1
|
Zou Q, Pan H, Zhang X, Zhang C. Flower-like Cu 9S 8 nanocatalysts with highly active sites for synergistic NIR-II photothermal therapy and chemodynamic therapy. J Mater Chem B 2023; 11:4740-4751. [PMID: 37171201 DOI: 10.1039/d3tb00488k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Chemodynamic therapy (CDT) is a promising reactive oxygen species-based therapeutic strategy for tumor therapy. However, the poor reaction kinetics of CDT agents severely restricts its further application. Herein, protamine stabilized flower-like Cu9S8 (PS@Cu9S8) nanocatalysts are fabricated via a one-pot biomineralization strategy for synergistic second near-infrared (NIR-II) photothermal therapy (PTT) and CDT of tumor. The PS@Cu9S8 nanocatalysts possess a high surface area (40.10 m2 g-1), which is higher than those of the previously reported solid and hollow copper sulfide nanoparticles. The high surface area of PS@Cu9S8 nanocatalysts increases the number of active sites during the Fenton-like reaction, thereby accelerating the efficiency of CDT. Meanwhile, the PS@Cu9S8 nanocatalysts show a high extinction coefficient (21.41 L g-1 cm-1) and photothermal conversion efficiency (42.34%), which results in an outstanding PTT efficiency and facilitate ˙OH generation for CDT. Furthermore, RNA-sequencing unveils the whole-genome expression change of 4T1 cells after PS@Cu9S8 nanocatalyst treatment, revealing the apparent changes in ROS, cell cycle, and apoptosis-related pathways. In vivo experiments proved the good therapeutic efficiency and negligible systematic toxicity of PS@Cu9S8 nanocatalysts. This work not only develops a superior multifunctional nanocatalyst for synergistic PTT and CDT of tumor, but also provides a facile approach to construct high-performance agents for cancer therapy.
Collapse
Affiliation(s)
- Quan Zou
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Haiyan Pan
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xuening Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Cai Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre of Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| |
Collapse
|
2
|
Hang Y, Liu Y, Teng Z, Cao X, Zhu H. Mesoporous nanodrug delivery system: a powerful tool for a new paradigm of remodeling of the tumor microenvironment. J Nanobiotechnology 2023; 21:101. [PMID: 36945005 PMCID: PMC10029196 DOI: 10.1186/s12951-023-01841-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Tumor microenvironment (TME) plays an important role in tumor progression, metastasis and therapy resistance. Remodeling the TME has recently been deemed an attractive tumor therapeutic strategy. Due to its complexity and heterogeneity, remodeling the TME still faces great challenges. With the great advantage of drug loading ability, tumor accumulation, multifactor controllability, and persistent guest molecule release ability, mesoporous nanodrug delivery systems (MNDDSs) have been widely used as effective antitumor drug delivery tools as well as remolding TME. This review summarizes the components and characteristics of the TME, as well as the crosstalk between the TME and cancer cells and focuses on the important role of drug delivery strategies based on MNDDSs in targeted remodeling TME metabolic and synergistic anticancer therapy.
Collapse
Affiliation(s)
- Yinhui Hang
- Department of Medical Imaging, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, People's Republic of China
| | - Yanfang Liu
- Laboratory of Medical Imaging, The First People's Hospital of Zhenjiang, Zhenjiang, 212001, People's Republic of China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China.
| | - Xiongfeng Cao
- Department of Medical Imaging, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China.
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, People's Republic of China.
| | - Haitao Zhu
- Department of Medical Imaging, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China.
