1
|
Choi J, Nam KT, Sohn EH, Seo Y. Macroscopic Room-Temperature Magnetoelectricity in Piezoelectric (Core)-Ferrimagnetic (Shell) Nanocomposites. ACS NANO 2024; 18:30681-30689. [PMID: 39441142 DOI: 10.1021/acsnano.4c09779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The magnetoelectric (ME) effect, which involves the interaction of magnetic and electric fields within a material, has a significant potential for various applications. Our study addresses the limitations of conventional magnetostriction-based ME materials by demonstrating an alternative approach that achieves substantial ME effects in core-shell-type nanocomposites at room temperature. By synthesizing ferrimagnetic Fe3O4 nanoparticles onto piezoelectric poly(vinylidene fluoride) (PVDF) particles, we identified a distinct ME mechanism. In magnetorheological (MR) fluids, the magnetic-field-induced aggregation of Fe3O4 nanoparticles, combined with the piezoelectricity of PVDF, leads to a pronounced ME effect, significantly enhancing the performance and stability of MR fluids. This research highlights a crucial observation of distinct ME effects, which could suggest potential pathways for advancements in practical applications including microfluidics, vibration dampers, tactile technologies, and biomedical and bioengineering fields.
Collapse
Affiliation(s)
- Junsok Choi
- RIAM, Department of Materials Science and Engineering, College of Engineering, Seoul National University, Kwanakro-5 1, Kwanak-gu, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- RIAM, Department of Materials Science and Engineering, College of Engineering, Seoul National University, Kwanakro-5 1, Kwanak-gu, Seoul 08826, Republic of Korea
| | - Eun-Ho Sohn
- Interface Material and Chemical Engineering Research Center, Korea Research Institute of Chemical Technology, Daejon 34114, Republic of Korea
| | - Yongsok Seo
- RIAM, Department of Materials Science and Engineering, College of Engineering, Seoul National University, Kwanakro-5 1, Kwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Shen Y, Jin D, Li T, Yang X, Ma X. Magnetically Responsive Gallium-Based Liquid Metal: Preparation, Property and Application. ACS NANO 2024. [PMID: 39073895 DOI: 10.1021/acsnano.4c07051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Magnetically responsive soft smart materials have garnered significant academic attention due to their flexibility, remote controllability, and reconfigurability. However, traditional soft materials used in the construction of these magnetically responsive systems typically exhibit low density and poor thermal and electrical conductivities. These limitations result in suboptimal performance in applications such as medical radiography, high-performance electronic devices, and thermal management. To address these challenges, magnetically responsive gallium-based liquid metals have emerged as promising alternatives. In this review, we summarize the methodologies for achieving magnetically responsive liquid metals, including the integration of magnetic agents into the liquid metal matrix and the utilization of induced Lorentz forces. We then provide a comprehensive discussion of the key physicochemical properties of these materials and the factors influencing them. Additionally, we explore the advanced and potential applications of magnetically responsive liquid metals. Finally, we discuss the current challenges in this field and present an outlook on future developments and research directions.
Collapse
Affiliation(s)
- Yifeng Shen
- Sauvage Laboratory for Smart Materials, School of Integrated Circuits, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310058, China
| | - Dongdong Jin
- Sauvage Laboratory for Smart Materials, School of Integrated Circuits, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Tiefeng Li
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310058, China
| | - Xuxu Yang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310058, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Integrated Circuits, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
3
|
Straus I, Kravanja G, Hribar L, Kriegl R, Jezeršek M, Shamonin M, Drevensek-Olenik I, Kokot G. Surface Modification of Magnetoactive Elastomers by Laser Micromachining. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1550. [PMID: 38612065 PMCID: PMC11012975 DOI: 10.3390/ma17071550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
It has been recently demonstrated that laser micromachining of magnetoactive elastomers is a very convenient method for fabricating dynamic surface microstructures with magnetically tunable properties, such as wettability and surface reflectivity. In this study, we investigate the impact of the micromachining process on the fabricated material's structural properties and its chemical composition. By employing scanning electron microscopy, we investigate changes in size distribution and spatial arrangement of carbonyl iron microparticles dispersed in the polydimethylsiloxane (PDMS) matrix as a function of laser irradiation. Based on the images obtained by a low vacuum secondary electron detector, we analyze modifications of the surface topography. The results show that most profound modifications occur during the low-exposure (8 J/cm2) treatment of the surface with the laser beam. Our findings provide important insights for developing theoretical models of functional properties of laser-sculptured microstructures from magnetoactive elastomers.
Collapse
Affiliation(s)
- Izidor Straus
- Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia; (I.S.); (G.K.)
| | - Gaia Kravanja
- Faculty of Mechanical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia; (G.K.); (L.H.); (M.J.)
| | - Luka Hribar
- Faculty of Mechanical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia; (G.K.); (L.H.); (M.J.)
| | - Raphael Kriegl
- East Bavarian Centre for Intelligent Materials (EBACIM), Ostbayerische Technische Hochschule Regensburg, 93053 Regensburg, Germany; (R.K.); (M.S.)
| | - Matija Jezeršek
- Faculty of Mechanical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia; (G.K.); (L.H.); (M.J.)
| | - Mikhail Shamonin
- East Bavarian Centre for Intelligent Materials (EBACIM), Ostbayerische Technische Hochschule Regensburg, 93053 Regensburg, Germany; (R.K.); (M.S.)
| | - Irena Drevensek-Olenik
- Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia; (I.S.); (G.K.)
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Gašper Kokot
- Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia; (I.S.); (G.K.)
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Kozłowski S, Osička J, Ilcikova M, Galeziewska M, Mrlik M, Pietrasik J. From Brush to Dendritic Structure: Tool for Tunable Interfacial Compatibility between the Iron-Based Particles and Silicone Oil in Magnetorheological Fluids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5297-5305. [PMID: 38430189 PMCID: PMC10938888 DOI: 10.1021/acs.langmuir.3c03736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
Comprehensive magnetic particle stability together with compatibility between them and liquid medium (silicone oil) is still a crucial issue in the case of magnetorheological (MR) suspensions to guarantee their overall stability and MR performance. Therefore, this study is aimed at improving the interfacial stability between the carbonyl iron (CI) particles and silicone oil. In this respect, the particles were modified with polymer brushes and dendritic structures of poly(2-(trimethylsilyloxy)ethyl methacrylate) (PHEMATMS), called CI-brushes or CI-dendrites, respectively, and their stability properties (corrosion, thermo-oxidation, and sedimentation) were compared to neat CI ones. Compatibility of the obtained particles and silicone oil was investigated using contact angle and off-state viscosity investigation. Finally, the magneto-responsive capabilities in terms of yield stress and reproducibility of the MR phenomenon were thoroughly investigated. It was found that MR suspensions based on CI-brushes had significantly improved compatibility properties than those of neat CI ones; however, the CI-dendrites-based suspension possessed the best capabilities, while the MR performance was negligibly suppressed.
