1
|
Jacob S, Kather FS, Boddu SHS, Shah J, Nair AB. Innovations in Nanoemulsion Technology: Enhancing Drug Delivery for Oral, Parenteral, and Ophthalmic Applications. Pharmaceutics 2024; 16:1333. [PMID: 39458662 PMCID: PMC11510719 DOI: 10.3390/pharmaceutics16101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Nanoemulsions (NEs) are submicron-sized heterogeneous biphasic liquid systems stabilized by surfactants. They are physically transparent or translucent, optically isotropic, and kinetically stable, with droplet sizes ranging from 20 to 500 nm. Their unique properties, such as high surface area, small droplet size, enhanced bioavailability, excellent physical stability, and rapid digestibility, make them ideal for encapsulating various active substances. This review focuses on recent advancements, future prospects, and challenges in the field of NEs, particularly in oral, parenteral, and ophthalmic delivery. It also discusses recent clinical trials and patents. Different types of in vitro and in vivo NE characterization techniques are summarized. High-energy and low-energy preparation methods are briefly described with diagrams. Formulation considerations and commonly used excipients for oral, ocular, and ophthalmic drug delivery are presented. The review emphasizes the need for new functional excipients to improve the permeation of large molecular weight unstable proteins, oligonucleotides, and hydrophilic drugs to advance drug delivery rapidly.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Fathima Sheik Kather
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
2
|
Chen J, Xu R, Meng L, Yan F, Wang L, Xu Y, Zhang Q, Zhai W, Pan C. Biomimetic hydrogel coatings for improving the corrosion resistance, hemocompatibility, and endothelial cell growth of the magnesium alloy. Colloids Surf B Biointerfaces 2024; 245:114204. [PMID: 39236361 DOI: 10.1016/j.colsurfb.2024.114204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The fast biodegradation and poor biocompatibility of Mg alloys in physiological environments are still the main problems restricting their application in cardiovascular stents. In this study, the hydrogel coatings (SBMA-AAM) with different proportions of methacryloyl ethyl sulfobetaine (SBMA) and acrylamide (AAM) were built on the surface of AZ31B magnesium alloy through ultraviolet (UV) polymerization. The corrosion degradation behavior, hemocompatibility, and endothelial cell (EC) growth performance of the samples were studied in detail. The findings revealed that the uniform and dense SBMA-AAM coatings could significantly enhance the corrosion resistance. In addition, the hydrogel coatings showed excellent hydrophilicity, which increased the albumin adsorption while inhibiting the fibrinogen adsorption, and thus reduced the platelet adhesion and activation and hemolysis rate, accordingly significantly enhancing their anticoagulant performance. Furthermore, SBMA-AAM hydrogel coating promoted the EC adhesion and proliferation and the vascular endothelial growth factor (VEGF) and nitric oxide (NO) secretion of ECs, which is conducive to promoting endothelialization. When the concentration ratio of SBMA and AAM was 1: 2, the modified magnesium alloy showed the best corrosion resistance and biocompatibility. Therefore, the SBMA-AAM hydrogel coating could effectively regulate the corrosion degradation performance and biocompatibility of Mg alloys, laying a foundation for the application of Mg alloys in cardiovascular stents.
