1
|
Lei B, Lu L, Mi X. Effect of alkali metal ions introduction on the fluorescence properties of Er-Tm-Yb synergistically sensitized phosphors. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123944. [PMID: 38330756 DOI: 10.1016/j.saa.2024.123944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/10/2024]
Abstract
Upconversion fluoride phosphors Na1-xMxY1-a-b-cF4:Er3+a, Tm3+b, Yb3+c (M = Li+/K+) have been synthesized by low-temperature combustion method. The optimal doping ratios of ions in the matrix lattice were determined by orthogonal experiments with the control variable method. It was found that when a certain amount of Tm3+ ions were doped into the lattice of Er3+ ions, the upconversion fluorescence intensity and red-to-green ratio of the samples were significantly enhanced. When a small amount of Yb3+ ions was introduced into the Er3+-Tm3 + ions co-doped samples, the upconversion fluorescence intensity of the samples was continued to be enhanced, but the red-to-green ratio was slightly decreased. The mechanism of the influence of the upconversion fluorescence intensity and the red-to-green ratio of the multidoped samples with lanthanide ions was also systematically investigated. Based on the results of orthogonal experiments, the optimal component formulations were determined and alkali metal ions were further introduced. The upconversion fluorescence enhancement mechanism of the samples after the introduction of alkali metal ions was systematically investigated. In this work, the upconversion fluorescence intensity of the prepared samples was significantly enhanced by synergistic sensitization between the ions. In addition, by adjusting the red-to-green ratio of the fluorescence of the samples, a new idea is provided for the preparation of upconversion phosphors with high color purity.
Collapse
Affiliation(s)
- Bohan Lei
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin, China
| | - Liping Lu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin, China.
| | - Xiaoyun Mi
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin, China
| |
Collapse
|
2
|
Xu R, Liu J, Cao H, Lin D, Chen X, Han F, Weng X, Wang Y, Liu L, Yu B, Qu J. In Vivo High-Contrast Biomedical Imaging in the Second Near-Infrared Window Using Ultrabright Rare-Earth Nanoparticles. NANO LETTERS 2023; 23:11203-11210. [PMID: 38088357 PMCID: PMC10723063 DOI: 10.1021/acs.nanolett.3c03698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023]
Abstract
Intravital luminescence imaging in the second near-infrared window (NIR-II) enables noninvasive deep-tissue imaging with high spatiotemporal resolution of live mammals because of the properties of suppressed light scattering and diminished autofluorescence in the long-wavelength region. Herein, we present the synthesis of a downconversion luminescence rare-earth nanocrystal with a core-shell-shell structure (NaYF4@NaYbF4:Er,Ce@NaYF4:Ca). The structure efficiently maximized the doping concentration of the sensitizers and increased Er3+ luminescence while preventing cross relaxation. Furthermore, Ce3+ doping in the middle layer efficiently limited the upconversion pathway and increased downconversion by 24-fold to produce bright 1550 nm luminescence under 975 nm excitation. Finally, optimizing the inert shell coating of NaYF4:Ca and liposome encapsulation reduced the luminescence quenching impact by water and improved biological metabolism. Thus, our synthesized biocompatible, ultrabright NIR-II probes provide high contrast and resolution for through-scalp and through-skull luminescence imaging of mice cerebral vasculature without craniotomy as well as imaging of mouse hindlimb microvessels.
