1
|
Zhang W, Fukazawa K, Mahara A, Jiang H, Yamaoka T. Photo-induced universal modification of small-diameter decellularized blood vessels with a hemocompatible peptide improves in vivo patency. Acta Biomater 2024; 176:116-127. [PMID: 38232911 DOI: 10.1016/j.actbio.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Decellularized vessels (DVs) have the potential to serve as available grafts for small-diameter vascular (<6 mm) reconstruction. However, the absence of functional endothelia makes them likely to trigger platelet aggregation and thrombosis. Luminal surface modification is an efficient approach to prevent thrombosis and promote endothelialization. Previously, we identified a hemocompatible peptide, HGGVRLY, that showed endothelial affinity and antiplatelet ability. By conjugating HGGVRLY with a phenylazide group, we generated a photoreactive peptide that can be modified onto multiple materials, including non-denatured extracellular matrices. To preserve the natural collagen of DVs as much as possible, we used a lower ultrahydrostatic pressure than that previously reported to prepare decellularized grafts. The photoreactive HGGVRLY peptide could be modified onto DV grafts via UV exposure for only 2 min. Modified DVs showed improved endothelial affinity and antiplatelet ability in vitro. When rat abdominal aortas were replaced with DVs, modified DVs with more natural collagen demonstrated the highest patent rate after 10 weeks. Moreover, the photoreactive peptide remained on the lumen surface of DVs over two months after implantation. Therefore, the photoreactive peptide could be efficiently and sustainably modified onto DVs with more natural collagens, resulting in improved hemocompatibility. STATEMENT OF SIGNIFICANCE: We employed a relatively lower ultrahydrostatic pressure to prepare decellularized vessels (DVs) with less denatured collagens to provide a more favorable environment for cell migration and proliferation. The hemocompatibility of DV luminal surface can be enhanced by peptide modification, but undenatured collagens are difficult to modify. We innovatively introduce a phenylazide group into the hemocompatible peptide HGGVRLY, which we previously identified to possess endothelial affinity and antiplatelet ability, to generate a photoreactive peptide. The photoreactive peptide can be efficiently and stably modified onto DVs with more natural collagens. DV grafts modified with photoreactive peptide exhibit enhanced in vivo patency. Furthermore, the sustainability of photoreactive peptide modification on DV grafts within bloodstream is evident after two months of transplantation.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan; Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing China
| | - Kyoko Fukazawa
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Atsushi Mahara
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Haiyue Jiang
- Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing China
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan.
| |
Collapse
|
2
|
Li J, Chen X, Hu M, Wei J, Nie M, Chen J, Liu X. The application of composite scaffold materials based on decellularized vascular matrix in tissue engineering: a review. Biomed Eng Online 2023; 22:62. [PMID: 37337190 DOI: 10.1186/s12938-023-01120-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/28/2023] [Indexed: 06/21/2023] Open
Abstract
Decellularized vascular matrix is a natural polymeric biomaterial that comes from arteries or veins which are removed the cellular contents by physical, chemical and enzymatic means, leaving only the cytoskeletal structure and extracellular matrix to achieve cell adhesion, proliferation and differentiation and creating a suitable microenvironment for their growth. In recent years, the decellularized vascular matrix has attracted much attention in the field of tissue repair and regenerative medicine due to its remarkable cytocompatibility, biodegradability and ability to induce tissue regeneration. Firstly, this review introduces its basic properties and preparation methods; then, it focuses on the application and research of composite scaffold materials based on decellularized vascular matrix in vascular tissue engineering in terms of current in vitro and in vivo studies, and briefly outlines its applications in other tissue engineering fields; finally, it looks into the advantages and drawbacks to be overcome in the application of decellularized vascular matrix materials. In conclusion, as a new bioactive material for building engineered tissue and repairing tissue defects, decellularized vascular matrix will be widely applied in prospect.