Collapse
Affiliation(s)
- Szymon Kozłowski
- Department
of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Josef Osička
- Centre
of Polymer Systems, Tomas Bata University
in Zlin, University Institute, Trida T. Bati 5678, 76001Zlin,Czech
Republic
| | - Marketa Ilcikova
- Centre
of Polymer Systems, Tomas Bata University
in Zlin, University Institute, Trida T. Bati 5678, 76001Zlin,Czech
Republic
- Slovak
Academy of Sciences, Polymer Institute, Dubravska cesta 9, 845 41 Bratislava, Slovakia
- Department
of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University, Vavreckova 5669, 76001Zlin,Czech
Republic
| | - Monika Galeziewska
- Department
of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Miroslav Mrlik
- Centre
of Polymer Systems, Tomas Bata University
in Zlin, University Institute, Trida T. Bati 5678, 76001Zlin,Czech
Republic
| | - Joanna Pietrasik
- Department
of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| |
Collapse
|
5
|
Seo Y. Non-Settling Super-Strong Magnetorheological Fluids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300320. [PMID: 37357168 DOI: 10.1002/smll.202300320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/09/2023] [Indexed: 06/27/2023]
Abstract
A magnetorheological (MR) fluid is generally called a suspension in which magnetic particles are dispersed in a non-magnetic medium. When an external magnetic field is applied, a pseudo-phase transition occurs within a short time to generate yield stress, and when the magnetic field is released, it returns to the suspended state. Due to these unique characteristics, it is classified as a smart material to be widely applied in various industries. High performance MR fluids require high yield stress and stability for long-term use. However, it is very difficult to improve performance and stability simultaneously due to the limited amount of magnetic particles in the suspension and particle sedimentation caused by the density mismatch between the suspending particles and the liquid phase. In this study, an MR slurry is developed that is completely different from the MR suspension, starting from the opposite concept. An innovative non-settling (i.e., permanently stable) magnetorheological slurry is successfully created that exhibits unprecedented ultra-high yield stress. This result is expected to be a turning point for applying MR fluids to more diverse industries. In addition, a simple fitting equation expressing the yield stress as a function of the particle volume fraction is proposed.
Collapse
Affiliation(s)
- Yongsok Seo
- RIAM, School of Materials Science and Engineering, College of Engineering, Seoul National University, Kwanakro-1, Kwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
6
|
Fenyk A, Horak W, Zieliński M. Investigation the Effect of MR Fluid Composition on Properties at Low Strain Ranges. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5730. [PMID: 37687426 PMCID: PMC10488549 DOI: 10.3390/ma16175730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023]
Abstract
The paper presents the results of eight magnetorheological (MR) fluids of different compositions. Magnetite and carbonyl iron were used as magnetic particles. MR fluids based on glycerin and OKS 352 oil were produced using stabilizers in the form of oleic acid and Aerosil 200 (Evonik Resource Efficiency GmbH, Hanau, Germany) silica; additives such as graphite and yellow dextrin were also used. The aim of the study was to determine the properties of various combinations of components on the dynamic properties of MR fluids, i.e., properties characterizing the fluid within the range of low deformations, as well as to investigate the effect of different compositions on structural yield stress and flow stress prepared MR fluids at different magnetic field induction values.
Collapse
Affiliation(s)
- Anna Fenyk
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland;
| | - Wojciech Horak
- Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland;
| | - Marek Zieliński
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland;
| |
Collapse
|
7
|
Król JE, Ehrlich GD. Using SMART Magnetic Fluids and Gels for Prevention and Destruction of Bacterial Biofilms. Microorganisms 2023; 11:1515. [PMID: 37375017 PMCID: PMC10305264 DOI: 10.3390/microorganisms11061515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Biofouling is a major problem in all natural and artificial settings where solid surfaces meet liquids in the presence of living microorganisms. Microbes attach to the surface and form a multidimensional slime that protects them from unfavorable environments. These structures, known as biofilms, are detrimental and very hard to remove. Here, we used SMART magnetic fluids [ferrofluids (FFs), magnetorheological fluids (MRFs), and ferrogels (FGs) containing iron oxide nano/microparticles] and magnetic fields to remove bacterial biofilms from culture tubes, glass slides, multiwell plates, flow cells, and catheters. We compared the ability of different SMART fluids to remove biofilms and found that commercially available, as well as homemade, FFs, MRFs, and FGs can successfully remove biofilm more efficiently than traditional mechanical methods, especially from textured surfaces. In tested conditions, SMARTFs reduced bacterial biofilms by five orders of magnitude. The ability to remove biofilm increased with the amount of magnetic particles; therefore, MRFs, FG, and homemade FFs with high amounts of iron oxide were the most efficient. We showed also that SMART fluid deposition can protect a surface from bacterial attachment and biofilm formation. Possible applications of these technologies are discussed.
Collapse
Affiliation(s)
- Jarosƚaw E. Król
- Center for Surgical Infections and Biofilms, Center for Advanced Microbial Processing, Center for Genomic Sciences, Department of Microbiology and Immunology, Drexel University, Philadelphia, PA 19104, USA;
| | - Garth D. Ehrlich
- Center for Surgical Infections and Biofilms, Center for Advanced Microbial Processing, Center for Genomic Sciences, Department of Microbiology and Immunology, Drexel University, Philadelphia, PA 19104, USA;
- Department Head and Neck Surgery, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Straus I, Kokot G, Kravanja G, Hribar L, Kriegl R, Shamonin M, Jezeršek M, Drevenšek-Olenik I. Dynamically tunable lamellar surface structures from magnetoactive elastomers driven by a uniform magnetic field. SOFT MATTER 2023; 19:3357-3365. [PMID: 37097616 DOI: 10.1039/d3sm00012e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Stimuli responsive materials are key ingredients for any application that requires dynamically tunable or on-demand responses. In this work we report experimental and theoretical investigation of magnetic-field driven modifications of soft-magnetic elastomers whose surface was processed by laser ablation into lamellar microstructures that can be manipulated by a uniform magnetic field. We present a minimal hybrid model that elucidates the associated deflection process of the lamellae and explains the lamellar structure frustration in terms of dipolar magnetic forces arising from the neighbouring lamellae. We experimentally determine the magnitude of the deflection as a function of magnetic flux density and explore the dynamic response of lamellae to fast changes in a magnetic field. A relationship between the deflection of lamellae and modifications of the optical reflectance of the lamellar structures is resolved.
Collapse
Affiliation(s)
- Izidor Straus
- University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana, Slovenia
| | | | - Gaia Kravanja
- University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia
| | - Luka Hribar
- University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia
| | - Raphael Kriegl
- Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany
| | - Mikhail Shamonin
- Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany
| | - Matija Jezeršek
- University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia
| | - Irena Drevenšek-Olenik
- University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana, Slovenia
- Jožef Stefan Institute, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Dobroserdova AB, Novak EV, Kantorovich SS. Switching-field and first-order-reversal-curve distribution measurements in magnetic elastomers by molecular dynamics simulations: Accounting for polydispersity. Phys Rev E 2023; 107:044606. [PMID: 37198770 DOI: 10.1103/physreve.107.044606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 04/07/2023] [Indexed: 05/19/2023]
Abstract
In this work we employ molecular dynamics simulations to investigate the first-order-reversal-curve distribution and switching-field distribution of magnetic elastomers. We model magnetic elastomers in a bead-spring approximation with permanently magnetized spherical particles of two different sizes. We find that a different fractional composition of particles affects the magnetic properties of elastomers obtained as a result. We prove that the hysteresis of the elastomer can be attributed to the broad energy landscape with multiple shallow minima and caused by dipolar interactions.
Collapse
Affiliation(s)
- Alla B Dobroserdova
- Department of Theoretical and Mathematical Physics, Institute of Natural Sciences and Mathematics, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620000 Ekaterinburg, Russia
| | - Ekaterina V Novak
- Department of Theoretical and Mathematical Physics, Institute of Natural Sciences and Mathematics, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620000 Ekaterinburg, Russia
| | - Sofia S Kantorovich
- Computational and Soft Matter Physics, Faculty of Physics, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
10
|
Geng Z, Huang N, Castelli M, Fang F. Polishing Approaches at Atomic and Close-to-Atomic Scale. MICROMACHINES 2023; 14:343. [PMID: 36838045 PMCID: PMC9968022 DOI: 10.3390/mi14020343] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Roughness down to atomic and close-to-atomic scale is receiving an increasing attention in recent studies of manufacturing development, which can be realized by high-precision polishing processes. This review presents polishing approaches at atomic and close-to-atomic scale on planar and curved surfaces, including chemical mechanical polishing, plasma-assisted polishing, catalyst-referred etching, bonnet polishing, elastic emission machining, ion beam figuring, magnetorheological finishing, and fluid jet polishing. These polishing approaches are discussed in detail in terms of removal mechanisms, polishing systems, and industrial applications. The authors also offer perspectives for future studies to address existing and potential challenges and promote technological progress.