Collapse
Affiliation(s)
- Rong Xu
- Key
Laboratory of Optoelectronic Devices and Systems of Ministry of Education
and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiantao Liu
- Key
Laboratory of Optoelectronic Devices and Systems of Ministry of Education
and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Huiqun Cao
- College
of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Danying Lin
- Key
Laboratory of Optoelectronic Devices and Systems of Ministry of Education
and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xian Chen
- Shenzhen
Key Laboratory of New Information Display and Storage Materials, College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
| | - Fuhong Han
- Key
Laboratory of Optoelectronic Devices and Systems of Ministry of Education
and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyu Weng
- Key
Laboratory of Optoelectronic Devices and Systems of Ministry of Education
and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yiping Wang
- Key
Laboratory of Optoelectronic Devices and Systems of Ministry of Education
and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Liwei Liu
- Key
Laboratory of Optoelectronic Devices and Systems of Ministry of Education
and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bin Yu
- Key
Laboratory of Optoelectronic Devices and Systems of Ministry of Education
and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- Key
Laboratory of Optoelectronic Devices and Systems of Ministry of Education
and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
3
|
Zhou J, Ma L, Li Z, Chen B, Wu Y, Meng X. Synthesis of lenvatinib-loaded upconversion@polydopamine nanocomposites for upconversion luminescence imaging-guided chemo-photothermal synergistic therapy of anaplastic thyroid cancer. RSC Adv 2023; 13:26925-26932. [PMID: 37692340 PMCID: PMC10483932 DOI: 10.1039/d3ra02121a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023] Open
Abstract
Anaplastic thyroid cancer (ATC) is the most malignant and aggressive of all classifications of thyroid cancer. ATC normally has poor prognosis after classic treatments such as surgery, endocrine therapy, radiotherapy and chemotherapy. Herein, a novel nanocomposite (named as UCNP@PDA@LEN) has been synthesized for chemo-photothermal therapy of ATC, which is based on a NaErF4:Tm3+@NaYbF4@NaYF4:Nd3+ upconverting nanoparticle (UCNP) as the core, a near-infrared light (NIR)-absorbing polydopamine (PDA) as the shell, and lenvatinib (LEN) as a chemotherapeutic drug. The as-prepared multifunctional UCNP@PDA@LEN exhibits excellent photothermal conversion capability (η = 30.7%), good photothermal stability and reasonable biocompatibility. Owing to the high UCL emission and good tumor accumulation ability, the UCL imaging of mouse-bearing ATC (i.e., C643 tumor) has been achieved by UCNP@PDA@LEN. Under 808 nm NIR laser irradiation, the UCNP@PDA@LEN shows a synergistic interaction between photothermal therapy (PTT) and chemotherapy (CT), resulting in strongly suppressed mouse-bearing C643 tumor. The results provide an explicit approach for developing theranostics with high anti-ATC efficiency.
Collapse
Affiliation(s)
- Jingjing Zhou
- Thyroid Surgery Department, General Surgery Center, First Hosipital of Jilin University Changchun 130021 P. R. China
| | - Lina Ma
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology College Jilin 132101 P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Zhenshengnan Li
- Thyroid Surgery Department, General Surgery Center, First Hosipital of Jilin University Changchun 130021 P. R. China
| | - Bowen Chen
- Thyroid Surgery Department, General Surgery Center, First Hosipital of Jilin University Changchun 130021 P. R. China
| | - Yue Wu
- Thyroid Surgery Department, General Surgery Center, First Hosipital of Jilin University Changchun 130021 P. R. China
| | - Xianying Meng
- Thyroid Surgery Department, General Surgery Center, First Hosipital of Jilin University Changchun 130021 P. R. China
| |
Collapse
|
4
|
Feng Z, Li Y, Chen S, Li J, Wu T, Ying Y, Zheng J, Zhang Y, Zhang J, Fan X, Yu X, Zhang D, Tang BZ, Qian J. Engineered NIR-II fluorophores with ultralong-distance molecular packing for high-contrast deep lesion identification. Nat Commun 2023; 14:5017. [PMID: 37596326 PMCID: PMC10439134 DOI: 10.1038/s41467-023-40728-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/07/2023] [Indexed: 08/20/2023] Open
Abstract
The limited signal of long-wavelength near-infrared-II (NIR-II, 900-1880 nm) fluorophores and the strong background caused by the diffused photons make high-contrast fluorescence imaging in vivo with deep tissue disturbed still challenging. Here, we develop NIR-II fluorescent small molecules with aggregation-induced emission properties, high brightness, and maximal emission beyond 1200 nm by enhancing electron-donating ability and reducing the donor-acceptor (D-A) distance, to complement the scarce bright long-wavelength emissive organic dyes. The convincing single-crystal evidence of D-A-D molecular structure reveals the strong inhibition of the π-π stacking with ultralong molecular packing distance exceeding 8 Å. The delicately-designed nanofluorophores with bright fluorescent signals extending to 1900 nm match the background-suppressed imaging window, enabling the signal-to-background ratio of the tissue image to reach over 100 with the tissue thickness of ~4-6 mm. In addition, the intraluminal lesions with strong negatively stained can be identified with almost zero background. This method can provide new avenues for future long-wavelength NIR-II molecular design and biomedical imaging of deep and highly scattering tissues.
