1
|
Choudhury S, Joshi A, Agrawal A, Nain A, Bagde A, Patel A, Syed ZQ, Asthana S, Chatterjee K. NIR-Responsive Deployable and Self-Fitting 4D-Printed Bone Tissue Scaffold. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49135-49147. [PMID: 39226455 DOI: 10.1021/acsami.4c10385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The treatment of irregular-shaped and critical-sized bone defects poses a clinical challenge. Deployable, self-fitting tissue scaffolds that can be implanted by minimally invasive procedures are a promising solution. Toward this, we fabricated NIR-responsive and programmable polylactide-co-trimethylene carbonate (PLMC) scaffolds nanoengineered with polydopamine nanoparticles (PDA) by extrusion-based three-dimensional (3D) printing. The 3D-printed scaffolds demonstrated excellent (>99%), fast (under 30 s), and tunable shape recovery under NIR irradiation. PLMC-PDA composites demonstrated significantly higher osteogenic potential in vitro as revealed by the significantly enhanced alkaline phosphatase (ALP) secretion and mineral deposition in contrast to neat PLMC. Intraoperative deployability and in vivo bone regeneration ability of PLMC-PDA composites were demonstrated, using self-fitting scaffolds in critical-sized cranial bone defects in rabbits. The 3D-printed scaffolds were deformed into compact shapes that could self-fit into the defect shape intraoperatively under low power intensity (0.76 W cm-2) NIR. At 6 and 12 weeks postsurgical implantation, near-complete bone regeneration was observed in PLMC-PDA composites, unlike neat PLMC through microcomputed tomography (micro-CT) analysis. The potential clinical utility of the 3D-printed composites to secure complex defects was confirmed through self-fitting of the scaffolds into irregular defects in ex vivo models of rabbit tibia, mandible, and tooth models. Taken together, the composite scaffolds fabricated here offer an innovative strategy for minimally invasive deployment to fit irregular and complex tissue defects for bone tissue regeneration.
Collapse
Affiliation(s)
- Saswat Choudhury
- Department of Bioengineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Akshat Joshi
- Department of Bioengineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Akhilesh Agrawal
- Department of Bioengineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Amit Nain
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Ashutosh Bagde
- Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442001, India
| | - Aditya Patel
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha 442001, India
| | - Zahiruddin Quazi Syed
- Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442001, India
- Department of Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442001, India
| | - Sonal Asthana
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
- Department of Hepatobiliary and Multi-Organ Transplantation Surgery, Aster CMI Hospital, Bangalore 560024, India
| | - Kaushik Chatterjee
- Department of Bioengineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
- Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442001, India
| |
Collapse
|
2
|
Jia L, Li Y, Ren A, Xiang T, Zhou S. Degradable and Recyclable Hydrogels for Sustainable Bioelectronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32887-32905. [PMID: 38904545 DOI: 10.1021/acsami.4c05663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Hydrogel bioelectronics has been widely used in wearable sensors, electronic skin, human-machine interfaces, and implantable tissue-electrode interfaces, providing great convenience for human health, safety, and education. The generation of electronic waste from bioelectronic devices jeopardizes human health and the natural environment. The development of degradable and recyclable hydrogels is recognized as a paradigm for realizing the next generation of environmentally friendly and sustainable bioelectronics. This review first summarizes the wide range of applications for bioelectronics, including wearable and implantable devices. Then, the employment of natural and synthetic polymers in hydrogel bioelectronics is discussed in terms of degradability and recyclability. Finally, this work provides constructive thoughts and perspectives on the current challenges toward hydrogel bioelectronics, providing valuable insights and guidance for the future evolution of sustainable hydrogel bioelectronics.