Collapse
Affiliation(s)
- Zhichao Geng
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), University College Dublin, D04 V1W8 Dublin, Ireland
| | - Ning Huang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), University College Dublin, D04 V1W8 Dublin, Ireland
| | - Marco Castelli
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), University College Dublin, D04 V1W8 Dublin, Ireland
| | - Fengzhou Fang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), University College Dublin, D04 V1W8 Dublin, Ireland
- State Key Laboratory of Precision Measuring Technology and Instruments, Laboratory of Micro/Nano Manufacturing Technology (MNMT), Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Urano R, Saosamniang P, Kaneko T, Kawai M, Mitsumata T. Voids induce wide-range modulation of elasticity for magnetic elastomers. SOFT MATTER 2022; 18:9242-9248. [PMID: 36437636 DOI: 10.1039/d2sm01236g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The relationship between the magnetorheological effect and the void ratio for a polyurethane magnetic elastomer with voids was investigated using a dynamic viscoelastic measurement under a magnetic field of 500 mT. The magnetic elastomer contains iron particles with a diameter of 235 μm at a concentration of 85 wt% (volume fraction: 0.43). The void ratio defined using the volume of vacancies in the non-filled volume of magnetic particles was increased by reducing the amount of polyurethane up to a maximum void ratio of 0.56. The storage modulus of the magnetic elastomer without voids was 1.5 × 105 Pa at 0 mT and 3.1 × 105 Pa at 500 mT, respectively; that is, no significant change in the modulus was observed. The storage modulus at 0 mT for the magnetic elastomer was independent of the void ratio, while the storage modulus at 500 mT increased in proportion to the void ratio. At a void ratio of 0.56, the storage modulus for the magnetic elastomer was 5.6 × 105 Pa at 0 mT and 6.1 × 106 Pa at 500 mT, respectively; that is, the magnetic elastomer demonstrated a significant change in the storage modulus on the order of MPa. This strongly indicates that production of voids enables movement of magnetic particles in the elastomer. Under both strains of 10-4 and 1, a significant and reversible response of storage modulus was observed after the first application of magnetic field even though the magnetic field was applied for 20 cycles, meaning that the change in the modulus is perfectly reversible although the elastomer contains many voids. SEM/EDX observations revealed that the area composed of carbon decreased with the increasing void ratio while the area composed of iron remained unchanged.
Collapse
Affiliation(s)
- Rio Urano
- Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan.
| | - Pruetsakorn Saosamniang
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Tatsuo Kaneko
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Mika Kawai
- Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan.
| | - Tetsu Mitsumata
- Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan.
| |
Collapse
|
12
|
Santana-Otero A, Fortes Brollo ME, Morales MDP, Ortega D. Microwave-assisted Ni xFe 1-x nanoclusters ultra-stable to oxidation in aqueous media. NANOSCALE 2022; 14:16639-16646. [PMID: 36321630 DOI: 10.1039/d2nr03629k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metal alloy nanoparticles, and, in particular, permalloy, still hold an untapped potential in nanotechnology, although their poor stability against oxidation due to environmental exposure limits their use in many technological applications, and even more in life sciences. We propose a scalable single-step microwave-assisted method to produce water suspensions of Ni1-xFex nanoparticles without the need for an inert atmosphere, either organic solvents or any type of post-processing. We use hydrazine as a reducer, iron(II), iron(III) and nickel(II) chloride as precursors, 1,12-dodecanediol as a surfactant and water as a reaction medium. The mixture is heated at 160 °C for 10 minutes to obtain uniform alloy nanoparticles with sizes of around 24.5 nm for Ni (0% Fe) and 5.5 nm for 35% Fe that are forming uniform aggregates with sizes between 200 nm for Ni and 65 nm for iron oxide NPs. A linear increase of saturation magnetization is observed with an Fe content of up to 25%, whereas for larger percentages a sudden drop takes place due to the formation of iron oxides. X-ray diffraction measurements rule out the formation of any oxides after more than one year of storage at 4 °C, surely due to the presence of 1,12-dodecanediol at the surface, as evidenced by infrared spectroscopy.
Collapse
Affiliation(s)
- Antonio Santana-Otero
- Condensed Matter Physics department, Faculty of Sciences, Campus Universitario de Puerto Real, 11510 Puerto Real (Cádiz), Spain.
- Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), University of Cádiz, 11009 Cádiz, Spain
| | | | - María Del Puerto Morales
- Institute of Materials Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Daniel Ortega
- Condensed Matter Physics department, Faculty of Sciences, Campus Universitario de Puerto Real, 11510 Puerto Real (Cádiz), Spain.
- Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), University of Cádiz, 11009 Cádiz, Spain
- IMDEA Nanoscience, Faraday 9, 28049 Madrid, Spain
| |
Collapse
|
13
|
Choi SB. Sedimentation Stability of Magnetorheological Fluids: The State of the Art and Challenging Issues. MICROMACHINES 2022; 13:1904. [PMID: 36363925 PMCID: PMC9696840 DOI: 10.3390/mi13111904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Among the many factors causing particle sedimentation, three principal ingredients are heavily involved: magnetic particles, a carrier liquid (base oil), and additives (surfactant). Therefore, many works have been carried out to improve the sedimentation stability of magnetorheological fluids (MRFs) by adopting the three methods. In the particle modification stage, the weight concentration, size distribution, particle shape, coated materials, and combinations of different sizes of the particles have been proposed, while for the modification of the carrier liquid, several works on the density increment, wettability control, and the use of natural oils, lubricant oil, grease, and ethyl- and butyl-acetate oils have been undertaken. Recently, in certain recipes to improve sedimentation stability, some additives such as aluminum stearate were used to increase the redispersibility of the aggregated particles. In addition, several works using more than two recipes modifying both the particles and base oils are being actively carried out to achieve higher sedimentation stability. This review article comprehensively introduces and discuses the recipes to improve sedimentation stability from the aspects of the three ingredients. A few conceptual methodologies to prevent the sedimentation occurring via a bottle's storage on the shelves of the application systems are also presented, since, to the author's knowledge, there has not been a report on this issue. These are challenging works to be explored and developed for successful application systems' MRFs.
Collapse
Affiliation(s)
- Seung-Bok Choi
- Department of Mechanical Engineering, The State University of New York, Korea (SUNY Korea), 119 Songdo Moonhwa-ro, Yeonsu-gu, Incheon 21985, Korea;
- Department of Mechanical Engineering, Industrial University of Ho Chi Minh City (IUH), 12 Nguyen Van Bao Street, Go Vap District, Ho Chi Minh City 70000, Vietnam
| |
Collapse
|
14
|
Zhao P, Du T, Ma N, Dong X, Qi M. Effect of interfacial shear strength between magnetic particles and carrier liquid on rheological properties of magnetorheological fluids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
15
|
Jäger GJL, Fischer L, Lutz T, Menzel AM. Variations in the thermal conductivity of magnetosensitive elastomers by magnetically induced internal restructuring. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:485101. [PMID: 36215969 DOI: 10.1088/1361-648x/ac98e8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Magnetosensitive elastomers respond to external magnetic fields by changing their stiffness and shape. These effects result from interactions among magnetized inclusions that are embedded within an elastic matrix. Strong external magnetic fields induce internal restructuring, for example the formation of chain-like aggregates. However, such reconfigurations affect not only the overall mechanical properties of the elastomers but also the transport through such systems. We concentrate here on the transport of heat, that is thermal conductivity. For flat, thin model systems representing thin films or membranes and modeled by bead-spring discretizations, we evaluate the internal restructuring in response to magnetization of the particles. For each resulting configuration, we evaluate the associated thermal conductivity. We analyze the changes in heat transport as a function of the strength of magnetization, particle number, density of magnetizable particles (at fixed overall particle number), and aspect ratio of the system. We observe that varying any one of these parameters can induce pronounced changes in the bulk thermal conductivity. Our results motivate future experimental and theoretical studies of systems with magnetically tunable thermal but also electric conductivity-both of which have only rarely been addressed so far.