Collapse
Affiliation(s)
- Jie Chen
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Ruiting Xu
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223003, China
| | - Lingjie Meng
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Fei Yan
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Lingtao Wang
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yi Xu
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qiuyang Zhang
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Wanli Zhai
- Huaigang Special Steel Co., Ltd. of Jiangsu Shagang Group, Huai'an 223002, China
| | - Changjiang Pan
- School of Medical and Health Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
3
|
Lei F, Zeng F, Yu X, Deng Y, Zhang Z, Xu M, Ding N, Tian J, Li C. Oral hydrogel nanoemulsion co-delivery system treats inflammatory bowel disease via anti-inflammatory and promoting intestinal mucosa repair. J Nanobiotechnology 2023; 21:275. [PMID: 37596598 PMCID: PMC10436423 DOI: 10.1186/s12951-023-02045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Due to oral nano-delivery systems for the treatment of inflammatory bowel disease (IBD) are often failed to accumulated to the colonic site and could not achieve controlled drug release, it's urgent to develop a microenvironment responsive drug delivery to improve therapy efficacy. Inflammation at the IBD site is mainly mediated by macrophages, which are the key effector cells. Excessive inflammation leads to oxidative stress and intestinal mucosal damage. The use of curcumin (CUR) and emodin (EMO) together for the treatment of IBD is promising due to their respective anti-inflammatory and intestinal mucosal repair effects. In view of the pH gradient environment of gastrointestinal tract, here we prepared pH-responsive sodium alginate (SA) hydrogel-coated nanoemulsions to co-deliver CUR and EMO (CUR/EMO NE@SA) to achieve controlled drug release and specifically target macrophages of the colon. RESULTS In this study, a pH-responsive CUR/EMO NE@SA was successfully developed, in which the CUR/EMO NE was loaded by chitosan and further crosslinked with sodium alginate. CUR/EMO NE@SA had a pH-responsive property and could achieve controlled drug release in the colon. The preparation could significantly alleviate and improve the colon inflammatory microenvironment by decreasing TNF-α and IL-6 expression, increasing IL-10 expression, scavenging reactive oxygen species in macrophages, and by ameliorating the restoration of intestinal mucosal tight junction protein expression. Furthermore, we revealed the molecular mechanism of the preparation for IBD treatment, which might due to the CUR and EMO synergic inhibition of NF-κB to improve the pro-inflammatory microenvironment. Our study provides a new IBD therapy strategy via synergically inhibiting inflammatory, repairing mucosal and clearing ROS by pH-sensitive hydrogel-encapsulated nanoemulsion drug delivery system, which might be developed for other chronic inflammatory disease treatment. CONCLUSIONS It's suggested that pH-sensitive hydrogel-coated nanoemulsion-based codelivery systems are a promising combinatorial platform in IBD.
Collapse
Affiliation(s)
- Fenting Lei
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, 646000, Sichuan, People's Republic of China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Xin Yu
- Chinese Pharmacy Laboratory, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yiping Deng
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zongquan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, 646000, Sichuan, People's Republic of China
| | - Maochang Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, 646000, Sichuan, People's Republic of China
| | - Nianhui Ding
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Ji Tian
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, 646000, Sichuan, People's Republic of China.
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
4
|
Ho TC, Chang CC, Chan HP, Chung TW, Shu CW, Chuang KP, Duh TH, Yang MH, Tyan YC. Hydrogels: Properties and Applications in Biomedicine. Molecules 2022; 27:2902. [PMID: 35566251 PMCID: PMC9104731 DOI: 10.3390/molecules27092902] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 12/19/2022] Open
Abstract
Hydrogels are crosslinked polymer chains with three-dimensional (3D) network structures, which can absorb relatively large amounts of fluid. Because of the high water content, soft structure, and porosity of hydrogels, they closely resemble living tissues. Research in recent years shows that hydrogels have been applied in various fields, such as agriculture, biomaterials, the food industry, drug delivery, tissue engineering, and regenerative medicine. Along with the underlying technology improvements of hydrogel development, hydrogels can be expected to be applied in more fields. Although not all hydrogels have good biodegradability and biocompatibility, such as synthetic hydrogels (polyvinyl alcohol, polyacrylamide, polyethylene glycol hydrogels, etc.), their biodegradability and biocompatibility can be adjusted by modification of their functional group or incorporation of natural polymers. Hence, scientists are still interested in the biomedical applications of hydrogels due to their creative adjustability for different uses. In this review, we first introduce the basic information of hydrogels, such as structure, classification, and synthesis. Then, we further describe the recent applications of hydrogels in 3D cell cultures, drug delivery, wound dressing, and tissue engineering.
