1
|
Chan CW, Yang Z, Gan Z, Zhang R. Interplay of chemotactic force, Péclet number, and dimensionality dictates the dynamics of auto-chemotactic chiral active droplets. J Chem Phys 2024; 161:014904. [PMID: 38953449 DOI: 10.1063/5.0207355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
In living and synthetic active matter systems, the constituents can self-propel and interact with each other and with the environment through various physicochemical mechanisms. Among these mechanisms, chemotactic and auto-chemotactic effects are widely observed. The impact of (auto-)chemotactic effects on achiral active matter has been a recent research focus. However, the influence of these effects on chiral active matter remains elusive. Here, we develop a Brownian dynamics model coupled with a diffusion equation to examine the dynamics of auto-chemotactic chiral active droplets in both quasi-two-dimensional (2D) and three-dimensional (3D) systems. By quantifying the droplet trajectory as a function of the dimensionless Péclet number and chemotactic strength, our simulations well reproduce the curling and helical trajectories of nematic droplets in a surfactant-rich solution reported by Krüger et al. [Phys. Rev. Lett. 117, 048003 (2016)]. The modeled curling trajectory in 2D exhibits an emergent chirality, also consistent with the experiment. We further show that the geometry of the chiral droplet trajectories, characterized by the pitch and diameter, can be used to infer the velocities of the droplet. Interestingly, we find that, unlike the achiral case, the velocities of chiral active droplets show dimensionality dependence: its mean instantaneous velocity is higher in 3D than in 2D, whereas its mean migration velocity is lower in 3D than in 2D. Taken together, our particle-based simulations provide new insights into the dynamics of auto-chemotactic chiral active droplets, reveal the effects of dimensionality, and pave the way toward their applications, such as drug delivery, sensors, and micro-reactors.
Collapse
Affiliation(s)
- Chung Wing Chan
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
- Thrust of Advanced Materials, and Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangdong, China
| | - Zheng Yang
- Thrust of Advanced Materials, and Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangdong, China
- Interdisciplinary Programs Office, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Zecheng Gan
- Thrust of Advanced Materials, and Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangdong, China
- Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Rui Zhang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| |
Collapse
|
2
|
Wang X, Yang Y, Roh S, Hormozi S, Gianneschi NC, Abbott NL. Self-Timed and Spatially Targeted Delivery of Chemical Cargo by Motile Liquid Crystal. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311311. [PMID: 38422370 DOI: 10.1002/adma.202311311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/12/2024] [Indexed: 03/02/2024]
Abstract
A key challenge underlying the design of miniature machines is encoding materials with time- and space-specific functional behaviors that require little human intervention. Dissipative processes that drive materials beyond equilibrium and evolve continuously with time and location represent one promising strategy to achieve such complex functions. This work reports how internal nonequilibrium states of liquid crystal (LC) emulsion droplets undergoing chemotaxis can be used to time the delivery of a chemical agent to a targeted location. During ballistic motion, hydrodynamic shear forces dominate LC elastic interactions, dispersing microdroplet inclusions (microcargo) within double emulsion droplets. Scale-dependent colloidal forces then hinder the escape of dispersed microcargo from the propelling droplet. Upon arrival at the targeted location, a circulatory flow of diminished strength allows the microcargo to cluster within the LC elastic environment such that hydrodynamic forces grow to exceed colloidal forces and thus trigger the escape of the microcargo. This work illustrates the utility of the approach by using microcargo that initiate polymerization upon release through the outer interface of the carrier droplet. These findings provide a platform that utilizes nonequilibrium strategies to design autonomous spatial and temporal functions into active materials.