Collapse
Affiliation(s)
- Zhe Feng
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Yuanyuan Li
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Siyi Chen
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Jin Li
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Tianxiang Wu
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Yanyun Ying
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Junyan Zheng
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yuhuang Zhang
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Jianquan Zhang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Xiaoxiao Fan
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoming Yu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Arteaga Cardona F, Jain N, Popescu R, Busko D, Madirov E, Arús BA, Gerthsen D, De Backer A, Bals S, Bruns OT, Chmyrov A, Van Aert S, Richards BS, Hudry D. Preventing cation intermixing enables 50% quantum yield in sub-15 nm short-wave infrared-emitting rare-earth based core-shell nanocrystals. Nat Commun 2023; 14:4462. [PMID: 37491427 PMCID: PMC10368714 DOI: 10.1038/s41467-023-40031-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023] Open
Abstract
Short-wave infrared (SWIR) fluorescence could become the new gold standard in optical imaging for biomedical applications due to important advantages such as lack of autofluorescence, weak photon absorption by blood and tissues, and reduced photon scattering coefficient. Therefore, contrary to the visible and NIR regions, tissues become translucent in the SWIR region. Nevertheless, the lack of bright and biocompatible probes is a key challenge that must be overcome to unlock the full potential of SWIR fluorescence. Although rare-earth-based core-shell nanocrystals appeared as promising SWIR probes, they suffer from limited photoluminescence quantum yield (PLQY). The lack of control over the atomic scale organization of such complex materials is one of the main barriers limiting their optical performance. Here, the growth of either homogeneous (α-NaYF4) or heterogeneous (CaF2) shell domains on optically-active α-NaYF4:Yb:Er (with and without Ce3+ co-doping) core nanocrystals is reported. The atomic scale organization can be controlled by preventing cation intermixing only in heterogeneous core-shell nanocrystals with a dramatic impact on the PLQY. The latter reached 50% at 60 mW/cm2; one of the highest reported PLQY values for sub-15 nm nanocrystals. The most efficient nanocrystals were utilized for in vivo imaging above 1450 nm.
Collapse
Affiliation(s)
| | - Noopur Jain
- EMAT, University of Antwerp, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Radian Popescu
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Dmitry Busko
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Eduard Madirov
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Bernardo A Arús
- Helmholtz Pioneer Campus, Helmholtz Center Munich, Munich, Germany
- Functional Imaging in Surgical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Dagmar Gerthsen
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Annick De Backer
- EMAT, University of Antwerp, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Sara Bals
- EMAT, University of Antwerp, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Oliver T Bruns
- Helmholtz Pioneer Campus, Helmholtz Center Munich, Munich, Germany
- Functional Imaging in Surgical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Andriy Chmyrov
- Helmholtz Pioneer Campus, Helmholtz Center Munich, Munich, Germany.
- Functional Imaging in Surgical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
| | - Sandra Van Aert
- EMAT, University of Antwerp, Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium.
| | - Bryce S Richards
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany.