Collapse
Affiliation(s)
- Tzu-Chuan Ho
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-C.H.); (C.-W.S.)
| | - Chin-Chuan Chang
- Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Electrical Engineering, I-Shou University, Kaohsiung 840, Taiwan
| | - Hung-Pin Chan
- Department of Nuclear Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
| | - Tze-Wen Chung
- Biomedical Engineering Research and Development Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Chih-Wen Shu
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-C.H.); (C.-W.S.)
| | - Kuo-Pin Chuang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Tsai-Hui Duh
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Hui Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Center of General Education, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan
| | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-C.H.); (C.-W.S.)
- Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
5
|
Novel Developments on Stimuli-Responsive Probiotic Encapsulates: From Smart Hydrogels to Nanostructured Platforms. FERMENTATION 2022. [DOI: 10.3390/fermentation8030117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Biomaterials engineering and biotechnology have advanced significantly towards probiotic encapsulation with encouraging results in assuring sufficient bioactivity. However, some major challenges remain to be addressed, and these include maintaining stability in different compartments of the gastrointestinal tract (GIT), favoring adhesion only at the site of action, and increasing residence times. An alternative to addressing such challenges is to manufacture encapsulates with stimuli-responsive polymers, such that controlled release is achievable by incorporating moieties that respond to chemical and physical stimuli present along the GIT. This review highlights, therefore, such emerging delivery matrices going from a comprehensive description of addressable stimuli in each GIT compartment to novel synthesis and functionalization techniques to currently employed materials used for probiotic’s encapsulation and achieving multi-modal delivery and multi-stimuli responses. Next, we explored the routes for encapsulates design to enhance their performance in terms of degradation kinetics, adsorption, and mucus and gut microbiome interactions. Finally, we present the clinical perspectives of implementing novel probiotics and the challenges to assure scalability and cost-effectiveness, prerequisites for an eventual niche market penetration.
Collapse
|
6
|
Liu S, Wang YN, Ma B, Shao J, Liu H, Ge S. Gingipain-Responsive Thermosensitive Hydrogel Loaded with SDF-1 Facilitates In Situ Periodontal Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36880-36893. [PMID: 34324286 DOI: 10.1021/acsami.1c08855] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Existing local drug delivery systems for periodontitis suffer from poor antibacterial effect and unsatisfied periodontal regeneration. In this study, a smart gingipain-responsive hydrogel (PEGPD@SDF-1) was synthesized as an environmentally sensitive carrier for on-demand drug delivery. The PEGPD@SDF-1 hydrogel was synthesized from polyethylene glycol diacrylate (PEG-DA) based scaffolds, dithiothreitol (DTT), and a novel designed functional peptide module (FPM) via Michael-type addition reaction, and the hydrogel was further loaded with stromal cell derived factor-1 (SDF-1). The FPM exhibiting a structure of anchor peptide-short antimicrobial peptide (SAMP)-anchor peptide could be cleaved by gingipain specifically, and the SAMP was released out of the hydrogel for antibacterial effect in response to gingipain. The hydrogel properties were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), swelling ratio analysis, degradation evaluation, and release curve description of the SAMP and SDF-1. Results in vitro indicated the PEGPD@SDF-1 hydrogel exhibited preferable biocompatibility and could promote the proliferation, migration, and osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Antibacterial testing demonstrated that the PEGPD@SDF-1 hydrogel released the SAMP stressfully in response to gingipain stimulation, thereby strongly inhibiting the growth of Porphyromonas gingivalis. Furthermore, the study in vivo indicated that the PEGPD@SDF-1 hydrogel inhibited P. gingivalis reproduction, created a low-inflammatory environment, facilitated the recruitment of CD90+/CD34- stromal cells, and induced osteogenesis. Taken together, these results suggest that the gingipain-responsive PEGPD@SDF-1 hydrogel could facilitate in situ periodontal tissue regeneration and is a promising candidate for the on-demand local drug delivery system for periodontitis.
Collapse
Affiliation(s)
- Shiyue Liu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Ya-Nan Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Baojin Ma
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Jinlong Shao
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Hongrui Liu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| |
Collapse
|