Collapse
Affiliation(s)
- Xin Wang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Yu Yang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Sangchul Roh
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sarah Hormozi
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Nathan C Gianneschi
- Department of Chemistry, Materials Science & Engineering, Biomedical Engineering and Pharmacology, Northwestern University, Evanston, IL, 60208, USA
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
3
|
Okmen Altas B, Goktas C, Topcu G, Aydogan N. Multi-Stimuli-Responsive Tadpole-like Polymer/Lipid Janus Microrobots for Advanced Smart Material Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15533-15547. [PMID: 38356451 PMCID: PMC10983008 DOI: 10.1021/acsami.3c18826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
Microrobots are of significant interest due to their smart transport capabilities, especially for precisely targeted delivery in dynamic environments (blood, cell membranes, tumor interstitial matrixes, blood-brain barrier, mucosa, and other body fluids). To perform a more complex micromanipulation in biological applications, it is highly desirable for microrobots to be stimulated with multiple stimuli rather than a single stimulus. Herein, the biodegradable and biocompatible smart micromotors with a Janus architecture consisting of PrecirolATO 5 and polycaprolactone compartments inspired by the anisotropic geometry of tadpoles and sperms are newly designed. These bioinspired micromotors combine the advantageous properties of polypyrrole nanoparticles (NPs), a high near-infrared light-absorbing agent with high photothermal conversion efficiency, and magnetic NPs, which respond to the magnetic field and exhibit multistimulus-responsive behavior. By combining both fields, we achieved an "on/off" propulsion mechanism that can enable us to overcome complex tasks and limitations in liquid environments and overcome the limitations encountered by single actuation applications. Moreover, the magnetic particles offer other functions such as removing organic pollutants via the Fenton reaction. Janus-structured motors provide a broad perspective not only for biosensing, optical detection, and on-chip separation applications but also for environmental water treatment due to the catalytic activities of multistimulus-responsive micromotors.
Collapse
Affiliation(s)
- Burcu Okmen Altas
- Department of Chemical Engineering, Hacettepe University, Beytepe, 06800 Ankara, Turkey
| | | | | | - Nihal Aydogan
- Department of Chemical Engineering, Hacettepe University, Beytepe, 06800 Ankara, Turkey
| |
Collapse
|
4
|
Chan CW, Wu D, Qiao K, Fong KL, Yang Z, Han Y, Zhang R. Chiral active particles are sensitive reporters to environmental geometry. Nat Commun 2024; 15:1406. [PMID: 38365770 PMCID: PMC10873462 DOI: 10.1038/s41467-024-45531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/24/2024] [Indexed: 02/18/2024] Open
Abstract
Chiral active particles (CAPs) are self-propelling particles that break time-reversal symmetry by orbiting or spinning, leading to intriguing behaviors. Here, we examined the dynamics of CAPs moving in 2D lattices of disk obstacles through active Brownian dynamics simulations and granular experiments with grass seeds. We find that the effective diffusivity of the CAPs is sensitive to the structure of the obstacle lattice, a feature absent in achiral active particles. We further studied the transport of CAPs in obstacle arrays under an external field and found a reentrant directional locking effect, which can be used to sort CAPs with different activities. Finally, we demonstrated that parallelogram lattices of obstacles without mirror symmetry can separate clockwise and counter-clockwise CAPs. The mechanisms of the above three novel phenomena are qualitatively explained. As such, our work provides a basis for designing chirality-based tools for single-cell diagnosis and separation, and active particle-based environmental sensors.
Collapse
Affiliation(s)
- Chung Wing Chan
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Daihui Wu
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Kaiyao Qiao
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Kin Long Fong
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748, Garching, Germany
| | - Zhiyu Yang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Yilong Han
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Rui Zhang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR.
| |
Collapse
|
5
|
Feng K, Ureña Marcos JC, Mukhopadhyay AK, Niu R, Zhao Q, Qu J, Liebchen B. Self-Solidifying Active Droplets Showing Memory-Induced Chirality. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300866. [PMID: 37526332 PMCID: PMC10520641 DOI: 10.1002/advs.202300866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/20/2023] [Indexed: 08/02/2023]
Abstract
Most synthetic microswimmers do not reach the autonomy of their biological counterparts in terms of energy supply and diversity of motions. Here, this work reports the first all-aqueous droplet swimmer powered by self-generated polyelectrolyte gradients, which shows memory-induced chirality while self-solidifying. An aqueous solution of surface tension-lowering polyelectrolytes self-solidifies on the surface of acidic water, during which polyelectrolytes are gradually emitted into the surrounding water and induce linear self-propulsion via spontaneous symmetry breaking. The low diffusion coefficient of the polyelectrolytes leads to long-lived chemical trails which cause memory effects that drive a transition from linear to chiral motion without requiring any imposed symmetry breaking. The droplet swimmer is capable of highly efficient removal (up to 85%) of uranium from aqueous solutions within 90 min, benefiting from self-propulsion and flow-induced mixing. These results provide a route to fueling self-propelled agents which can autonomously perform chiral motion and collect toxins.