- Light Technology Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | - Damien Hudry
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
6
|
Fan Q, Sun C, Hu B, Wang Q. Recent advances of lanthanide nanomaterials in Tumor NIR fluorescence detection and treatment. Mater Today Bio 2023; 20:100646. [PMID: 37214552 PMCID: PMC10195989 DOI: 10.1016/j.mtbio.2023.100646] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Lanthanide nanomaterials have garnered significant attention from researchers among the main near-infrared (NIR) fluorescent nanomaterials due to their excellent chemical and fluorescence stability, narrow emission band, adjustable luminescence color, and long lifetime. In recent years, with the preparation, functional modification, and fluorescence improvement of lanthanide materials, great progress has been made in their application in the biomedical field. This review focuses on the latest progress of lanthanide nanomaterials in tumor diagnosis and treatment, as well as the interaction mechanism between fluorescence and biological tissues. We introduce a set of efficient strategies for improving the fluorescence properties of lanthanide nanomaterials and discuss some representative in-depth research work in detail, showcasing their superiority in early detection of ultra-small tumors, phototherapy, and real-time guidance for surgical resection. However, lanthanide nanomaterials have only realized a portion of their potential in tumor applications so far. Therefore, we discuss promising methods for further improving the performance of lanthanide nanomaterials and their future development directions.
Collapse
Affiliation(s)
- Qi Fan
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
| | - Chao Sun
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
| | - Bingliang Hu
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
| | - Quan Wang
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
| |
Collapse
|
7
|
Zhang K, Chen FR, Wang L, Hu J. Second Near-Infrared (NIR-II) Window for Imaging-Navigated Modulation of Brain Structure and Function. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206044. [PMID: 36670072 DOI: 10.1002/smll.202206044] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
For a long time, optical imaging of the deep brain with high resolution has been a challenge. Recently, with the advance in second near-infrared (NIR-II) bioimaging techniques and imaging contrast agents, NIR-II window bioimaging has attracted great attention to monitoring deeper biological or pathophysiological processes with high signal-to-noise ratio (SNR) and spatiotemporal resolution. Assisted with NIR-II bioimaging, the modulation of structure and function of brain is promising to be noninvasive and more precise. Herein, in this review, first the advantage of NIR-II light in brain imaging from the interaction between NIR-II and tissue is elaborated. Then, several specific NIR-II bioimaging technologies are introduced, including NIR-II fluorescence imaging, multiphoton fluorescence imaging, and photoacoustic imaging. Furthermore, the corresponding contrast agents are summarized. Next, the application of various NIR-II bioimaging technologies in visualizing the characteristics of cerebrovascular network and monitoring the changes of the pathology signals will be presented. After that, the modulation of brain structure and function based on NIR-II bioimaging will be discussed, including treatment of glioblastoma, guidance of cell transplantation, and neuromodulation. In the end, future perspectives that would help improve the clinical translation of NIR-II light are proposed.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Fu-Rong Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
8
|
Bright Tm 3+-based downshifting luminescence nanoprobe operating around 1800 nm for NIR-IIb and c bioimaging. Nat Commun 2023; 14:1079. [PMID: 36841808 PMCID: PMC9968279 DOI: 10.1038/s41467-023-36813-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/16/2023] [Indexed: 02/27/2023] Open
Abstract
Fluorescence bioimaging based on rare-earth-doped nanocrystals (RENCs) in the shortwave infrared (SWIR, 1000-3000 nm) region has aroused intense interest due to deeper penetration depth and clarity. However, their downshifting emission rarely shows sufficient brightness beyond 1600 nm, especially in NIR-IIc. Here, we present a class of thulium (Tm) self-sensitized RENC fluorescence probes that exhibit bright downshifting luminescence at 1600-2100 nm (NIR-IIb/c) for in vivo bioimaging. An inert shell coating minimizes surface quenching and combines strong cross-relaxation, allowing LiTmF4@LiYF4 NPs to emit these intense downshifting emissions by absorbing NIR photons at 800 nm (large Stokes shift ~1000 nm with a absolute quantum yield of ~14.16%) or 1208 nm (NIR-IIin and NIR-IIout). Furthermore, doping with Er3+ for energy trapping achieves four-wavelength NIR irradiation and bright NIR-IIb/c emission. Our results show that Tm-based NPs, as NIR-IIb/c nanoprobes with high signal-to-background ratio and clarity, open new opportunities for future applications and translation into diverse fields.