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, People's Republic of China.
| |
Collapse
|
3
|
Recent advances in multi-configurable nanomaterials for improved chemodynamic therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
|
5
|
Cao Y, Wang K, Zhu P, Zou X, Ma G, Zhang W, Wang D, Wan J, Ma Y, Sun X, Dong J. A near-infrared triggered upconversion/MoS 2 nanoplatform for tumour-targeted chemo-photodynamic combination therapy. Colloids Surf B Biointerfaces 2022; 213:112393. [PMID: 35144084 DOI: 10.1016/j.colsurfb.2022.112393] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 10/19/2022]
Abstract
The combination of photodynamic therapy and chemotherapy has shown a great potential in cancer treatment. As a promising photosensitizer, MoS2 quantum dots (QDs) have limited application due to the low tissue penetration of its light absorbing wavelength in the ultraviolet and visible regions. For the purpose of utilizing MoS2QDs in higher NIR absorption region, herein, we constructed a core/shell nano-photosensitizer upconversion@MoS2 with doxorubicin loading. This nanoplatform can convert 980 nm NIR into visible light, activating MoS2QDs to produce reactive oxygen species through fluorescence resonance energy transfer. In addition, this nanoplatform presented good biocompatibility and tumor targeting after polyethylene glycol and folic acid modification. Interestingly, with pH-responsive drug release performance, this nanoplatform presented efficient chemotherapy effects. Thus, the tumour-targeted nanoplatform can achieve up-converted luminescence imaging guided chemo-photodynamic synergistic therapy effectively.
Collapse
Affiliation(s)
- Yutao Cao
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Kaiqi Wang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Pengyu Zhu
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Xianwen Zou
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Guiqi Ma
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Wenxian Zhang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Diqing Wang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Jipeng Wan
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China
| | - Yanling Ma
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Xiao Sun
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China.
| | - Jian Dong
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China.
| |
Collapse
|
6
|
Li G, Li L, Wang Z, Zhong S, Li M, Wang H, Yuan L. The construct of triple responsive nanocomposite and its antibacterial effect. Colloids Surf B Biointerfaces 2022; 212:112378. [PMID: 35121427 DOI: 10.1016/j.colsurfb.2022.112378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 12/23/2022]
Abstract
The current serious mismatch between the increasing severity of bacterial infections and antibiotic production capacity urgently requires the emergence of novel antimicrobial materials. In this paper, dopamine methacrylamide (DMA) and N-isopropylacrylamide (NIPAM) were polymerized as the monomers into a block copolymer poly(dopamine methacrylamide-block-N-isopropylacrylamide) (P(DA-NIP)) and then encapsulated with polydopamine-coated magnetic nanoparticle clusters (MNC) to produce an antibacterial nanocomposite (MNC@P(DA-NIP)). This nanocomposite has triple responses respectively to light, heat and magnetism, which endow MNC@P(DA-NIP) with the abilities to kill bacteria effectively and capture/release bacteria conveniently. Under near-infrared (NIR) light irradiation, MNC@P(DA-NIP) could significantly elevate the temperature through photothermal conversion. The increased temperature favored both the capture of bacteria on MNC@P(DA-NIP), and the damage of bacterial cells, causing bacterial death almost completely. While low temperatures could promote the release of dead bacteria from the nanocomposites, might through the recovery of the hydrophilic state of the outlayer PNIPAM. Moreover, thanks to the magnetic responsibility, MNC@P(DA-NIP) could be easily separated from the bacterial cells and perform better biofilm penetration. The results showed that the antibacterial effect of MNC@P(DA-NIP) was 3.5 times higher than that of MNC, and the recycling capacity of MNC@P(DA-NIP) was better than MNC@PDA. What's more, MNC@P(DA-NIP) possessed the excellent anti-biofilm properties under magnetic field (MF) and NIR. The most important features of the triple-responsive nanocomposites are excellent antibacterial effect, good recyclability and easy preparation, which provide the nanocomposites with great potential in eliminating harmful bacterial cells.