Collapse
Affiliation(s)
- Kai Feng
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | | | - Aritra K. Mukhopadhyay
- Institut für Physik Kondensierter MaterieTechnische Universität Darmstadt64289DarmstadtGermany
| | - Ran Niu
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Jinping Qu
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Benno Liebchen
- Institut für Physik Kondensierter MaterieTechnische Universität Darmstadt64289DarmstadtGermany
| |
Collapse
|
6
|
Feng GQ, Tian WD. Desorption of a Flexible Polymer with Activity from a Homogeneous Attractive Surface. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Guo-qiang Feng
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Wen-de Tian
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
7
|
Han WC, Kim YB, Lee YJ, Kim DS. Exploring multiphase liquid crystal polymeric droplets created by a partial phase-separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
We the Droplets: A Constitutional Approach to Active and Self-Propelled Emulsions. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Wentworth CM, Castonguay AC, Moerman PG, Meredith CH, Balaj RV, Cheon SI, Zarzar LD. Chemically Tuning Attractive and Repulsive Interactions between Solubilizing Oil Droplets. Angew Chem Int Ed Engl 2022; 61:e202204510. [PMID: 35678216 DOI: 10.1002/anie.202204510] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Indexed: 11/09/2022]
Abstract
Micellar solubilization is a transport process occurring in surfactant-stabilized emulsions that can lead to Marangoni flow and droplet motility. Active droplets exhibit self-propulsion and pairwise repulsion due to solubilization processes and/or solubilization products raising the droplet's interfacial tension. Here, we report emulsions with the opposite behavior, wherein solubilization decreases the interfacial tension and causes droplets to attract. We characterize the influence of oil chemical structure, nonionic surfactant structure, and surfactant concentration on the interfacial tensions and Marangoni flows of solubilizing oil-in-water drops. Three regimes corresponding to droplet "attraction", "repulsion" or "inactivity" are identified. We believe these studies contribute to a fundamental understanding of solubilization processes in emulsions and provide guidance as to how chemical parameters can influence the dynamics and chemotactic interactions between active droplets.
Collapse
Affiliation(s)
- Ciera M Wentworth
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alexander C Castonguay
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Pepijn G Moerman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Caleb H Meredith
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rebecca V Balaj
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Seong Ik Cheon
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lauren D Zarzar
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA.,Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
10
|
|
11
|
Wentworth CM, Castonguay AC, Moerman PG, Meredith CH, Balaj RV, Cheon SI, Zarzar LD. Chemically Tuning Attractive and Repulsive Interactions between Solubilizing Oil Droplets. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ciera M. Wentworth
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| | | | - Pepijn G. Moerman
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore MD 21218 USA
| | - Caleb H. Meredith
- Department of Materials Science and Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Rebecca V. Balaj
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| | - Seong Ik Cheon
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| | - Lauren D. Zarzar
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
- Department of Materials Science and Engineering The Pennsylvania State University University Park PA 16802 USA
- Materials Research Institute The Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
12
|
Frank BD, Djalali S, Baryzewska AW, Giusto P, Seeberger PH, Zeininger L. Reversible morphology-resolved chemotactic actuation and motion of Janus emulsion droplets. Nat Commun 2022; 13:2562. [PMID: 35538083 PMCID: PMC9091213 DOI: 10.1038/s41467-022-30229-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/22/2022] [Indexed: 11/21/2022] Open
Abstract
We report, for the first time, a chemotactic motion of emulsion droplets that can be controllably and reversibly altered. Our approach is based on using biphasic Janus emulsion droplets, where each phase responds differently to chemically induced interfacial tension gradients. By permanently breaking the symmetry of the droplets' geometry and composition, externally evoked gradients in surfactant concentration or effectiveness induce anisotropic Marangoni-type fluid flows adjacent to each of the two different exposed interfaces. Regulation of the competitive fluid convections then enables a controllable alteration of the speed and the direction of the droplets' chemotactic motion. Our findings provide insight into how compositional anisotropy can affect the chemotactic behavior of purely liquid-based microswimmers. This has implications for the design of smart and adaptive soft microrobots that can autonomously regulate their response to changes in their chemical environment by chemotactically moving towards or away from a certain target, such as a bacterium.