Collapse
|
9
|
Li J, Feng Z, Yu X, Wu D, Wu T, Qian J. Aggregation-induced emission fluorophores towards the second near-infrared optical windows with suppressed imaging background. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Lou KL, Wang PY, Yang RQ, Gao YY, Tian HN, Dang YY, Li Y, Huang WH, Chen M, Liu XL, Zhang GJ. Fabrication of tumor targeting rare-earth nanocrystals for real-time NIR-IIb fluorescence imaging-guided breast cancer precise surgery. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 43:102555. [PMID: 35390525 DOI: 10.1016/j.nano.2022.102555] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 10/18/2022]
Abstract
The near-infrared fluorescence imaging has been integrated into the operating room to guide tumor resection, potentially reducing the positive margin rates in breast-conserving surgery (BCS). Relative to the widely used first near-infrared fluorescence imaging, imaging in the second near-infrared (NIR-II) region possesses higher contrast and deeper tissue penetration, particularly in the NIR-IIb window, offering many new opportunities for imaging-guided BCS. Here, we fabricated the c(RGDfC) functionalized erbium-based rare-earth nanoparticles (ErNPs@cRGD) with superior optical property in NIR-IIb region. Owing to deeper tissue penetration and efficient tumor targeting, ErNPs@cRGD-based NIR-IIb fluorescence imaging achieved enhanced signal-to-background ratios in tumor visualization, which was able to guide more complete tumor resection, identify multiple microtumors and distinguish malignant lesions from normal tissues in various mice models. Based on these, this NIR-IIb imaging strategy for surgical navigation can significantly reduce positive margin rates and improve prognosis, laying a foundation for the clinical resection of breast cancer.
Collapse
Affiliation(s)
- Kang-Liang Lou
- Cancer Center and Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Pei-Yuan Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
| | - Rui-Qin Yang
- Cancer Center and Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yi-Yang Gao
- Cancer Center and Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Hai-Na Tian
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, Fujian, China
| | - Yong-Ying Dang
- Cancer Center and Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yang Li
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
| | - Wen-He Huang
- Cancer Center and Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Min Chen
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xiao-Long Liu
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China.
| | - Guo-Jun Zhang
- Cancer Center and Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
11
|
Wei Z, Liu Y, Li B, Li J, Lu S, Xing X, Liu K, Wang F, Zhang H. Rare-earth based materials: an effective toolbox for brain imaging, therapy, monitoring and neuromodulation. LIGHT, SCIENCE & APPLICATIONS 2022; 11:175. [PMID: 35688804 PMCID: PMC9187711 DOI: 10.1038/s41377-022-00864-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Brain diseases, including tumors and neurodegenerative disorders, are among the most serious health problems. Non-invasively high-resolution imaging methods are required to gain anatomical structures and information of the brain. In addition, efficient diagnosis technology is also needed to treat brain disease. Rare-earth based materials possess unique optical properties, superior magnetism, and high X-ray absorption abilities, enabling high-resolution imaging of the brain through magnetic resonance imaging, computed tomography imaging, and fluorescence imaging technologies. In addition, rare-earth based materials can be used to detect, treat, and regulate of brain diseases through fine modulation of their structures and functions. Importantly, rare-earth based materials coupled with biomolecules such as antibodies, peptides, and drugs can overcome the blood-brain barrier and be used for targeted treatment. Herein, this review highlights the rational design and application of rare-earth based materials in brain imaging, therapy, monitoring, and neuromodulation. Furthermore, the development prospect of rare-earth based materials is briefly introduced.