Collapse
Affiliation(s)
- Gustav J L Jäger
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Lukas Fischer
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Tyler Lutz
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Andreas M Menzel
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
16
|
Stable Magnetorheological Fluids Containing Bidisperse Fillers with Compact/Mesoporous Silica Coatings. Int J Mol Sci 2022; 23:ijms231911044. [PMID: 36232347 PMCID: PMC9570470 DOI: 10.3390/ijms231911044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/08/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
A drawback of magnetorheological fluids is low kinetic stability, which severely limits their practical utilization. This paper describes the suppression of sedimentation through a combination of bidispersal and coating techniques. A magnetic, sub-micro additive was fabricated and sequentially coated with organosilanes. The first layer was represented by compact silica, while the outer layer consisted of mesoporous silica, obtained with the oil–water biphase stratification method. The success of the modification technique was evidenced with transmission electron microscopy, scanning electron microscopy/energy-dispersive X-ray spectroscopy and Fourier-transform infrared spectroscopy. The coating exceptionally increased the specific surface area, from 47 m2/g (neat particles) up to 312 m2/g, which when combined with lower density, resulted in remarkable improvement in the sedimentation profile. At this expense, the compact/mesoporous silica slightly diminished the magnetization of the particles, while the magnetorheological performance remained at an acceptable level, as evaluated with a modified version of the Cross model. Sedimentation curves were, for the first time in magnetorheology, modelled via a novel five-parameter equation (S-model) that showed a robust fitting capability. The sub-micro additive prevented the primary carbonyl iron particles from aggregation, which was projected into the improved sedimentation behavior (up to a six-fold reduction in the sedimentation rate). Detailed focus was also given to analyze the implications of the sub-micro additives and their surface texture on the overall behavior of the bidisperse magnetorheological fluids.
Collapse
|
17
|
Kriegl R, Kravanja G, Hribar L, Čoga L, Drevenšek-Olenik I, Jezeršek M, Kalin M, Shamonin M. Microstructured Magnetoactive Elastomers for Switchable Wettability. Polymers (Basel) 2022; 14:polym14183883. [PMID: 36146027 PMCID: PMC9503804 DOI: 10.3390/polym14183883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
We demonstrate the control of wettability of non-structured and microstructured magnetoactive elastomers (MAEs) by magnetic field. The synthesized composite materials have a concentration of carbonyl iron particles of 75 wt.% (≈27 vol.%) and three different stiffnesses of the elastomer matrix. A new method of fabrication of MAE coatings on plastic substrates is presented, which allows one to enhance the response of the apparent contact angle to the magnetic field by exposing the particle-enriched side of MAEs to water. A magnetic field is not applied during crosslinking. The highest variation of the contact angle from (113 ± 1)° in zero field up to (156 ± 2)° at about 400 mT is achieved in the MAE sample with the softest matrix. Several lamellar and pillared MAE structures are fabricated by laser micromachining. The lateral dimension of surface structures is about 50 µm and the depth varies between 3 µm and 60 µm. A systematic investigation of the effects of parameters of laser processing (laser power and the number of passages of the laser beam) on the wetting behavior of these structures in the absence and presence of a magnetic field is performed. In particular, strong anisotropy of the wetting behavior of lamellar structures is observed. The results are qualitatively discussed in the framework of the Wenzel and Cassie–Baxter models. Finally, directions of further research on magnetically controlled wettability of microstructured MAE surfaces are outlined. The obtained results may be useful for the development of magnetically controlled smart surfaces for droplet-based microfluidics.
Collapse
Affiliation(s)
- Raphael Kriegl
- East Bavarian Centre for Intelligent Materials (EBACIM), Ostbayerische Technische Hochschule (OTH) Regensburg, Seybothstr. 2, 93053 Regensburg, Germany
- Correspondence: (R.K.); (M.S.)
| | - Gaia Kravanja
- Laboratory for Laser Techniques, Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, SI-1000 Ljubljana, Slovenia
| | - Luka Hribar
- Laboratory for Laser Techniques, Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, SI-1000 Ljubljana, Slovenia
| | - Lucija Čoga
- Laboratory for Tribology and Interface Nanotechnology, Faculty of Mechanical Engineering, University of Ljubljana, Bogišićeva 8, SI-1000 Ljubljana, Slovenia
| | - Irena Drevenšek-Olenik
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
- Department of Complex Matter, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Matija Jezeršek
- Laboratory for Laser Techniques, Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, SI-1000 Ljubljana, Slovenia
| | - Mitjan Kalin
- Laboratory for Tribology and Interface Nanotechnology, Faculty of Mechanical Engineering, University of Ljubljana, Bogišićeva 8, SI-1000 Ljubljana, Slovenia
| | - Mikhail Shamonin
- East Bavarian Centre for Intelligent Materials (EBACIM), Ostbayerische Technische Hochschule (OTH) Regensburg, Seybothstr. 2, 93053 Regensburg, Germany
- Correspondence: (R.K.); (M.S.)
| |
Collapse
|
18
|
Magnetic Nanoparticles: Current Advances in Nanomedicine, Drug Delivery and MRI. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Magnetic nanoparticles (MNPs) have evolved tremendously during recent years, in part due to the rapid expansion of nanotechnology and to their active magnetic core with a high surface-to-volume ratio, while their surface functionalization opened the door to a plethora of drug, gene and bioactive molecule immobilization. Taming the high reactivity of the magnetic core was achieved by various functionalization techniques, producing MNPs tailored for the diagnosis and treatment of cardiovascular or neurological disease, tumors and cancer. Superparamagnetic iron oxide nanoparticles (SPIONs) are established at the core of drug-delivery systems and could act as efficient agents for MFH (magnetic fluid hyperthermia). Depending on the functionalization molecule and intrinsic morphological features, MNPs now cover a broad scope which the current review aims to overview. Considering the exponential expansion of the field, the current review will be limited to roughly the past three years.
Collapse
|
19
|
Vítková L, Musilová L, Achbergerová E, Kolařík R, Mrlík M, Korpasová K, Mahelová L, Capáková Z, Mráček A. Formulation of Magneto-Responsive Hydrogels from Dually Cross-Linked Polysaccharides: Synthesis, Tuning and Evaluation of Rheological Properties. Int J Mol Sci 2022; 23:ijms23179633. [PMID: 36077030 PMCID: PMC9455683 DOI: 10.3390/ijms23179633] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Smart hydrogels based on natural polymers present an opportunity to fabricate responsive scaffolds that provide an immediate and reversible reaction to a given stimulus. Modulation of mechanical characteristics is especially interesting in myocyte cultivation, and can be achieved by magnetically controlled stiffening. Here, hyaluronan hydrogels with carbonyl iron particles as a magnetic filler are prepared in a low-toxicity process. Desired mechanical behaviour is achieved using a combination of two cross-linking routes—dynamic Schiff base linkages and ionic cross-linking. We found that gelation time is greatly affected by polymer chain conformation. This factor can surpass the influence of the number of reactive sites, shortening gelation from 5 h to 20 min. Ionic cross-linking efficiency increased with the number of carboxyl groups and led to the storage modulus reaching 103 Pa compared to 101 Pa–102 Pa for gels cross-linked with only Schiff bases. Furthermore, the ability of magnetic particles to induce significant stiffening of the hydrogel through the magnetorheological effect is confirmed, as a 103-times higher storage modulus is achieved in an external magnetic field of 842 kA·m−1. Finally, cytotoxicity testing confirms the ability to produce hydrogels that provide over 75% relative cell viability. Therefore, dual cross-linked hyaluronan-based magneto-responsive hydrogels present a potential material for on-demand mechanically tunable scaffolds usable in myocyte cultivation.