Collapse
Affiliation(s)
- Bradley D Frank
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Saveh Djalali
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Agata W Baryzewska
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Paolo Giusto
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Lukas Zeininger
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
13
|
Liu S, Yuan S, Zhang H. Molecular Dynamics Simulation for the Demulsification of O/W Emulsion under Pulsed Electric Field. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082559. [PMID: 35458757 PMCID: PMC9029195 DOI: 10.3390/molecules27082559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022]
Abstract
A bidirectional pulsed electric field (BPEF) method is considered a simple and novel technique to demulsify O/W emulsions. In this paper, molecular dynamics simulation was used to investigate the transformation and aggregation behavior of oil droplets in O/W emulsion under BPEF. Then, the effect of surfactant (sodium dodecyl sulfate, SDS) on the demulsification of O/W emulsion was investigated. The simulation results showed that the oil droplets transformed and moved along the direction of the electric field. SDS molecules can shorten the aggregation time of oil droplets in O/W emulsion. The electrostatic potential distribution on the surface of the oil droplet, the elongation length of the oil droplets, and the mean square displacement (MSD) of SDS and asphaltene molecules under an electric field were calculated to explain the aggregation of oil droplets under the simulated pulsed electric field. The simulation also showed that the two oil droplets with opposite charges have no obvious effect on the aggregation of the oil droplets. However, van der Waals interactions between oil droplets was the main factor in the aggregation.
Collapse
Affiliation(s)
- Shasha Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China; (S.L.); (S.Y.)
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250100, China
| | - Shiling Yuan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China; (S.L.); (S.Y.)
| | - Heng Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China; (S.L.); (S.Y.)
- Correspondence:
| |
Collapse
|
14
|
Hokmabad BV, Nishide A, Ramesh P, Krüger C, Maass CC. Spontaneously rotating clusters of active droplets. SOFT MATTER 2022; 18:2731-2741. [PMID: 35319552 DOI: 10.1039/d1sm01795k] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report on the emergence of spontaneously rotating clusters in active emulsions. Ensembles of self-propelling droplets sediment and then self-organise into planar, hexagonally ordered clusters which hover over the container bottom while spinning around the plane normal. This effect exists for symmetric and asymmetric arrangements of isotropic droplets and is therefore not caused by torques due to geometric asymmetries. We found, however, that individual droplets exhibit a helical swimming mode in a small window of intermediate activity in a force-free bulk medium. We show that by forming an ordered cluster, the droplets cooperatively suppress their chaotic dynamics and turn the transient instability into a steady rotational state. We analyse the collective rotational dynamics as a function of droplet activity and cluster size and further propose that the stable collective rotation in the cluster is caused by a cooperative coupling between the rotational modes of individual droplets in the cluster.
Collapse
Affiliation(s)
- Babak Vajdi Hokmabad
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany.
- Institute for the Dynamics of Complex Systems, Georg August Universität, Göttingen, Germany
| | - Akinori Nishide
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany.
- Center for Exploratory Research, R&D group, Hitachi Ltd., Higashi-Koigakubo 1-280, Kokubunji-shi, Tokyo 185-8601, Japan
| | - Prashanth Ramesh
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany.
- Physics of Fluids Group, Max Planck Center for Complex Fluid Dynamics, MESA+ Institute and J. M. Burgers Center for Fluid Dynamics, University of Twente, PO Box 217, 7500AE Enschede, The Netherlands
| | - Carsten Krüger
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany.
| | - Corinna C Maass
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany.