Collapse
Affiliation(s)
- Lianghao Jia
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuanhong Li
- Department of Orthodontics, Shanghai Stomatological Hospital, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Aobo Ren
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tao Xiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
3
|
Zhu Y, Deng K, Zhou J, Lai C, Ma Z, Zhang H, Pan J, Shen L, Bucknor MD, Ozhinsky E, Kim S, Chen G, Ye SH, Zhang Y, Liu D, Gao C, Xu Y, Wang H, Wagner WR. Shape-recovery of implanted shape-memory devices remotely triggered via image-guided ultrasound heating. Nat Commun 2024; 15:1123. [PMID: 38321028 PMCID: PMC10847440 DOI: 10.1038/s41467-024-45437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Shape-memory materials hold great potential to impart medical devices with functionalities useful during implantation, locomotion, drug delivery, and removal. However, their clinical translation is limited by a lack of non-invasive and precise methods to trigger and control the shape recovery, especially for devices implanted in deep tissues. In this study, the application of image-guided high-intensity focused ultrasound (HIFU) heating is tested. Magnetic resonance-guided HIFU triggered shape-recovery of a device made of polyurethane urea while monitoring its temperature by magnetic resonance thermometry. Deformation of the polyurethane urea in a live canine bladder (5 cm deep) is achieved with 8 seconds of ultrasound-guided HIFU with millimeter resolution energy focus. Tissue sections show no hyperthermic tissue injury. A conceptual application in ureteral stent shape-recovery reduces removal resistance. In conclusion, image-guided HIFU demonstrates deep energy penetration, safety and speed.
Collapse
Affiliation(s)
- Yang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Binjiang Institute of Zhejiang University, Hangzhou, China.
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Kaicheng Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianwei Zhou
- School of Electromechanical and Energy Engineering, NingboTech University, Ningbo, Zhejiang, China
| | - Chong Lai
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zuwei Ma
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hua Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiazhen Pan
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liyin Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Matthew D Bucknor
- Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Eugene Ozhinsky
- Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Seungil Kim
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guangjie Chen
- Department of Urology, The Children's Hospital, School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sang-Ho Ye
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yue Zhang
- San Francisco Veterans Affairs Medical Center, University of California, San Francisco, CA, USA
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yonghua Xu
- Department of Imaging and Interventional Radiology, Zhongshan-Xuhui Hospital of Fudan University/Shanghai Xuhui Central Hospital, Shanghai, China.
| | - Huanan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Xiang T, Guo Q, Jia L, Yin T, Huang W, Zhang X, Zhou S. Multifunctional Hydrogels for the Healing of Diabetic Wounds. Adv Healthc Mater 2024; 13:e2301885. [PMID: 37702116 DOI: 10.1002/adhm.202301885] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/10/2023] [Indexed: 09/14/2023]
Abstract
The healing of diabetic wounds is hindered by various factors, including bacterial infection, macrophage dysfunction, excess proinflammatory cytokines, high levels of reactive oxygen species, and sustained hypoxia. These factors collectively impede cellular behaviors and the healing process. Consequently, this review presents intelligent hydrogels equipped with multifunctional capacities, which enable them to dynamically respond to the microenvironment and accelerate wound healing in various ways, including stimuli -responsiveness, injectable self-healing, shape -memory, and conductive and real-time monitoring properties. The relationship between the multiple functions and wound healing is also discussed. Based on the microenvironment of diabetic wounds, antibacterial, anti-inflammatory, immunomodulatory, antioxidant, and pro-angiogenic strategies are combined with multifunctional hydrogels. The application of multifunctional hydrogels in the repair of diabetic wounds is systematically discussed, aiming to provide guidelines for fabricating hydrogels for diabetic wound healing and exploring the role of intelligent hydrogels in the therapeutic processes.