Collapse
Affiliation(s)
- Lenka Vítková
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova 275, 760 01 Zlin, Czech Republic
| | - Lenka Musilová
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova 275, 760 01 Zlin, Czech Republic
- Centre of Polymer Systems, Tomas Bata University in Zlin, tř. Tomáše Bati 5678, 760 01 Zlin, Czech Republic
- Correspondence: (L.M.); (A.M.)
| | - Eva Achbergerová
- CEBIA-Tech, Faculty of Applied Informatics, Tomas Bata University in Zlin, Nad Stráněmi 4511, 760 05 Zlin, Czech Republic
| | - Roman Kolařík
- Centre of Polymer Systems, Tomas Bata University in Zlin, tř. Tomáše Bati 5678, 760 01 Zlin, Czech Republic
| | - Miroslav Mrlík
- Centre of Polymer Systems, Tomas Bata University in Zlin, tř. Tomáše Bati 5678, 760 01 Zlin, Czech Republic
| | - Kateřina Korpasová
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova 275, 760 01 Zlin, Czech Republic
| | - Leona Mahelová
- Centre of Polymer Systems, Tomas Bata University in Zlin, tř. Tomáše Bati 5678, 760 01 Zlin, Czech Republic
| | - Zdenka Capáková
- Centre of Polymer Systems, Tomas Bata University in Zlin, tř. Tomáše Bati 5678, 760 01 Zlin, Czech Republic
| | - Aleš Mráček
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova 275, 760 01 Zlin, Czech Republic
- Centre of Polymer Systems, Tomas Bata University in Zlin, tř. Tomáše Bati 5678, 760 01 Zlin, Czech Republic
- Correspondence: (L.M.); (A.M.)
| |
Collapse
|
20
|
Coutinho ÍM, Miranda JA. Field-controlled flow and shape of a magnetorheological fluid annulus. Phys Rev E 2022; 106:025105. [PMID: 36109920 DOI: 10.1103/physreve.106.025105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
We investigate the behavior of a magnetorheological (MR) fluid annulus, bounded by a nonmagnetic fluid and confined in a Hele-Shaw cell, under the simultaneous effect of in-plane, external radial and azimuthal magnetic fields. A second-order mode-coupling theory is used to study the early nonlinear stage of the pattern-forming dynamics. We examine changes in the morphology of the MR fluid annular structure as a function of its magnetic-field-tunable rheological properties, as well as the combined magnetic field's intensities, and thickness of the ring. Our weakly nonlinear perturbative results show that, depending on the system control parameters, the MR fluid annulus adopts various stationary shapes. These equilibrium annular structures present slightly bent, asymmetric fingered protrusions which may emerge on the inner, outer, or even on both boundaries of the magnetic fluid ring. On top of these morphological changes, we find that the resulting permanent shape patterns rotate with a well defined angular velocity. We focus on analyzing how the overall shape of the fingered patterns, in particular their sharpness and asymmetric form, as well as the number of resulting fingers are impacted by the magnetic-field-dependent yield stress of the MR fluid annulus. The influence of the magnetically controlled rheological properties of the MR fluid on the angular velocity of the rotating annulus is also scrutinized.
Collapse
Affiliation(s)
- Írio M Coutinho
- Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - José A Miranda
- Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| |
Collapse
|
21
|
Rashid RZA, Yunus NA, Mazlan SA, Johari N, Aziz SAA, Nordin NA, Khairi MHA, Johari MAF. Temperature Dependent on Mechanical and Rheological Properties of EPDM-Based Magnetorheological Elastomers Using Silica Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2556. [PMID: 35407889 PMCID: PMC9000172 DOI: 10.3390/ma15072556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/10/2022]
Abstract
Temperature is one of the most influential factors affecting the performance of elastomer matrix in magnetorheological elastomer (MRE). Previous studies have utilized silica as a reinforcing filler in polymer composite and as a coating material in MRE to improve the thermal stability of the base material. However, the usage of silica as an additive in the thermal stability of MRE has not been explored. Thus, in this study, the effect of silica as an additive on the temperature-dependent mechanical and rheological properties of ethylene propylene diene monomer (EPDM)-based MREs was investigated by using 30 wt.% carbonyl iron particles (CIPs) as the main filler, with different contents of silica nanoparticles (0 to 11 wt.%). The microstructure analysis was examined by using field-emission scanning electron microscopy (FESEM), while the thermal characterizations were studied by using a thermogravimetric analyzer and differential scanning calorimetry. The tensile properties were conducted by using Instron Universal Testing Machine in the absence of magnetic field at various temperatures. Meanwhile, the rheological properties were analyzed under oscillatory loadings in the influence of magnetic field, using a rotational rheometer at 25 to 65 °C. The results revealed that the temperature has diminished the interfacial interactions between filler and matrix, thus affecting the properties of MRE, where the tensile properties and MR effect decrease with increasing temperature. However, the presence of silica capable improved the thermal stability of EPDM-based MRE by enhancing the interactions between filler and matrix, thus reducing the interfacial defects when under the influence of temperature. Consequently, the incorporation of silica nanoparticles as an additive in EPDM-based MRE requires more exploration, since it has the potential to sustain the properties of MRE devices in a variety of temperature conditions. Thus, the study on the temperature-dependent mechanical and rheological properties of MRE is necessary, particularly regarding its practical applications.
Collapse
Affiliation(s)
- Rusila Zamani Abdul Rashid
- Engineering Materials & Structures (eMast) iKhoza, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia; (R.Z.A.R.); (N.J.); (S.A.A.A.); (N.A.N.); (M.H.A.K.); (M.A.F.J.)
| | - Nurul Azhani Yunus
- Mechanical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
| | - Saiful Amri Mazlan
- Engineering Materials & Structures (eMast) iKhoza, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia; (R.Z.A.R.); (N.J.); (S.A.A.A.); (N.A.N.); (M.H.A.K.); (M.A.F.J.)
| | - Norhasnidawani Johari
- Engineering Materials & Structures (eMast) iKhoza, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia; (R.Z.A.R.); (N.J.); (S.A.A.A.); (N.A.N.); (M.H.A.K.); (M.A.F.J.)
| | - Siti Aishah Abdul Aziz
- Engineering Materials & Structures (eMast) iKhoza, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia; (R.Z.A.R.); (N.J.); (S.A.A.A.); (N.A.N.); (M.H.A.K.); (M.A.F.J.)
| | - Nur Azmah Nordin
- Engineering Materials & Structures (eMast) iKhoza, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia; (R.Z.A.R.); (N.J.); (S.A.A.A.); (N.A.N.); (M.H.A.K.); (M.A.F.J.)
| | - Muntaz Hana Ahmad Khairi
- Engineering Materials & Structures (eMast) iKhoza, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia; (R.Z.A.R.); (N.J.); (S.A.A.A.); (N.A.N.); (M.H.A.K.); (M.A.F.J.)
| | - Mohd Aidy Faizal Johari
- Engineering Materials & Structures (eMast) iKhoza, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia; (R.Z.A.R.); (N.J.); (S.A.A.A.); (N.A.N.); (M.H.A.K.); (M.A.F.J.)
| |
Collapse
|
22
|
Socoliuc V, Avdeev MV, Kuncser V, Turcu R, Tombácz E, Vékás L. Ferrofluids and bio-ferrofluids: looking back and stepping forward. NANOSCALE 2022; 14:4786-4886. [PMID: 35297919 DOI: 10.1039/d1nr05841j] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ferrofluids investigated along for about five decades are ultrastable colloidal suspensions of magnetic nanoparticles, which manifest simultaneously fluid and magnetic properties. Their magnetically controllable and tunable feature proved to be from the beginning an extremely fertile ground for a wide range of engineering applications. More recently, biocompatible ferrofluids attracted huge interest and produced a considerable increase of the applicative potential in nanomedicine, biotechnology and environmental protection. This paper offers a brief overview of the most relevant early results and a comprehensive description of recent achievements in ferrofluid synthesis, advanced characterization, as well as the governing equations of ferrohydrodynamics, the most important interfacial phenomena and the flow properties. Finally, it provides an overview of recent advances in tunable and adaptive multifunctional materials derived from ferrofluids and a detailed presentation of the recent progress of applications in the field of sensors and actuators, ferrofluid-driven assembly and manipulation, droplet technology, including droplet generation and control, mechanical actuation, liquid computing and robotics.