Collapse
Affiliation(s)
- Zheng Wei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shuang Lu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Xiwen Xing
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
12
|
Chen H, Wu F, Xie X, Wang W, Li Q, Tu L, Li B, Kong X, Chang Y. Hybrid Nanoplatform: Enabling a Precise Antitumor Strategy via Dual-Modal Imaging-Guided Photodynamic/Chemo-/Immunosynergistic Therapy. ACS NANO 2021; 15:20643-20655. [PMID: 34878760 DOI: 10.1021/acsnano.1c09635] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photodynamic therapy (PDT) has been widely used in tumor therapy due to its high spatial-temporal control and noninvasiveness. However, its clinical application is limited by weak efficacy, shallow tissue penetration, and phototoxicity. Herein, a facile theranostic nanoplatform based on photoswitchable lanthanide-doped nanoparticles was designed. Typically, these nanoparticles had UV-blue and 1525 nm emission upon 980 nm excitation and 1525 nm emission upon 800 nm excitation. We further used these nanoparticles for achieving real-time near-infrared (NIR)-IIb imaging (800 nm) with a high signal-to-noise ratio and imaging-guided PDT (980 nm). Moreover, such a photoswitchable nanoplatform capping with pH-sensitive calcium phosphate for coloading doxorubicin (a chemotherapeutic immunogenic cell death [ICD] inducer) and paramagnetic Mn2+ ions enhances T1-magnetic resonance imaging in the tumor microenvironment. Our results suggest that this theranostic nanoplatform could not only kill tumor cells directly through dual-modal image-guided PDT/chemotherapy but also inhibit distant tumor and lung metastasis through ICD. Therefore, it has great potential for clinical application .
Collapse
Affiliation(s)
- Haoran Chen
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 Jilin, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Fengxia Wu
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110000, China
| | - Xiaoyu Xie
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 Jilin, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wang Wang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 Jilin, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qiqing Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 Jilin, China
| | - Langping Tu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 Jilin, China
| | - Bin Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 Jilin, China
| | - Xianggui Kong
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 Jilin, China
| | - Yulei Chang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 Jilin, China
| |
Collapse
|
13
|
Jiang X, Pu R, Wang C, Xu J, Tang Y, Qi S, Zhan Q, Wei X, Gu B. Noninvasive and early diagnosis of acquired brain injury using fluorescence imaging in the NIR-II window. BIOMEDICAL OPTICS EXPRESS 2021; 12:6984-6994. [PMID: 34858693 PMCID: PMC8606144 DOI: 10.1364/boe.442657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 05/08/2023]
Abstract
Acquired brain injury (ABI), which is the umbrella term for all brain injuries, is one of the most dangerous diseases resulting in high morbidity and mortality, making it extremely significant to early diagnosis of ABI. Current methods, which are mainly composed of X-ray computed tomography and magnetic resonance angiography, remain limited in diagnosis of ABI with respect to limited spatial resolution and long scanning times. Here, we reported through-skull fluorescence imaging of mouse cerebral vasculature without craniotomy, utilizing the fluorescence of down-conversion nanoparticles (DCNPs) in the 1.3 - 1.7 μm near-infrared window (NIR-II window). Due to its high spatial resolution of 22.79 μm, the NIR-II fluorescence imaging method could quickly distinguish the brain injury region of mice after performing the stab wound injury (traumatic brain injury) and ischemic stroke (non-traumatic brain injury), enabling it a powerful tool in the noninvasive and early diagnosis of ABI.
Collapse
Affiliation(s)
- Xinyan Jiang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- These authors contributed equally
| | - Rui Pu
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- These authors contributed equally
| | - Cheng Wang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jiale Xu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yaohui Tang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shuhong Qi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qiuqiang Zhan
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Xunbin Wei
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Biomedical Engineering Department, Peking University, Beijing 100081, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Bobo Gu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
14
|
Liu Y, Zhou Z, Zhang S, Zhao E, Ren J, Liu L, Zhang J. Mechanisms of Upconversion Luminescence of Er 3+-Doped NaYF 4 via 980 and 1530 nm Excitation. NANOMATERIALS 2021; 11:nano11102767. [PMID: 34685210 PMCID: PMC8537089 DOI: 10.3390/nano11102767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 01/22/2023]
Abstract
To date, the mechanisms of Er3+ upconversion luminescence via 980 and 1530 nm excitation have been extensively investigated; however, based on discussions, they either suffer from the lack of convincing evidence or require elaborated and time-consuming numerical simulations. In this work, the steady-state and time-resolved upconversion luminescence data of Er3+-doped NaYF4 were measured; we therefore investigated the upconversion mechanisms of Er3+ on the basis of the spectroscopic observations and the simplified rate equation modeling. This work provides a relatively simple strategy to reveal the UCL mechanisms of Er3+ upon excitation with various wavelengths, which may also be used in other lanthanide ion-doped systems.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China; (Y.L.); (Z.Z.); (S.Z.); (J.R.); (L.L.)