Collapse
Affiliation(s)
- Jingying Li
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Xiao Chen
- Department of Stomatology Technology, School of Medical Technology, Sichuan College of Traditional Medicine, Mianyang, 621000, China
- Department of Orthodontics, Mianyang Stomatological Hospital, Mianyang, 621000, China
| | - Miaoling Hu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Jian Wei
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Minhai Nie
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Jiana Chen
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Xuqian Liu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China.
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China.
| |
Collapse
|
3
|
Ho WJ, Kobayashi M, Murata K, Hashimoto Y, Izumi K, Kimura T, Kanemitsu H, Yamazaki K, Ikeda T, Minatoya K, Kishida A, Masumoto H. A novel approach for the endothelialization of xenogeneic decellularized vascular tissues by human cells utilizing surface modification and dynamic culture. Sci Rep 2022; 12:22294. [PMID: 36566330 PMCID: PMC9789980 DOI: 10.1038/s41598-022-26792-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Decellularized xenogeneic vascular grafts can be used in revascularization surgeries. We have developed decellularization methods using high hydrostatic pressure (HHP), which preserves the extracellular structure. Here, we attempted ex vivo endothelialization of HHP-decellularized xenogeneic tissues using human endothelial cells (ECs) to prevent clot formation against human blood. Slices of porcine aortic endothelium were decellularized using HHP and coated with gelatin. Human umbilical vein ECs were directly seeded and cultured under dynamic flow or static conditions for 14 days. Dynamic flow cultures tend to demonstrate higher cell coverage. We then coated the tissues with the E8 fragment of human laminin-411 (hL411), which has high affinity for ECs, and found that Dynamic/hL411showed high area coverage, almost reaching 100% (Dynamic/Gelatin vs Dynamic/hL411; 58.7 ± 11.4 vs 97.5 ± 1.9%, P = 0.0017). Immunostaining revealed sufficient endothelial cell coverage as a single cell layer in Dynamic/hL411. A clot formation assay using human whole blood showed low clot formation in Dynamic/hL411, almost similar to that in the negative control, polytetrafluoroethylene. Surface modification of HHP-decellularized xenogeneic endothelial tissues combined with dynamic culture achieved sufficient ex vivo endothelialization along with prevention of clot formation, indicating their potential for clinical use as vascular grafts in the future.
Collapse
Affiliation(s)
- Wen-Jin Ho
- grid.258799.80000 0004 0372 2033Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Mako Kobayashi
- grid.265073.50000 0001 1014 9130Department of Material-Based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan ,grid.69566.3a0000 0001 2248 6943Present Address: Department of Materials Processing, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Kozue Murata
- grid.258799.80000 0004 0372 2033Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan ,grid.508743.dClinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan ,grid.411217.00000 0004 0531 2775Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Yoshihide Hashimoto
- grid.265073.50000 0001 1014 9130Department of Material-Based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Tsuyoshi Kimura
- grid.265073.50000 0001 1014 9130Department of Material-Based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideo Kanemitsu
- grid.258799.80000 0004 0372 2033Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan ,grid.415392.80000 0004 0378 7849Present Address: Department of Cardiovascular Surgery, Kitano Hospital, Osaka, Japan
| | - Kazuhiro Yamazaki
- grid.258799.80000 0004 0372 2033Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Tadashi Ikeda
- grid.258799.80000 0004 0372 2033Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Kenji Minatoya
- grid.258799.80000 0004 0372 2033Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Akio Kishida
- grid.265073.50000 0001 1014 9130Department of Material-Based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidetoshi Masumoto
- grid.258799.80000 0004 0372 2033Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan ,grid.508743.dClinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
4
|
McInnes AD, Moser MAJ, Chen X. Preparation and Use of Decellularized Extracellular Matrix for Tissue Engineering. J Funct Biomater 2022; 13:jfb13040240. [PMID: 36412881 PMCID: PMC9680265 DOI: 10.3390/jfb13040240] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/22/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
The multidisciplinary fields of tissue engineering and regenerative medicine have the potential to revolutionize the practise of medicine through the abilities to repair, regenerate, or replace tissues and organs with functional engineered constructs. To this end, tissue engineering combines scaffolding materials with cells and biologically active molecules into constructs with the appropriate structures and properties for tissue/organ regeneration, where scaffolding materials and biomolecules are the keys to mimic the native extracellular matrix (ECM). For this, one emerging way is to decellularize the native ECM into the materials suitable for, directly or in combination with other materials, creating functional constructs. Over the past decade, decellularized ECM (or dECM) has greatly facilitated the advance of tissue engineering and regenerative medicine, while being challenged in many ways. This article reviews the recent development of dECM for tissue engineering and regenerative medicine, with a focus on the preparation of dECM along with its influence on cell culture, the modification of dECM for use as a scaffolding material, and the novel techniques and emerging trends in processing dECM into functional constructs. We highlight the success of dECM and constructs in the in vitro, in vivo, and clinical applications and further identify the key issues and challenges involved, along with a discussion of future research directions.