Collapse
Affiliation(s)
- V Socoliuc
- Romanian Academy - Timisoara Branch, Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids, Mihai Viteazu Ave. 24, 300223 Timisoara, Romania.
| | - M V Avdeev
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie Str. 6, 141980 Dubna, Moscow Reg., Russia.
| | - V Kuncser
- National Institute of Materials Physics, Bucharest-Magurele, 077125, Romania
| | - Rodica Turcu
- National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), Donat Str. 67-103, 400293 Cluj-Napoca, Romania
| | - Etelka Tombácz
- University of Szeged, Faculty of Engineering, Department of Food Engineering, Moszkvai krt. 5-7, H-6725 Szeged, Hungary.
- University of Pannonia - Soós Ernő Water Technology Research and Development Center, H-8800 Zrínyi M. str. 18, Nagykanizsa, Hungary
| | - L Vékás
- Romanian Academy - Timisoara Branch, Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids, Mihai Viteazu Ave. 24, 300223 Timisoara, Romania.
- Politehnica University of Timisoara, Research Center for Complex Fluids Systems Engineering, Mihai Viteazul Ave. 1, 300222 Timisoara, Romania
| |
Collapse
|
23
|
Rashid RZA, Yunus NA, Mazlan SA, Johari N, Aziz SAA, Nordin NA, Khairi MHA, Johari MAF. Temperature Dependent on Mechanical and Rheological Properties of EPDM-Based Magnetorheological Elastomers Using Silica Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15072556. [PMID: 35407889 DOI: 10.1088/1361-665x/ac1f64] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 05/29/2023]
Abstract
Temperature is one of the most influential factors affecting the performance of elastomer matrix in magnetorheological elastomer (MRE). Previous studies have utilized silica as a reinforcing filler in polymer composite and as a coating material in MRE to improve the thermal stability of the base material. However, the usage of silica as an additive in the thermal stability of MRE has not been explored. Thus, in this study, the effect of silica as an additive on the temperature-dependent mechanical and rheological properties of ethylene propylene diene monomer (EPDM)-based MREs was investigated by using 30 wt.% carbonyl iron particles (CIPs) as the main filler, with different contents of silica nanoparticles (0 to 11 wt.%). The microstructure analysis was examined by using field-emission scanning electron microscopy (FESEM), while the thermal characterizations were studied by using a thermogravimetric analyzer and differential scanning calorimetry. The tensile properties were conducted by using Instron Universal Testing Machine in the absence of magnetic field at various temperatures. Meanwhile, the rheological properties were analyzed under oscillatory loadings in the influence of magnetic field, using a rotational rheometer at 25 to 65 °C. The results revealed that the temperature has diminished the interfacial interactions between filler and matrix, thus affecting the properties of MRE, where the tensile properties and MR effect decrease with increasing temperature. However, the presence of silica capable improved the thermal stability of EPDM-based MRE by enhancing the interactions between filler and matrix, thus reducing the interfacial defects when under the influence of temperature. Consequently, the incorporation of silica nanoparticles as an additive in EPDM-based MRE requires more exploration, since it has the potential to sustain the properties of MRE devices in a variety of temperature conditions. Thus, the study on the temperature-dependent mechanical and rheological properties of MRE is necessary, particularly regarding its practical applications.
Collapse
Affiliation(s)
- Rusila Zamani Abdul Rashid
- Engineering Materials & Structures (eMast) iKhoza, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia
| | - Nurul Azhani Yunus
- Mechanical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
| | - Saiful Amri Mazlan
- Engineering Materials & Structures (eMast) iKhoza, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia
| | - Norhasnidawani Johari
- Engineering Materials & Structures (eMast) iKhoza, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia
| | - Siti Aishah Abdul Aziz
- Engineering Materials & Structures (eMast) iKhoza, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia
| | - Nur Azmah Nordin
- Engineering Materials & Structures (eMast) iKhoza, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia
| | - Muntaz Hana Ahmad Khairi
- Engineering Materials & Structures (eMast) iKhoza, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia
| | - Mohd Aidy Faizal Johari
- Engineering Materials & Structures (eMast) iKhoza, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia
| |
Collapse
|
24
|
Craciunescu I, Chiţanu E, Codescu MM, Iacob N, Kuncser A, Kuncser V, Socoliuc V, Susan-Resiga D, Bălănean F, Ispas G, Borbáth T, Borbáth I, Turcu R, Vékás L. High performance magnetorheological fluids: very high magnetization FeCo-Fe 3O 4 nanoclusters in a ferrofluid carrier. SOFT MATTER 2022; 18:626-639. [PMID: 34931628 DOI: 10.1039/d1sm01468d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High magnetization Fe3O4/OA-FeCo/Al2O3 nanocomposite magnetic clusters have been obtained using a modified oil-in-water miniemulsion method. These nanocomposite clusters dispersed in a ferrofluid carrier result in a magnetorheological fluid with improved characteristics. The magnetic clusters have a magnetic core consisting of a mixture of magnetite nanoparticles of about 6 nm average size, stabilized with oleic acid (Fe3O4/OA) and FeCo/Al2O3 particles of about 50 nm average size, compactly packed in the form of spherical clusters with a diameter distribution in the range 100-300 nm and a hydrophilic coating of sodium lauryl sulphate surfactant. The surface chemical composition of the Fe3O4/OA-FeCo/Al2O3 clusters investigated by XPS indicates the presence of the Co2+ and Co3+ oxidation states of cobalt and the components of Fe2+ and Fe3+ characteristic to both an enhanced oxidation state at the surface of the FeCo particles and to the presence of magnetic nanoparticles of spinel structure which are decorating the supporting FeCo. This specific decorating morphology is also indicated by TEM images. Advanced characterization of the Fe3O4/OA-FeCo/Al2O3 magnetic clusters has been performed using Mössbauer spectroscopy and magnetization measurements at various temperatures between 6 K and 200 K. The unexpected formation of Co ferrite decorating nanoparticles was supported by Mössbauer spectroscopy. The dispersion of magnetic clusters in the ferrofluid carrier highly influences the flow properties in the absence of the field (shear thinning for low and moderate shear rates) and especially in applied magnetic field, when significant magnetoviscous effect and shear thinning was observed for the whole range of shear rate values. Detailed analysis of the magnetorheological behavior of the nanocomposite magnetic clusters dispersed in a ferrofluid carrier evidence significantly higher normalized dynamic yield stress values in comparison with the magnetite nanocluster suspensions of the same mass concentration, a promising result for this new type of nanocomposite magnetorheological fluid.