Collapse
Affiliation(s)
- Tao Xiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Qianru Guo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Lianghao Jia
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Tianyu Yin
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Wei Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xinyu Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
5
|
Song Y, Chen Y, Qian W, Shi D, Dong W, Wang Y, Ma P, Zhang H. A photothermally triggered one-component shape memory polymer material prepared by cross-linking porphyrin-based amphiphilic copolymer self-assemblies. SOFT MATTER 2022; 18:5562-5567. [PMID: 35861560 DOI: 10.1039/d2sm00787h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photothermally triggered shape memory polymer materials are usually prepared by dispersing photothermally responsive fillers or compounds into shape memory polymer matrixes through physical blending, while the migration and non-biodegradability of the fillers limit their potential applications (e.g., in the biomedical field). Here, we synthesized a new type of porphyrin-based amphiphilic random copolymer bearing a reactive moiety of carbonyl group by co-polymerizing methyl methacrylate (MMA), butyl acrylate (BA), diacetone acrylamide (DAAM), acrylic acid (AA) and double-bonded vinyl porphyrin monomers, followed by induced self-assembly in aqueous solution to give rise to amphiphilic random copolymer nanoparticles. The nanoparticles were further crosslinked by means of adipic dihydrazide (ADH) to fabricate the photothermally triggered one-component shape memory polymer material. Compared with the most-studied multi-phase/multi-component shape memory polymer materials, the porphyrin moiety, playing the role of a photo-to-heat converter, covalently bonded into the polymer structure would certainly make it more homogeneous and more stable in principle.
Collapse
Affiliation(s)
- Yufang Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Yiming Chen
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Wangqiu Qian
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Dongjian Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Weifu Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Yang Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Piming Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Hongji Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
6
|
Abstract
![]()
Recent decades have
seen substantial interest in the development
and application of biocompatible shape memory polymers (SMPs), a class
of “smart materials” that can respond to external stimuli.
Although many studies have used SMP platforms triggered by thermal
or photothermal events to study cell mechanobiology, SMPs triggered
by cell activity have not yet been demonstrated. In a previous work,
we developed an SMP that can respond directly to enzymatic activity.
Here, our goal was to build on that work by demonstrating enzymatic
triggering of an SMP in response to the presence of enzyme-secreting
human cells. To achieve this phenomenon, poly(ε-caprolactone)
(PCL) and Pellethane were dual electrospun to form a fiber mat, where
PCL acted as a shape-fixing component that is labile to lipase, an
enzyme secreted by multiple cell types including HepG2 (human hepatic
cancer) cells, and Pellethane acted as a shape memory component that
is enzymatically stable. Cell-responsive shape memory performance
and cytocompatibility were quantitatively and qualitatively analyzed
by thermal analysis (thermal gravimetric analysis and differential
scanning calorimetry), surface morphology analysis (scanning electron
microscopy), and by incubation with HepG2 cells in the presence or
absence of heparin (an anticoagulant drug present in the human liver
that increases the secretion of hepatic lipase). The results characterize
the shape-memory functionality of the material and demonstrate successful
cell-responsive shape recovery with greater than 90% cell viability.
Collectively, the results provide the first demonstration of a cytocompatible
SMP responding to a trigger that is cellular in origin.
Collapse
Affiliation(s)
- Junjiang Chen
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States.,Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Lauren E Hamilton
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States.,Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Patrick T Mather
- Department of Chemical Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| | - James H Henderson
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States.,Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
7
|
|
8
|
Basak S, Bandyopadhyay A. Styrene‐butadiene‐styrene
‐based shape memory polymers: Evolution and the current state of art. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sayan Basak
- Department of Polymer Science & Technology University of Calcutta Kolkata West Bengal India
| | - Abhijit Bandyopadhyay
- Department of Polymer Science & Technology University of Calcutta Kolkata West Bengal India
| |
Collapse
|
9
|
Hou Z, Zhou W, Guo X, Zhong R, Wang A, Li J, Cen Y, You C, Tan H, Tian M. Poly(ε-Caprolactone)-Methoxypolyethylene Glycol (PCL-MPEG)-Based Micelles for Drug-Delivery: The Effect of PCL Chain Length on Blood Components, Phagocytosis, and Biodistribution. Int J Nanomedicine 2022; 17:1613-1632. [PMID: 35411141 PMCID: PMC8994631 DOI: 10.2147/ijn.s349516] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/07/2022] [Indexed: 12/27/2022] Open