| | - Ziwen Zhou
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China; (Y.L.); (Z.Z.); (S.Z.); (J.R.); (L.L.)
| | - Shaojian Zhang
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China; (Y.L.); (Z.Z.); (S.Z.); (J.R.); (L.L.)
| | - Enming Zhao
- School of Engineering, Dali University, Dali 671003, China;
| | - Jing Ren
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China; (Y.L.); (Z.Z.); (S.Z.); (J.R.); (L.L.)
| | - Lu Liu
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China; (Y.L.); (Z.Z.); (S.Z.); (J.R.); (L.L.)
| | - Jianzhong Zhang
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China; (Y.L.); (Z.Z.); (S.Z.); (J.R.); (L.L.)
- Correspondence:
| |
Collapse
|
15
|
Feng Z, Tang T, Wu T, Yu X, Zhang Y, Wang M, Zheng J, Ying Y, Chen S, Zhou J, Fan X, Zhang D, Li S, Zhang M, Qian J. Perfecting and extending the near-infrared imaging window. LIGHT, SCIENCE & APPLICATIONS 2021; 10:197. [PMID: 34561416 PMCID: PMC8463572 DOI: 10.1038/s41377-021-00628-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 05/05/2023]
Abstract
In vivo fluorescence imaging in the second near-infrared window (NIR-II) has been considered as a promising technique for visualizing mammals. However, the definition of the NIR-II region and the mechanism accounting for the excellent performance still need to be perfected. Herein, we simulate the photon propagation in the NIR region (to 2340 nm), confirm the positive contribution of moderate light absorption by water in intravital imaging and perfect the NIR-II window as 900-1880 nm, where 1400-1500 and 1700-1880 nm are defined as NIR-IIx and NIR-IIc regions, respectively. Moreover, 2080-2340 nm is newly proposed as the third near-infrared (NIR-III) window, which is believed to provide the best imaging quality. The wide-field fluorescence microscopy in the brain is performed around the NIR-IIx region, with excellent optical sectioning strength and the largest imaging depth of intravital NIR-II fluorescence microscopy to date. We also propose 1400 nm long-pass detection in off-peak NIR-II imaging whose performance exceeds that of NIR-IIb imaging, using bright fluorophores with short emission wavelength.
Collapse
Affiliation(s)
- Zhe Feng
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, 310058, Hangzhou, China
- Intelligent Optics & Photonics Research Center, Jiaxing Institute of Zhejiang University, 314000, Jiaxing, Zhejiang Province, China
| | - Tao Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, China
| | - Tianxiang Wu
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, 310058, Hangzhou, China
| | - Xiaoming Yu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, China
| | - Yuhuang Zhang
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, 310058, Hangzhou, China
- Intelligent Optics & Photonics Research Center, Jiaxing Institute of Zhejiang University, 314000, Jiaxing, Zhejiang Province, China
| | - Meng Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, China
| | - Junyan Zheng
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, China
| | - Yanyun Ying
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, China
| | - Siyi Chen
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, 310058, Hangzhou, China
| | - Jing Zhou
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, 310058, Hangzhou, China
| | - Xiaoxiao Fan
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, 310058, Hangzhou, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, China
| | - Mingxi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, China.
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, 310058, Hangzhou, China.
- Intelligent Optics & Photonics Research Center, Jiaxing Institute of Zhejiang University, 314000, Jiaxing, Zhejiang Province, China.
| |
Collapse
|