1
|
Lu B, Wei L, Shi G, Du J. Nanotherapeutics for Alleviating Anesthesia-Associated Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308241. [PMID: 38342603 PMCID: PMC11022745 DOI: 10.1002/advs.202308241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/22/2023] [Indexed: 02/13/2024]
Abstract
Current management of anesthesia-associated complications falls short in terms of both efficacy and safety. Nanomaterials with versatile properties and unique nano-bio interactions hold substantial promise as therapeutics for addressing these complications. This review conducts a thorough examination of the existing nanotherapeutics and highlights the strategies for developing prospective nanomedicines to mitigate anesthetics-related toxicity. Initially, general, regional, and local anesthesia along with the commonly used anesthetics and related prevalent side effects are introduced. Furthermore, employing nanotechnology to prevent and alleviate the complications of anesthetics is systematically demonstrated from three aspects, that is, developing 1) safe nano-formulization for anesthetics; 2) nano-antidotes to sequester overdosed anesthetics and alter their pharmacokinetics; 3) nanomedicines with pharmacodynamic activities to treat anesthetics toxicity. Finally, the prospects and challenges facing the clinical translation of nanotherapeutics for anesthesia-related complications are discussed. This work provides a comprehensive roadmap for developing effective nanotherapeutics to prevent and mitigate anesthesia-associated toxicity, which can potentially revolutionize the management of anesthesia complications.
Collapse
Affiliation(s)
- Bin Lu
- Department of AnesthesiologyThird Hospital of Shanxi Medical UniversityShanxi Bethune HospitalShanxi Academy of Medical SciencesTongji Shanxi HospitalTaiyuan030032China
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of EducationTaiyuanShanxi Province030001China
| | - Ling Wei
- Shanxi Bethune Hospital Center Surgery DepartmentShanxi Academy of Medical SciencesTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032China
| | - Gaoxiang Shi
- Department of AnesthesiologyThird Hospital of Shanxi Medical UniversityShanxi Bethune HospitalShanxi Academy of Medical SciencesTongji Shanxi HospitalTaiyuan030032China
| | - Jiangfeng Du
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of EducationTaiyuanShanxi Province030001China
- Department of Medical ImagingShanxi Key Laboratory of Intelligent Imaging and NanomedicineFirst Hospital of Shanxi Medical UniversityTaiyuanShanxi Province030001China
| |
Collapse
|
2
|
da Silva Gomes B, Cláudia Paiva-Santos A, Veiga F, Mascarenhas-Melo F. Beyond the adverse effects of the systemic route: Exploiting nanocarriers for the topical treatment of skin cancers. Adv Drug Deliv Rev 2024; 207:115197. [PMID: 38342240 DOI: 10.1016/j.addr.2024.115197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/21/2023] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
Skin cancer is a heterogeneous disease that can be divided into two main groups, melanoma and nonmelanoma skin cancers. Conventional therapies for skin cancer have numerous systemic side effects and a high recurrence rate. Topical treatment is an alternative approach, but drug permeability remains a challenge. Therefore, nanocarriers appear as important nanotechnology tools that reduces both the side effects and improves clinical outcomes. This is why they are attracting growing interest. In this review, scientific articles on the use of nanocarriers for the topical treatment of skin cancer were collected. Despite the promising results of the presented nanocarriers and considering that some of them are already on the market, there is an urgent need for investment in the development of manufacturing methods, as well as of suitable toxicological and regulatory evaluations, since the conventional methods currently used to develop these nanocarriers-based products are more time-consuming and expensive than conventional products.
Collapse
Affiliation(s)
- Beatriz da Silva Gomes
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Ana Cláudia Paiva-Santos
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Francisco Veiga
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Filipa Mascarenhas-Melo
- University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; Higher School of Health, Polytechnic Institute of Guarda, Rua da Cadeia, 6300 - 307 Guarda, Portugal.
| |
Collapse
|
3
|
Yang CY, Meng Z, Yang K, He Z, Hou Z, Yang J, Lu J, Cao Z, Yang S, Chai Y, Zhao H, Zhao L, Sun X, Wang G, Wang X. External magnetic field non-invasively stimulates spinal cord regeneration in rat via a magnetic-responsive aligned fibrin hydrogel. Biofabrication 2023; 15:035022. [PMID: 37279745 DOI: 10.1088/1758-5090/acdbec] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/06/2023] [Indexed: 06/08/2023]
Abstract
Magnetic stimulation is becoming an attractive approach to promote neuroprotection, neurogenesis, axonal regeneration, and functional recovery in both the central nervous system and peripheral nervous system disorders owing to its painless, non-invasive, and deep penetration characteristics. Here, a magnetic-responsive aligned fibrin hydrogel (MAFG) was developed to import and amplify the extrinsic magnetic field (MF) locally to stimulate spinal cord regeneration in combination with the beneficial topographical and biochemical cues of aligned fibrin hydrogel (AFG). Magnetic nanoparticles (MNPs) were embedded uniformly in AFG during electrospinning to endow it magnetic-responsive feature, with saturation magnetization of 21.79 emu g-1. It is found that the MNPs under the MF could enhance cell proliferation and neurotrophin secretion of PC12 cellsin vitro. The MAFG that was implanted into a rat with 2 mm complete transected spinal cord injury (SCI) effectively enhanced neural regeneration and angiogenesis in the lesion area, thus leading to significant recovery of motor function under the MF (MAFG@MF). This study suggests a new multimodal tissue engineering strategy based on multifunctional biomaterials that deliver multimodal regulatory signals with the integration of aligned topography, biochemical cues, and extrinsic MF stimulation for spinal cord regeneration following severe SCI.