Abstract
Background The main challenge of polymeric micelles as drug delivery systems is that the actual delivery efficiency is not as high as expected, which is closely related with the interactions with the complex biological environments such as blood components, phagocytosis, and biodistribution. Herein, we expect to understand these concerns for the clinically relevant micelles that composed of methoxypolyethylene glycol (MPEG) with identical chain length And poly(ε-caprolactone) (PCL) with tunable chain length (PCLn-MPEG) (n=20, 30, and 40) wherein doxorubicin was encapsulated as a model drug. Methods The doxorubicin-loaded PCLn-MPEG micelles were prepared by a dialysis method and characterized by dynamic light scattering and transmission electron microscopy. The surface PEG density and chain conformation were investigated by dissipative particle dynamics simulation. The stability of the micelles was detected by nanoparticle tracking analysis. The effects of PCL chain length on the blood components, phagocytosis, and biodistribution were assayed in vitro and in vivo. Results The micelles exhibited spherical morphology with a diameter about 30nm. The PEG chain conformation from "mushroom-like" to "brush-like" was evident. The micelles have no remarkable effect on the red blood cells, blood coagulation, and platelet activation. Interestingly, the protein adsorption was affected and dependent on the chain conformation, with lowest adsorption for PCL30-MPEG, which also has the loWest phagocytosis. The stability of the micelles was in the order of PCL40-MPEG>PCL30-MPEG>PCL20-MPEG which was dependent on the PCL chain length. The micelles mainly accumulated in liver, with the order consistent with their stability, indicating that, besides the phagocytosis, the stability of the micelle plays an important role in biodistribution as well. The related mechanisms were proposed and discussed. Conclusion Manipulating the PEG/PCL ratio of the micelle is an effective approach to modulate the protein adsorption, phagocytosis, and biodistribution, which may be a prerequisite for clinical applications.
Collapse
Affiliation(s)
- Zemin Hou
- Department of Burn and Plastic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Wencheng Zhou
- Department of Burn and Plastic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xi Guo
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Rui Zhong
- Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College, Chengdu, Sichuan, People’s Republic of China
| | - Ao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Ying Cen
- Department of Burn and Plastic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Chao You
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Meng Tian
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
10
|
Xiang T, Wang J, Jia L, Wang P, Zhou S. Semicrystalline polymer networks with a swelling-enhanced water-triggered two-way shape-memory effect for programmable deformation and smart actuation. Polym Chem 2022. [DOI: 10.1039/d2py01347a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A simple, effective and universal strategy is proposed to fabricate a water-triggered two-way shape-memory polymer with the highest angle reversibility of 45.2%, which can be applied as a soft gripper and water level monitor.
Collapse
Affiliation(s)
- Tao Xiang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Jiao Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Lianghao Jia
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Pan Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| |
Collapse
|
11
|
Abstract
In contrast to conventional hard actuators, soft actuators offer many vivid advantages, such as improved flexibility, adaptability, and reconfigurability, which are intrinsic to living systems. These properties make them particularly promising for different applications, including soft electronics, surgery, drug delivery, artificial organs, or prosthesis. The additional degree of freedom for soft actuatoric devices can be provided through the use of intelligent materials, which are able to change their structure, macroscopic properties, and shape under the influence of external signals. The use of such intelligent materials allows a substantial reduction of a device's size, which enables a number of applications that cannot be realized by externally powered systems. This review aims to provide an overview of the properties of intelligent synthetic and living/natural materials used for the fabrication of soft robotic devices. We discuss basic physical/chemical properties of the main kinds of materials (elastomers, gels, shape memory polymers and gels, liquid crystalline elastomers, semicrystalline ferroelectric polymers, gels and hydrogels, other swelling polymers, materials with volume change during melting/crystallization, materials with tunable mechanical properties, and living and naturally derived materials), how they are related to actuation and soft robotic application, and effects of micro/macro structures on shape transformation, fabrication methods, and we highlight selected applications.