Collapse
Affiliation(s)
- Izabell Craciunescu
- National Institute for R&D of Isotopic and Molecular Technologies (INCDTIM), Donat Str. 67-103, 400293 Cluj-Napoca, Romania.
| | - Elena Chiţanu
- National R&D Institute for Electrical Engineering (ICPE-CA), Bucharest, Romania
| | - Mirela M Codescu
- National R&D Institute for Electrical Engineering (ICPE-CA), Bucharest, Romania
| | - N Iacob
- National Institute for R&D of Materials Physics (INCDFM), Bucharest-Magurele, Romania
| | - A Kuncser
- National Institute for R&D of Materials Physics (INCDFM), Bucharest-Magurele, Romania
| | - V Kuncser
- National Institute for R&D of Materials Physics (INCDFM), Bucharest-Magurele, Romania
| | - V Socoliuc
- Romanian Academy - Timisoara Branch, Center for Fundamental and Advanced Technical Research (CFATR), Laboratory of Magnetic Fluids, Mihai Viteazul Ave. 24, 300223 Timisoara, Romania
- Politehnica University of Timisoara, Research Center for Complex Fluids Systems Engineering, Mihai Viteazul Ave. 1, 300222 Timisoara, Romania.
| | - Daniela Susan-Resiga
- Romanian Academy - Timisoara Branch, Center for Fundamental and Advanced Technical Research (CFATR), Laboratory of Magnetic Fluids, Mihai Viteazul Ave. 24, 300223 Timisoara, Romania
- West University of Timisoara, Faculty of Physics, Vasile Pârvan Ave. 4, Timişoara 300223, Romania
| | - Florica Bălănean
- Romanian Academy - Timisoara Branch, Center for Fundamental and Advanced Technical Research (CFATR), Laboratory of Magnetic Fluids, Mihai Viteazul Ave. 24, 300223 Timisoara, Romania
| | - G Ispas
- National Institute for R&D of Isotopic and Molecular Technologies (INCDTIM), Donat Str. 67-103, 400293 Cluj-Napoca, Romania.
| | | | - I Borbáth
- ROSEAL Co., Odorheiu-Secuiesc, Romania
| | - Rodica Turcu
- National Institute for R&D of Isotopic and Molecular Technologies (INCDTIM), Donat Str. 67-103, 400293 Cluj-Napoca, Romania.
| | - L Vékás
- Romanian Academy - Timisoara Branch, Center for Fundamental and Advanced Technical Research (CFATR), Laboratory of Magnetic Fluids, Mihai Viteazul Ave. 24, 300223 Timisoara, Romania
- Politehnica University of Timisoara, Research Center for Complex Fluids Systems Engineering, Mihai Viteazul Ave. 1, 300222 Timisoara, Romania.
| |
Collapse
|
25
|
Dobroserdova A, Schümann M, Borin D, Novak E, Odenbach S, Kantorovich S. Magneto-elastic coupling as a key to microstructural response of magnetic elastomers with flake-like particles. SOFT MATTER 2022; 18:496-506. [PMID: 34940776 DOI: 10.1039/d1sm01349a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Using the combination of experiment and molecular dynamics simulations, we investigate structural transformations in magnetic elastomers with NdFeB flake-like particles, caused by applied moderate magnetic fields. We explain why and how those transformations depend on whether or not the samples are initially cured by a short-time exposure to a strong field. We find that in a cured sample, a moderate magnetic field leads mainly to in-place flake rotations that are fully reversed once the applied field is switched off. In contrast, in an initially non-cured sample the flakes perform both translation and rotations under the influence of a moderate applied field that lead to the formation of chain-like structures that remain such even if the field is switched off.
Collapse
Affiliation(s)
- Alla Dobroserdova
- Institute of Natural Sciences and Mathematics, Ural Federal University, Lenin av. 51, 620000, Ekaterinburg, Russia.
| | - Malte Schümann
- Chair of Magnetofluiddynamics, Measuring and Automation Technology, Institute of Mechatronic Engineering, Technische Universität Dresden, 01062 Dresden, Germany
| | - Dmitry Borin
- Chair of Magnetofluiddynamics, Measuring and Automation Technology, Institute of Mechatronic Engineering, Technische Universität Dresden, 01062 Dresden, Germany
| | - Ekaterina Novak
- Institute of Natural Sciences and Mathematics, Ural Federal University, Lenin av. 51, 620000, Ekaterinburg, Russia.
| | - Stefan Odenbach
- Chair of Magnetofluiddynamics, Measuring and Automation Technology, Institute of Mechatronic Engineering, Technische Universität Dresden, 01062 Dresden, Germany
| | - Sofia Kantorovich
- Institute of Natural Sciences and Mathematics, Ural Federal University, Lenin av. 51, 620000, Ekaterinburg, Russia.
- Faculty of Physics, University of Vienna, 1090, Kolingasse 14-16, Vienna, Austria
- Research Platform MMM Mathematics-Magnetism-Material, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
| |
Collapse
|
26
|
Liu J, Xu X, Lei Y, Zhang M, Sheng Z, Wang H, Cao M, Zhang J, Hou X. Liquid Gating Meniscus-Shaped Deformable Magnetoelastic Membranes with Self-Driven Regulation of Gas/Liquid Release. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107327. [PMID: 34762328 DOI: 10.1002/adma.202107327] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Liquid gating membranes have been demonstrated to show unprecedented properties of dynamicity, stability, adaptivity, and stimulus-responsiveness. Most recently, smart liquid gating membranes have attracted increasing attention to bring some brand-new properties for real-world applications, and various environment-driven systems have been created. Here, a self-driven system of a smart liquid gating membrane is further developed by designing a new sytem based on a liquid gating magnetoelastic porous membrane with reversible meniscus-shaped deformations, and it is not subject to the complex gating liquid restriction of magnetorheological fluids. Compared with other systems, this magnetic-responsive self-driven system has the advantage that it provides a universal and convenient way to realize active regulation of gas/liquid release. Experiments and theoretical calculations demonstrate the stability, the nonfouling behavior, and the tunability of the system. In addition, this system can be used to perfectly open and close gas transport, and the gating pressure threshold for the liquid release can be reduced under the same conditions. Based on the above capabilities, combined with the fast and 3D contactless operation, it will be of benefit in fields ranging from visible gas/liquid mixture content monitoring and energy-saving multiphase separation, remote fluid release, and beyond.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xue Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yi Lei
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Mengchuang Zhang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Zhizhi Sheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Huimeng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Min Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jian Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
- Tan Kah Kee Innovation Laboratory, Xiamen, Fujian, 361102, China
| |
Collapse
|
27
|
Gong D, Yang F, Lin D, Qian W, Li R, Li C, Chen H, Jia S. Shape-programmable magneto-active elastomer composites for curve and biomimetic behavior imitation. SOFT MATTER 2021; 17:10730-10735. [PMID: 34787153 DOI: 10.1039/d1sm01250a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A programming methodology, which can be applied to soft-magnetic-material-based magneto-active elastomers (MAEs), to catch the predefined specific objective curves is proposed in this study. The objective curves have been equally separated into a couple of segments, which will be filled by the designed MAE elements. Furthermore, the designed MAE segments with different chain angles, in which the deformation orientation of each element under applied homogeneous magnetic fields has been investigated based on the designed experimental setup, are arrayed based on the proposed programming methodology to constitute the MAE composite to catch the orientation of the objective curve. The experimental results show that based on the proposed programming methodology, the MAE composites can describe different curves, which include harmonic, tangential and arc tangential functions under applied homogeneous magnetic fields with good agreement. Furthermore, on the basis of the proposed programming methodology, the MAE composites are utilized to mimic the typical biomimetic behavior (the peeking-up behavior of snakes and the flapping behavior of birds) with smooth curvature properties, in which the dynamic procedures present continuous curves.
Collapse
Affiliation(s)
- Di Gong
- Research Center for Intelligent Materials and Structures (CIMS), College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian, P. R. China.
| | - Fan Yang
- Research Center for Intelligent Materials and Structures (CIMS), College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian, P. R. China.
| | - Dezhao Lin
- Research Center for Intelligent Materials and Structures (CIMS), College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian, P. R. China.
| | - Wenbo Qian
- Research Center for Intelligent Materials and Structures (CIMS), College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian, P. R. China.
| | - Ruihong Li
- Research Center for Intelligent Materials and Structures (CIMS), College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian, P. R. China.
| | - Chenghong Li
- Research Center for Intelligent Materials and Structures (CIMS), College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian, P. R. China.
| | - Hongwei Chen
- Research Center for Intelligent Materials and Structures (CIMS), College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian, P. R. China.
| | - Sheng Jia
- Research Center for Intelligent Materials and Structures (CIMS), College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian, P. R. China.
| |
Collapse
|
28
|
Nunes JM, Galindo-Rosales FJ, Campo-Deaño L. Extensional Magnetorheology of Viscoelastic Human Blood Analogues Loaded with Magnetic Particles. MATERIALS 2021; 14:ma14226930. [PMID: 34832327 PMCID: PMC8621293 DOI: 10.3390/ma14226930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022]
Abstract
This study represents a pioneering work on the extensional magnetorheological properties of human blood analogue fluids loaded with magnetic microparticles. Dynabeads M-270 particles were dispersed in Newtonian and viscoelastic blood analogue fluids at 5% wt. Capillary breakup experiments were performed, with and without the influence of an external magnetic field aligned with the flow direction. The presence of the particles increased the viscosity of the fluid, and that increment was larger when embedded within a polymeric matrix. The application of an external magnetic field led to an even larger increment of the viscosity of the working fluids, as the formation of small aggregates induced an increment in the effective volume fraction of particles. Regarding the liquid bridge stability, the Newtonian blood analogue fluid remained as a Newtonian liquid exhibiting a pinch-off at the breakup time in any circumstance. However, in the case of the viscoelastic blood analogue fluid, the presence of the particles and the simultaneous application of the magnetic field enhanced the formation of the beads-on-a-string structure, as the Ohnesorge number remained basically unaltered, whereas the time of the experiment increased due to its larger viscosity, which resulted in a decrease in the Deborah Number. This result was confirmed with fluids containing larger concentrations of xanthan gum.