Collapse
Affiliation(s)
- Adam D. McInnes
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Correspondence: ; Tel.: +1-306-966-5435
| | - Michael A. J. Moser
- Department of Surgery, Health Sciences Building, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
5
|
Kobayashi M, Ishida N, Hashimoto Y, Negishi J, Saga H, Sasaki Y, Akiyoshi K, Kimura T, Kishida A. Extraction and Biological Evaluation of Matrix-Bound Nanovesicles (MBVs) from High-Hydrostatic Pressure-Decellularized Tissues. Int J Mol Sci 2022; 23:ijms23168868. [PMID: 36012126 PMCID: PMC9407827 DOI: 10.3390/ijms23168868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 12/22/2022] Open
Abstract
Decellularized tissues are widely used as promising materials in tissue engineering and regenerative medicine. Research on the microstructure and components of the extracellular matrix (ECM) was conducted to improve the current understanding of decellularized tissue functionality. The presence of matrix-bound nanovesicles (MBVs) embedded within the ECM was recently reported. Results of a previous experimental investigation revealed that decellularized tissues prepared using high hydrostatic pressure (HHP) exhibited good in vivo performance. In the current study, according to the hypothesis that MBVs are one of the functional components in HHP-decellularized tissue, we investigated the extraction of MBVs and the associated effects on vascular endothelial cells. Using nanoparticle tracking assay (NTA), transmission electron microscopy (TEM), and RNA analysis, nanosized (100–300 nm) and membranous particles containing small RNA were detected in MBVs derived from HHP-decellularized small intestinal submucosa (SIS), urinary bladder matrix (UBM), and liver. To evaluate the effect on the growth of vascular endothelial cells, which are important in the tissue regeneration process, isolated SIS-derived MBVs were exposed to vascular endothelial cells to induce cell proliferation. These results indicate that MBVs can be extracted from HHP-decellularized tissues and may play a significant role in tissue remodeling.