Collapse
Affiliation(s)
- Indra Apsite
- Faculty of Engineering Science, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| | - Sahar Salehi
- Department of Biomaterials, Center of Energy Technology und Materials Science, University of Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany
| | - Leonid Ionov
- Faculty of Engineering Science, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany.,Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| |
Collapse
|
12
|
Li M, Hu X, Xian Y, Liu X, Liu M, Li G, Hu P, Cheng C, Liu J, Wang P. A Waterborne Polyurethane‐Based Dye with Green Fluorescence Excited by Visible Light. ChemistrySelect 2021. [DOI: 10.1002/slct.202100640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mingjun Li
- Anhui Key Laboratory of Advanced Building Materials School of Materials Science and Chemical Engineering Anhui Jianzhu University Hefei 230601 China
| | - Xianhai Hu
- Anhui Key Laboratory of Advanced Building Materials School of Materials Science and Chemical Engineering Anhui Jianzhu University Hefei 230601 China
| | - Yuxi Xian
- CAS Key Laboratory for Mechanical Behavior and Design of Materials University of Science and Technology of China Hefei 230026 China
| | - Xiang Liu
- Anhui Key Laboratory of Advanced Building Materials School of Materials Science and Chemical Engineering Anhui Jianzhu University Hefei 230601 China
| | - Manli Liu
- Anhui Key Laboratory of Advanced Building Materials School of Materials Science and Chemical Engineering Anhui Jianzhu University Hefei 230601 China
| | - Gen Li
- Anhui Key Laboratory of Advanced Building Materials School of Materials Science and Chemical Engineering Anhui Jianzhu University Hefei 230601 China
| | - Pengwei Hu
- Anhui Key Laboratory of Advanced Building Materials School of Materials Science and Chemical Engineering Anhui Jianzhu University Hefei 230601 China
| | - Congliang Cheng
- Anhui Key Laboratory of Advanced Building Materials School of Materials Science and Chemical Engineering Anhui Jianzhu University Hefei 230601 China
| | - Jin Liu
- Anhui Key Laboratory of Advanced Building Materials School of Materials Science and Chemical Engineering Anhui Jianzhu University Hefei 230601 China
| | - Ping Wang
- Anhui Key Laboratory of Advanced Building Materials School of Materials Science and Chemical Engineering Anhui Jianzhu University Hefei 230601 China
| |
Collapse
|
13
|
Scafa Udriște A, Niculescu AG, Grumezescu AM, Bădilă E. Cardiovascular Stents: A Review of Past, Current, and Emerging Devices. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2498. [PMID: 34065986 PMCID: PMC8151529 DOI: 10.3390/ma14102498] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
One of the leading causes of morbidity and mortality worldwide is coronary artery disease, a condition characterized by the narrowing of the artery due to plaque deposits. The standard of care for treating this disease is the introduction of a stent at the lesion site. This life-saving tubular device ensures vessel support, keeping the blood-flow path open so that the cardiac muscle receives its vital nutrients and oxygen supply. Several generations of stents have been iteratively developed towards improving patient outcomes and diminishing adverse side effects following the implanting procedure. Moving from bare-metal stents to drug-eluting stents, and recently reaching bioresorbable stents, this research field is under continuous development. To keep up with how stent technology has advanced in the past few decades, this paper reviews the evolution of these devices, focusing on how they can be further optimized towards creating an ideal vascular scaffold.
Collapse
Affiliation(s)
- Alexandru Scafa Udriște
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.S.U.); (E.B.)
- Cardiology Department, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Elisabeta Bădilă
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.S.U.); (E.B.)