Collapse
Affiliation(s)
- Guize Li
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Luohuizi Li
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Zhiqiang Wang
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Siqing Zhong
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Mingkang Li
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hongwei Wang
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Lin Yuan
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
7
|
Zhuang Y, Han S, Fang Y, Huang H, Wu J. Multidimensional transitional metal-actuated nanoplatforms for cancer chemodynamic modulation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Jia C, Guo Y, Wu FG. Chemodynamic Therapy via Fenton and Fenton-Like Nanomaterials: Strategies and Recent Advances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103868. [PMID: 34729913 DOI: 10.1002/smll.202103868] [Citation(s) in RCA: 268] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Chemodynamic therapy (CDT), a novel cancer therapeutic strategy defined as the treatment using Fenton or Fenton-like reaction to produce •OH in the tumor region, was first proposed by Bu, Shi, and co-workers in 2016. Recently, with the rapid development of Fenton and Fenton-like nanomaterials, CDT has attracted tremendous attention because of its unique advantages: 1) It is tumor-selective with low side effects; 2) the CDT process does not depend on external field stimulation; 3) it can modulate the hypoxic and immunosuppressive tumor microenvironment; 4) the treatment cost of CDT is low. In addition to the Fe-involved CDT strategies, the Fenton-like reaction-mediated CDT strategies have also been proposed, which are based on many other metal elements including copper, manganese, cobalt, titanium, vanadium, palladium, silver, molybdenum, ruthenium, tungsten, cerium, and zinc. Moreover, CDT has been combined with other therapies like chemotherapy, radiotherapy, phototherapy, sonodynamic therapy, and immunotherapy for achieving enhanced anticancer effects. Besides, there have also been studies that extend the application of CDT to the antibacterial field. This review introduces the latest advancements in the nanomaterials-involved CDT from 2018 to the present and proposes the current limitations as well as future research directions in the related field.
Collapse
Affiliation(s)
- Chenyang Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
9
|
Wang N, Wang Y, Shi R, Lin Y, Jiang X, Feng Y, Meng S. The photodynamic/photothermal synergistic therapeutic effect of BODIPY-I-35 liposomes with urea. Photodiagnosis Photodyn Ther 2022; 37:102723. [PMID: 35032702 DOI: 10.1016/j.pdpdt.2022.102723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 01/01/2023]
Abstract
Phototherapy is a new treatment means for cancer which can reduce the side effects of traditional cancer treatments to humans. Urea is a naturally occurring metabolite in the human body. Some studies have shown that it can inhibit the proliferation of tumor cells and cause oxidative stress. In order to explore the application of urea in enhancing the phototherapy effect, we synthesized a new structure photosensitizer (BODIPY-I-35) with good phototherapeutic effect and encapsulated it in liposomes. Compared with free BODIPY-I-35, water-soluble nanoliposomes (LipoBOD) produced a huge redshift (> 122 nm) of fluorescence emission in solution. When LipoBOD was irradiated with 808 nm laser (1 W/cm2) for 10 min, the temperature contrast increased by 20 °C, which was 4 times higher than free BODIPY-I-35. Confocal microscopy showed appreciable accumulation of LipoBOD in HeLa cells. In addition, when LipoBOD was incubated with urea in HeLa cells, we found that urea not only obviously enhanced the production of ROS, but also increased the apoptosis of HeLa cells. The synergistic effect of LipoBOD (20 μg/mL, at BODIPY-I-35-eq) with urea (250 mM) showed significantly higher phototoxicity than LipoBOD alone. Low dose can reduce the cell viability to 10%. Therefore, we have obtained an effective method of using urea to enhance the phototherapy effect.
Collapse
Affiliation(s)
- Ning Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, PR China.
| | - Yuguang Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, PR China.
| | - Ruijie Shi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, PR China.
| | - Yanxin Lin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, PR China.
| | - Xu Jiang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, PR China.
| | - Yaqing Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, PR China.
| | - Shuxian Meng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, PR China.
