.1021/acsmacrolett.2c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyurethane (PU) thermosets offer great favors to our daily life on account of their excellent mechanical, physical, and chemical properties as well as appreciable biocompatibility. Nevertheless, PU waste is increasingly causing environmental and health-related problems as it is mostly resistant to chemical degradation under mild conditions. Herein, we report a kind of PU thermoset with silaketal leakages in its main chains to enable polymer degradation in response to weak acids, even in edible vinegar. The degradation rate is significantly influenced by the alkyl substituents on the silicon atoms, with entire degradation in hours, days, weeks, or months. Besides controllable degradation, investigations are also provided into the recycling of PU thermosets by means of thermal reprocessing based on carbamate bond exchange or repolymerization of degradation residuals. Because of the controllable degradation and easy recycling, this particular kind of PU thermoset exhibits great potential in manufacturing green polymer products that can be decomposed by nature or reutilized after disposal.
Collapse
Affiliation(s)
- Shoupeng Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Xiao-Qi Xu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Shenglong Liao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Qianhao Pan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Xinlei Ma
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Yapei Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| |
Collapse
|
7
|
Wang Y, Li Y, He M, Bai J, Liu B, Li Z. Effect of chain extender on microphase structure and performance of self‐healing polyurethane and poly(urethane‐urea). J Appl Polym Sci 2021. [DOI: 10.1002/app.51371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yulong Wang
- Department of Materials Engineering Taiyuan Institute of Technology Taiyuan China
| | - Yaqiong Li
- Department of Materials Engineering Taiyuan Institute of Technology Taiyuan China
| | - Maoyong He
- Department of Materials Engineering Taiyuan Institute of Technology Taiyuan China
| | - Jingjing Bai
- Department of Materials Engineering Taiyuan Institute of Technology Taiyuan China
| | - Bingxiao Liu
- Department of Materials Engineering Taiyuan Institute of Technology Taiyuan China
| | - Zhenzhong Li
- Department of Materials Engineering Taiyuan Institute of Technology Taiyuan China
| |
Collapse
|
8
|
Ding S, Zhang J, Zhu G, Ren X, Zhou L, Luo Y. Rationally Constructed Surface Energy and Dynamic Hard Domains Balance Mechanical Strength and Self-Healing Efficiency of Energetic Linear Polymer Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8997-9008. [PMID: 34279105 DOI: 10.1021/acs.langmuir.1c00939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polymeric materials that simultaneously possess excellent mechanical properties and high self-healing ability at room temperature, convenient healing, and facile fabrication are always a huge challenge. Herein, we report on surface-energy-driven self-healing energetic linear polyurethane elastomers (EPU) that were facilely fabricated by two-step methods to acquire high healing efficiency and mechanical properties. By constructing surface energy and dynamic hard domains, energetic linear polyurethane elastomers not only obtained high healing ability and mechanical properties at high or room temperature but also avoid the use of some assisted healing conditions and complex chemical structure design and decrease manufacturing difficulty. Based on the interfacial healing physical model, various trends of surface tension, radius, and depth of the crack bottom were calculated to analyze the healing mechanism. We propose that polyurethane elastomers with low junction density could generate excess surface energy resulting from damage and drive self-healing, and incorporating a small amount of disulfide bonds increases the slightly packed hard phase and decreases the healing energy barrier. This work may offer a novel strategy for improving mechanical tensile and healing ability in the field of self-healing material application.
Collapse
Affiliation(s)
- Shanjun Ding
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jun Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Guocui Zhu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xin Ren
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lin Zhou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yunjun Luo
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|