- Internal Medicine Department, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
14
|
Wang J, Xia Z, Liu J, Zhang N, Zhou W, Zhong Z, Luo Z, Li W, Yang Z, Hu Y. Facile fabrication of near‐infrared light‐responsive shape memory nanocomposite scaffolds with hierarchical porous structures. J Appl Polym Sci 2021. [DOI: 10.1002/app.50938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jingguang Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education College of Materials and Energy, South China Agricultural University Guangzhou China
| | - Zemin Xia
- Guangzhou Quality Supervision and Testing Institute Guangzhou China
| | - Jian Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education College of Materials and Energy, South China Agricultural University Guangzhou China
| | - Naiyue Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education College of Materials and Energy, South China Agricultural University Guangzhou China
| | - Wuyi Zhou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education College of Materials and Energy, South China Agricultural University Guangzhou China
| | - Zichong Zhong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education College of Materials and Energy, South China Agricultural University Guangzhou China
| | - Zhitian Luo
- Key Laboratory for Biobased Materials and Energy of Ministry of Education College of Materials and Energy, South China Agricultural University Guangzhou China
| | - Wenyu Li
- Wuhan Engineering Science and Technology Institute Wuhan China
| | - Zhuohong Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education College of Materials and Energy, South China Agricultural University Guangzhou China
- Key laboratory of Bio‐Pesticide Innovation and Application of Guangdong Province Guangzhou China
| | - Yang Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education College of Materials and Energy, South China Agricultural University Guangzhou China
| |
Collapse
|
15
|
Aggregation-Induced Emission Fluorescent Gels: Current Trends and Future Perspectives. Top Curr Chem (Cham) 2021; 379:9. [PMID: 33544283 DOI: 10.1007/s41061-020-00322-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022]
Abstract
The development of fluorescent gels, if not the current focus, is at the center of recent efforts devoted to the invention of a new generation of gels. Fluorescent gels have numerous properties that are intrinsic to the gel structure, with additional light-emitting properties making them attractive for different applications. This review focuses on current studies associated with the development of fluorescent gels using aggregation-induced emission fluorophores (AIEgens) to ultimately suggest new directions for future research. Here, we discuss major drawbacks of the methodologies used frequently for the fabrication of fluorescent gels using traditional fluorophores compared to those using AIEgens. The fabrication strategies to develop AIE-based fluorescent gels, including physical mixing, soaking, self-assembly, noncovalent interactions, and permanent chemical reactions, are discussed thoroughly. New and recent findings on developing AIE-active gels are explained. Specifically, physically prepared AIE-based gels including supramolecular, ionic, and chemically prepared AIE-based gels are discussed. In addition, the intrinsic fluorescent properties of natural gels, known as clustering-triggered fluorescent gel, and new and recent relevant findings published in peer-reviewed journals are explained. This review also revealed the biomedical applications of AIE-based fluorescent hydrogels including drug delivery, biosensors, bioimaging, and tissue engineering. In conclusion, the current research situation and future directions are identified.
Collapse
|
16
|
Xiang Z, Chu C, Xie H, Xiang T, Zhou S. Multifunctional Thermoplastic Polyurea Based on the Synergy of Dynamic Disulfide Bonds and Hydrogen Bond Cross-Links. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1463-1473. [PMID: 33382585 DOI: 10.1021/acsami.0c18396] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Integrating the self-healing property with the shape-memory effect is a strategy that extends the service lifetime of shape-memory materials. However, this strategy is inadequate to reshape and recycle through the self-healing property or liquid-state remoldability. For more types of damage, solid-state plasticity is needed as a complementary mechanism to broaden the reprocessing channels of smart materials. In this study, multifunctional thermoplastic polyureas cross-linked by urea hydrogen bonds are prepared, which possess the multipathway remodeling property. The shape transition can be triggered after heating above 65 °C. The synergistic effect of dynamic disulfide bonds and hydrogen bonds causes the thermoplastic polyureas to possess characteristics similar to those of associative covalent adaptable networks. Thus, the polyureas can repair the damage or reconfigure the shape at 75 °C in 15 min by solid-state plasticity, instead of going into a viscous flow state. Soft grippers with various shapes are prepared by integration of solid-state plasticity, and the structure and function of the grippers can be repaired. The integration of solid-state plasticity and the self-healing property broadens the paths of shape-memory polymers in recyclability and reshapability.
Collapse
Affiliation(s)
- Zhen Xiang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chengzhen Chu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Hui Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tao Xiang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
17
|
Shao Z, Wu S, Zhang Q, Xie H, Xiang T, Zhou S. Salt-responsive polyampholyte-based hydrogel actuators with gradient porous structures. Polym Chem 2021. [DOI: 10.1039/d0py01492c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A polyampholyte-based hydrogel actuator with water-responsive shape deformation was fabricated, and the gradient distribution of chemical composition was proved by micro-FTIR.
Collapse
Affiliation(s)
- Zijian Shao
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Shanshan Wu
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Qian Zhang
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Hui Xie
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Tao Xiang
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| |
Collapse
|