Collapse
Affiliation(s)
- Mako Kobayashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku 101-0062, Japan
| | - Naoki Ishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku 101-0062, Japan
| | - Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku 101-0062, Japan
| | - Jun Negishi
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan
| | - Hideki Saga
- KM Biologics Co., Ltd., 1314-1 Kyokushi Kawabe, Kikuchi-shi 869-1298, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, A3-317, Kyoto University, Katsura, Nishikyo-ku 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, A3-317, Kyoto University, Katsura, Nishikyo-ku 615-8510, Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku 101-0062, Japan
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku 101-0062, Japan
- Correspondence: ; Tel.: +81-35-2808028
| |
Collapse
|
6
|
Shariatzadeh S, Shafiee S, Zafari A, Tayebi T, Yazdanpanah G, Majd A, Haj-Mirzaian A, Bahrami S, Niknejad H. Developing a pro-angiogenic placenta derived amniochorionic scaffold with two exposed basement membranes as substrates for cultivating endothelial cells. Sci Rep 2021; 11:22508. [PMID: 34795361 PMCID: PMC8602627 DOI: 10.1038/s41598-021-01922-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Decellularized and de-epithelialized placenta membranes have widely been used as scaffolds and grafts in tissue engineering and regenerative medicine. Exceptional pro-angiogenic and biomechanical properties and low immunogenicity have made the amniochorionic membrane a unique substrate which provides an enriched niche for cellular growth. Herein, an optimized combination of enzymatic solutions (based on streptokinase) with mechanical scrapping is used to remove the amniotic epithelium and chorion trophoblastic layer, which resulted in exposing the basement membranes of both sides without their separation and subsequent damages to the in-between spongy layer. Biomechanical and biodegradability properties, endothelial proliferation capacity, and in vivo pro-angiogenic capabilities of the substrate were also evaluated. Histological staining, immunohistochemistry (IHC) staining for collagen IV, and scanning electron microscope demonstrated that the underlying amniotic and chorionic basement membranes remained intact while the epithelial and trophoblastic layers were entirely removed without considerable damage to basement membranes. The biomechanical evaluation showed that the scaffold is suturable. Proliferation assay, real-time polymerase chain reaction for endothelial adhesion molecules, and IHC demonstrated that both side basement membranes could support the growth of endothelial cells without altering endothelial characteristics. The dorsal skinfold chamber animal model indicated that both side basement membranes could promote angiogenesis. This bi-sided substrate with two exposed surfaces for cultivating various cells would have potential applications in the skin, cardiac, vascularized composite allografts, and microvascular tissue engineering.
Collapse
Affiliation(s)
- Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Shafiee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Zafari
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Tayebi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Alireza Majd
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arvin Haj-Mirzaian
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Kobayashi M, Ohara M, Hashimoto Y, Nakamura N, Fujisato T, Kimura T, Kishida A. Effect of luminal surface structure of decellularized aorta on thrombus formation and cell behavior. PLoS One 2021; 16:e0246221. [PMID: 33999919 PMCID: PMC8128234 DOI: 10.1371/journal.pone.0246221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/03/2021] [Indexed: 11/18/2022] Open
Abstract
Due to an increasing number of cardiovascular diseases, artificial heart valves and blood vessels have been developed. Although cardiovascular applications using decellularized tissue have been studied, the mechanisms of their functionality remain unknown. To determine the important factors for preparing decellularized cardiovascular prostheses that show good in vivo performance, the effects of the luminal surface structure of the decellularized aorta on thrombus formation and cell behavior were investigated. Various luminal surface structures of a decellularized aorta were prepared by heating, drying, and peeling. The luminal surface structure and collagen denaturation were evaluated by immunohistological staining, collagen hybridizing peptide (CHP) staining, and scanning electron microscopy (SEM) analysis. To evaluate the effects of luminal surface structure of decellularized aorta on thrombus formation and cell behavior, blood clotting tests and recellularization of endothelial cells and smooth muscle cells were performed. The results of the blood clotting test showed that the closer the luminal surface structure is to the native aorta, the higher the anti-coagulant property. The results of the cell seeding test suggest that vascular cells recognize the luminal surface structure and regulate adhesion, proliferation, and functional expression accordingly. These results provide important factors for preparing decellularized cardiovascular prostheses and will lead to future developments in decellularized cardiovascular applications.
Collapse
Affiliation(s)
- Mako Kobayashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| | - Masako Ohara
- Department of Bioscience and Engineering, Shibaura Institute of Technology, Minuma-ku, Saitama-shi, Saitama, Japan
| | - Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| | - Naoko Nakamura
- Department of Bioscience and Engineering, Shibaura Institute of Technology, Minuma-ku, Saitama-shi, Saitama, Japan
| | - Toshiya Fujisato
- Department of Biomedical Engineering, Osaka Institute of Technology, Asahi-ku, Osaka, Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|