Collapse
Affiliation(s)
- João M. Nunes
- CEFT, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (J.M.N.); (F.J.G.-R.)
| | - Francisco J. Galindo-Rosales
- CEFT, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (J.M.N.); (F.J.G.-R.)
| | - Laura Campo-Deaño
- CEFT, Departamento de Engenharia Mecânica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence:
| |
Collapse
|
29
|
Review of Magnetorheological Damping Systems on a Seismic Building. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Building structures are vulnerable to the shocks caused by earthquakes. Buildings that have been destroyed by an earthquake are very detrimental in terms of material loss and mental trauma. However, technological developments now enable us to anticipate shocks from earthquakes and minimize losses. One of the technologies that has been used, and is currently being further developed, is a damping device that is fitted to the building structure. There are various types of damping devices, each with different characteristics and systems. Multiple studies on damping devices have resulted in the development of various types, such as friction dampers (FDs), tuned mass dampers (TMDs), and viscous dampers (VDs). However, studies on attenuation devices are mostly based on the type of system and can be divided into three categories, namely passive, active, and semi-active. As such, each type and system have their own advantages and disadvantages. This study investigated the efficacy of a magnetorheological (MR) damper, a viscous-type damping device with a semi-active system, in a simulation that applied the damper to the side of a building structure. Although MR dampers have been extensively used and developed as inter-story damping devices, very few studies have analyzed their models and controls even though both are equally important in controlled dampers for semi-active systems. Of the various types of models, the Bingham model is the most popular as indicated by the large number of publications available on the subject. Most models adapt the Bingham model because it is the most straightforward of all the models. Fuzzy controls are often used for MR dampers in both simulations and experiments. This review provides benefits for further investigation of building damping devices, especially semi-active damping devices that use magnetorheological fluids as working fluids. In particular, this paper provides fundamental material on modeling and control systems used in magnetorheological dampers for buildings. In fact, magnetorheological dampers are no less attractive than other damping devices, such as tuned mass dampers and other viscous dampers. Their reliability is related to the damping control, which could be turned into an interesting discussion for further investigation.
Collapse
|
30
|
Norhaniza R, Mazlan SA, Ubaidillah U, Sedlacik M, Aziz SAA, Nazmi N, Homma K, Rambat S. Sensitivities of Rheological Properties of Magnetoactive Foam for Soft Sensor Technology. SENSORS 2021; 21:s21051660. [PMID: 33670872 PMCID: PMC7957724 DOI: 10.3390/s21051660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/25/2022]
Abstract
Magnetoactive (MA) foam, with its tunable mechanical properties and magnetostriction, has the potential to be used for the development of soft sensor technology. However, researchers have found that its mechanical properties and magnetostriction are morphologically dependent, thereby limiting its capabilities for dexterous manipulation. Thus, in this work, MA foam was developed with additional capabilities for controlling its magnetostriction, normal force, storage modulus, shear stress and torque by manipulating the concentration of carbonyl iron particles (CIPs) and the magnetic field with regard to morphological changes. MA foams were prepared with three weight percentages of CIPs, namely, 35 wt.%, 55 wt.% and 75 wt.%, and three different modes, namely, zero shear, constant shear and various shears. The results showed that the MA foam with 75 wt.% of CIPs enhanced the normal force sensitivity and positive magnetostriction sensitivity by up to 97% and 85%, respectively. Moreover, the sensitivities of the storage modulus, torque and shear stress were 8.97 Pa/mT, 0.021 µN/mT, and 0.0096 Pa/mT, respectively. Meanwhile, the magnetic dipolar interaction between the CIPs was capable of changing the property of MA foam from a positive to a negative magnetostriction under various shear strains with a low loss of energy. Therefore, it is believed that this kind of highly sensitive MA foam can potentially be implemented in future soft sensor systems.
Collapse
Affiliation(s)
- Rizuan Norhaniza
- Engineering Materials and Structures (eMast) iKohza, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia; (R.N.); (S.A.A.A.); (N.N.)
| | - Saiful Amri Mazlan
- Engineering Materials and Structures (eMast) iKohza, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia; (R.N.); (S.A.A.A.); (N.N.)
- International Center, Tokyo City University, 1 Chrome-28-1 Tamazutmi, Setagaya, Tokyo 1580087, Japan; (K.H.); (S.R.)
- Correspondence: (S.A.M.); (U.U.); Tel.: +603-26154960 (S.A.M.); Tel.: +62-85733527552 (U.U.)
| | - Ubaidillah Ubaidillah
- Faculty of Engineering, Universitas Sebelas Maret, Jalan Ir. Sutami 36A, Kentingan, Surakarta 57126, Central Java, Indonesia
- Correspondence: (S.A.M.); (U.U.); Tel.: +603-26154960 (S.A.M.); Tel.: +62-85733527552 (U.U.)
| | - Michal Sedlacik
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida T. Bati 5678, 760 01 Zlín, Czech Republic;
| | - Siti Aishah Abdul Aziz
- Engineering Materials and Structures (eMast) iKohza, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia; (R.N.); (S.A.A.A.); (N.N.)
| | - Nurhazimah Nazmi
- Engineering Materials and Structures (eMast) iKohza, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia; (R.N.); (S.A.A.A.); (N.N.)
| | - Koji Homma
- International Center, Tokyo City University, 1 Chrome-28-1 Tamazutmi, Setagaya, Tokyo 1580087, Japan; (K.H.); (S.R.)
| | - Shuib Rambat
- International Center, Tokyo City University, 1 Chrome-28-1 Tamazutmi, Setagaya, Tokyo 1580087, Japan; (K.H.); (S.R.)
- Disaster Preparedness & Prevention Centre (DPPC), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| |
Collapse
|
31
|
Cvek M, Kollar J, Mrlik M, Masar M, Suly P, Urbanek M, Mosnacek J. Surface-initiated mechano-ATRP as a convenient tool for tuning of bidisperse magnetorheological suspensions toward extreme kinetic stability. Polym Chem 2021. [DOI: 10.1039/d1py00930c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic NPs grafted via mechano-ATRP served as a powerful agent for enhancing performance and stability of magnetorheological suspensions.
Collapse
Affiliation(s)
- Martin Cvek
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida T. Bati 5678, 760 01 Zlín, Czech Republic
| | - Jozef Kollar
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
| | - Miroslav Mrlik
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida T. Bati 5678, 760 01 Zlín, Czech Republic
| | - Milan Masar
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida T. Bati 5678, 760 01 Zlín, Czech Republic
| | - Pavol Suly
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida T. Bati 5678, 760 01 Zlín, Czech Republic
| | - Michal Urbanek
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida T. Bati 5678, 760 01 Zlín, Czech Republic
| | - Jaroslav Mosnacek
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava, Slovakia
| |
Collapse
|