Collapse
Affiliation(s)
- Chun-Yi Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhe Meng
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, People's Republic of China
| | - Kaiyuan Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, People's Republic of China
| | - Zhijun He
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, People's Republic of China
| | - Zhaohui Hou
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jia Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jingsong Lu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zheng Cao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Shuhui Yang
- School of Materials Science and Engineering, Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Yi Chai
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - He Zhao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Guihuai Wang
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, People's Republic of China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
4
|
Rhaman MM, Islam MR, Akash S, Mim M, Noor alam M, Nepovimova E, Valis M, Kuca K, Sharma R. Exploring the role of nanomedicines for the therapeutic approach of central nervous system dysfunction: At a glance. Front Cell Dev Biol 2022; 10:989471. [PMID: 36120565 PMCID: PMC9478743 DOI: 10.3389/fcell.2022.989471] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 12/12/2022] Open
Abstract
In recent decades, research scientists, molecular biologists, and pharmacologists have placed a strong emphasis on cutting-edge nanostructured materials technologies to increase medicine delivery to the central nervous system (CNS). The application of nanoscience for the treatment of neurodegenerative diseases (NDs) such as Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), Huntington’s disease (HD), brain cancer, and hemorrhage has the potential to transform care. Multiple studies have indicated that nanomaterials can be used to successfully treat CNS disorders in the case of neurodegeneration. Nanomedicine development for the cure of degenerative and inflammatory diseases of the nervous system is critical. Nanoparticles may act as a drug transporter that can precisely target sick brain sub-regions, boosting therapy success. It is important to develop strategies that can penetrate the blood–brain barrier (BBB) and improve the effectiveness of medications. One of the probable tactics is the use of different nanoscale materials. These nano-based pharmaceuticals offer low toxicity, tailored delivery, high stability, and drug loading capacity. They may also increase therapeutic effectiveness. A few examples of the many different kinds and forms of nanomaterials that have been widely employed to treat neurological diseases include quantum dots, dendrimers, metallic nanoparticles, polymeric nanoparticles, carbon nanotubes, liposomes, and micelles. These unique qualities, including sensitivity, selectivity, and ability to traverse the BBB when employed in nano-sized particles, make these nanoparticles useful for imaging studies and treatment of NDs. Multifunctional nanoparticles carrying pharmacological medications serve two purposes: they improve medication distribution while also enabling cell dynamics imaging and pharmacokinetic study. However, because of the potential for wide-ranging clinical implications, safety concerns persist, limiting any potential for translation. The evidence for using nanotechnology to create drug delivery systems that could pass across the BBB and deliver therapeutic chemicals to CNS was examined in this study.
Collapse
Affiliation(s)
- Md. Mominur Rhaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- *Correspondence: Md. Mominur Rhaman, ; Rohit Sharma,
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mobasharah Mim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Noor alam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Martin Valis
- Department of Neurology, Charles University in Prague, Faculty of Medicine in Hradec Králové and University Hospital, Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- *Correspondence: Md. Mominur Rhaman, ; Rohit Sharma,
| |
Collapse
|
5
|
Jiang X, Liu X, Yu Q, Shen W, Mei X, Tian H, Wu C. Functional resveratrol-biodegradable manganese doped silica nanoparticles for the spinal cord injury treatment. Mater Today Bio 2021; 13:100177. [PMID: 34938991 DOI: 10.1016/j.mtbio.2021.100177] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
Abstract
Spinal cord injury (SCI) causes secondary injury, accompanied by pathological changes such as oxidative stress, inflammation and neuronal apoptosis. This leads to permanent disabilities such as paralysis and loss of movement or sensation. Due to the ineffectiveness of drugs passing through the blood spinal cord barrier (BSCB), there is currently no effective treatment for SCI. The aim of this experiment was to design plasma complex component functionalized manganese-doped silica nanoparticles (PMMSN) with a redox response as a targeted drug carrier for resveratrol (RES), which effectively transports insoluble drugs to cross the BSCB. RES was adsorbed into PMMSN with a particle size of approximately 110 nm by the adsorption method, and the drug loading reached 32.61 ± 3.38%. The RES release results for the loaded sample (PMMSN-RES) showed that the PMMSN-RES exhibited a release slowly effect. In vitro and vivo experiments demonstrated that PMMSN-RES decreased reactive oxygen species (ROS) and malondialdehyde (MDA), increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities, reduced the expression of inflammatory (TNF-α, IL-1β and IL-6) and apoptotic cytokines (cleaved caspase-3) in spinal cord tissue after SCI. In summary, PMMSN-RES may be a potential pharmaceutical preparation for the treatment of SCI by reducing neuronal apoptosis and inhibiting inflammation caused by reducing oxidative stress to promote the recovery of mouse motor function.
Collapse
Key Words
- BSCB, blood spinal cord barrier
- GSH-Px, glutathione peroxidase
- H2O2, hydrogen peroxide
- MDA, malondialdehyde
- MMSN, manganese-doped mesoporous silica nanoparticles
- Manganese-doped silica nanoparticles
- MnO2, manganese dioxide
- Neuronal apoptosis
- Oxidative stress
- PMMSN, plasma complex component functionalized manganese-doped silica nanoparticles
- RES, resveratrol
- ROS, reactive oxygen species
- Redox response
- Resveratrol
- SCI, spinal cord injury
- SOD, increased superoxide dismutase
- Spinal cord injury
Collapse
Affiliation(s)
- Xue Jiang
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Xiaoyao Liu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Qi Yu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Wenwen Shen
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Xifan Mei
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - He Tian
- Department of Histology and Embryology, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| |
Collapse
|