| |
Collapse
|
10
|
Huang J, Zhang X, Fu K, Wei G, Su Z. Stimulus-responsive nanomaterials under physical regulation for biomedical applications. J Mater Chem B 2021; 9:9642-9657. [PMID: 34807221 DOI: 10.1039/d1tb02130c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cancer is a growing threat to human beings. Traditional treatments for malignant tumors usually involve invasive means to healthy human tissues, such as surgical treatment and chemotherapy. In recent years the use of specific stimulus-responsive materials in combination with some non-contact, non-invasive stimuli can lead to better efficacy and has become an important area of research. It promises to develop personalized treatment systems for four types of physical stimuli: light, ultrasound, magnetic field, and temperature. Nanomaterials that are responsive to these stimuli can be used to enhance drug delivery, cancer treatment, and tissue engineering. This paper reviews the principles of the stimuli mentioned above, their effects on materials, and how they work with nanomaterials. For this aim, we focus on specific applications in controlled drug release, cancer therapy, tissue engineering, and virus detection, with particular reference to recent photothermal, photodynamic, sonodynamic, magnetothermal, radiation, and other types of therapies. It is instructive for the future development of stimulus-responsive nanomaterials for these aspects.
Collapse
Affiliation(s)
- Jinzhu Huang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Kun Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
11
|
Blum NT, Fu LH, Lin J, Huang P. When Chemodynamic Therapy Meets Photodynamic Therapy: A Synergistic Combination of Cancer Treatments. IEEE NANOTECHNOLOGY MAGAZINE 2021. [DOI: 10.1109/mnano.2021.3081755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Xin J, Deng C, Aras O, Zhou M, Wu C, An F. Chemodynamic nanomaterials for cancer theranostics. J Nanobiotechnology 2021; 19:192. [PMID: 34183023 PMCID: PMC8240398 DOI: 10.1186/s12951-021-00936-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/13/2021] [Indexed: 12/20/2022] Open
Abstract
It is of utmost urgency to achieve effective and safe anticancer treatment with the increasing mortality rate of cancer. Novel anticancer drugs and strategies need to be designed for enhanced therapeutic efficacy. Fenton- and Fenton-like reaction-based chemodynamic therapy (CDT) are new strategies to enhance anticancer efficacy due to their capacity to generate reactive oxygen species (ROS) and oxygen (O2). On the one hand, the generated ROS can damage the cancer cells directly. On the other hand, the generated O2 can relieve the hypoxic condition in the tumor microenvironment (TME) which hinders efficient photodynamic therapy, radiotherapy, etc. Therefore, CDT can be used together with many other therapeutic strategies for synergistically enhanced combination therapy. The antitumor applications of Fenton- and Fenton-like reaction-based nanomaterials will be discussed in this review, including: (iþ) producing abundant ROS in-situ to kill cancer cells directly, (ii) enhancing therapeutic efficiency indirectly by Fenton reaction-mediated combination therapy, (iii) diagnosis and monitoring of cancer therapy. These strategies exhibit the potential of CDT-based nanomaterials for efficient cancer therapy.
Collapse
Affiliation(s)
- Jingqi Xin
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Caiting Deng
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mengjiao Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, People's Republic of China.
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
13
|
Xiao J, Cong H, Wang S, Yu B, Shen Y. Recent research progress in the construction of active free radical nanoreactors and their applications in photodynamic therapy. Biomater Sci 2021; 9:2384-2412. [PMID: 33576752 DOI: 10.1039/d0bm02013c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Photodynamic therapy is the most important treatment strategy in free radical therapy. However, tumor microenvironment hypoxia is a key obstacle in PDT. In order to overcome this obstacle, the strategy of in situ production of O2/radicals by catalytic reaction in solid tumors was proposed. In recent years, it has been found that there are many oxygen-independent carbon-based free radicals that can generate toxic active free radicals under laser irradiation and lead to tumor cell death. Based on the rational design of multifunctional nano-medicine, the active free radical nano-generator has opened up a new way for the highly developed nanotechnology and tumor cooperative therapy to improve the therapeutic effect. In this paper, the research status of active free radical nano-generators, especially reactive oxygen species, including the construction mechanism of active free radical nanomaterials, is reviewed and the application of free radical nano-generators in tumor therapy is emphasized.
Collapse
Affiliation(s)
- Jingyuan Xiao
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | | | | | | | | |
Collapse
|