- Institute for the Dynamics of Complex Systems, Georg August Universität, Göttingen, Germany
- Physics of Fluids Group, Max Planck Center for Complex Fluid Dynamics, MESA+ Institute and J. M. Burgers Center for Fluid Dynamics, University of Twente, PO Box 217, 7500AE Enschede, The Netherlands
| |
Collapse
|
15
|
Das S, Roh S, Atzin N, Mozaffari A, Tang X, de Pablo JJ, Abbott NL. Programming Solitons in Liquid Crystals Using Surface Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3575-3584. [PMID: 35263108 DOI: 10.1021/acs.langmuir.2c00231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
AC electric fields cause three-dimensional orientational fluctuations (solitons) to form and rapidly propagate in confined films of liquid crystals (LCs), offering the basis of a new class of active soft matter (e.g., for accelerating mixing and transport processes in microscale chemical systems). How surface chemistry impacts the formation and trajectories of solitons, however, is not understood. Here, we show that self-assembled monolayers (SAMs) formed from alkanethiols on gold, which permit precise control over surface chemistry, are electrochemically stable over voltage and frequency windows (<100 V; 1 kHz) that lead to soliton formation in achiral nematic films of 4'-butyl-4-heptyl-bicyclohexyl-4-carbonitrile (CCN-47). By comparing soliton formation in LC films confined by SAMs formed from hexadecanethiol (C16SH) or pentadecanethiol (C15SH), we reveal that the electric field required for soliton formation increases with the LC anchoring energy: surfaces patterned with regions of C16SH and C15SH SAMs thus permit spatially controlled creation and annihilation of solitons necessary to generate a net flux of solitons. We also show that solitons propagate in orthogonal directions when confined by obliquely deposited gold films decorated with SAMs formed from C16SH or C15SH and that the azimuthal direction of propagation of solitons within achiral LC films possessing surface-induced twists is not unique but reflects variation in the spatial location of the solitons across the thickness of the twisted LC film. Finally, discontinuous changes in LC orientation induced by patterned surface anchoring lead to a range of new soliton behaviors including refraction, reflection, and splitting of solitons at the domain boundaries. Overall, our results provide new approaches for the controlled generation and programming of solitons with complex and precise trajectories, principles that inform new designs of chemical soft matter.
Collapse
Affiliation(s)
- Soumik Das
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Sangchul Roh
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Noe Atzin
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Ali Mozaffari
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Xingzhou Tang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
16
|
Nagaraju D, Mohammad AR. Effect of graphene-based nanofluid on heat transfer performance of alternate elliptical axis oval tube heat exchanger. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02425-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
17
|
Wang X, Sun H, Kim YK, Wright DB, Tsuei M, Gianneschi NC, Abbott NL. Stimuli-Responsive Liquid Crystal Printheads for Spatial and Temporal Control of Polymerization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106535. [PMID: 35065542 DOI: 10.1002/adma.202106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Polymerization reactions triggered by stimuli play a pivotal role in materials science, with applications ranging from lithography to biomedicine to adaptive materials. However, the development of chemically triggered, stimuli-responsive systems that can confer spatial and temporal control on polymerization remains a challenge. Herein, chemical-stimuli-induced polymerization based on a liquid crystal (LC) printhead is presented. The LC responds to a local chemical stimulus at its aqueous interface, resulting in the ejection of initiator into the solution to trigger polymerization. Various LC printhead geometries are designed, allowing programming of: i) bulk solution polymerization, ii) synthesis of a thin surface-confined polymeric coating, iii) polymerization-induced self-assembly of block copolymers to form various nanostructures (sphere, worm-like, and vesicles), and iv) 3D polymeric structures printed according to local solution conditions. The approach is demonstrated using amphiphiles, multivalent ions, and biomolecules as stimuli.
Collapse
Affiliation(s)
- Xin Wang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Hao Sun
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Young-Ki Kim
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Daniel B Wright
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Michael Tsuei
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
| | | | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
18
|
Turbulent magnetohydrodynamic natural convection in a heat pipe-assisted cavity using disk-shaped magnesium ferrite nanoparticles. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|