1
|
Hu P, Yang W, Zhang J, Yu Z, Zhang X, Chingin K, Chen H, Zhang X. Rapid evaluation of vegetable oil varieties and geographical origins by ambient corona discharge ionization mass spectrometry. Food Chem 2025; 464:141699. [PMID: 39442212 DOI: 10.1016/j.foodchem.2024.141699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
The composition and ratio of unsaturated fatty acids in vegetable oils play a crucial role in determining their overall quality. In this study, we present a corona discharge ionization mass spectrometry (MS) method for the rapid differentiation of vegetable oil varieties and their geographical origins under environmental conditions. Abundant water dimer radical cations, (H2O)2+•, were generated by the ionization setup, which effectively activated carbon‑carbon double bonds (C=C) to form epoxidized products. These epoxidation products were analyzed using tandem MS, generating diagnostic fragment ions that precisely identified CC bond positions. Statistical analysis models were subsequently developed using the resulting MS fingerprint data, revealing significant differences between various vegetable oils and olive oils from different origins. Key advantages of this method include minimal sample preparation, rapid analysis, and easily interpretable spectra. This study provides a new MS-based strategy for food quality assessment and offers a promising tool for identifying CC positional isomers in complex systems.
Collapse
Affiliation(s)
- Pinghua Hu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan Ave, Nanchang 330013, China
| | - Wenwen Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan Ave, Nanchang 330013, China
| | - Jun Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan Ave, Nanchang 330013, China
| | - Zhendong Yu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan Ave, Nanchang 330013, China
| | - Xinglei Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan Ave, Nanchang 330013, China
| | - Konstantin Chingin
- School of Pharmacy, Jiangxi University of Chinese Medicine, 1688 Meiling Ave, Nanchang 330004, China
| | - Huanwen Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, 1688 Meiling Ave, Nanchang 330004, China
| | - Xiaoping Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan Ave, Nanchang 330013, China.
| |
Collapse
|
2
|
Zhang X, Frankevich V, Ding J, Ma Y, Chingin K, Chen H. Direct mass spectrometry analysis of exhaled human breath in real-time. MASS SPECTROMETRY REVIEWS 2025; 44:43-61. [PMID: 37565588 DOI: 10.1002/mas.21855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/02/2022] [Accepted: 10/01/2022] [Indexed: 08/12/2023]
Abstract
The molecular composition of exhaled human breath can reflect various physiological and pathological conditions. Considerable progress has been achieved over the past decade in real-time analysis of exhaled human breath using direct mass spectrometry methods, including selected ion flow tube mass spectrometry, proton transfer reaction mass spectrometry, extractive electrospray ionization mass spectrometry, secondary electrospray ionization mass spectrometry, acetone-assisted negative photoionization mass spectrometry, atmospheric pressure photoionization mass spectrometry, and low-pressure photoionization mass spectrometry. Here, recent developments in direct mass spectrometry analysis of exhaled human breath are reviewed with regard to analytical performance (chemical sensitivity, selectivity, quantitative capabilities) and applications of the developed methods in disease diagnosis, targeted molecular detection, and real-time metabolic monitoring.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, People's Republic of China
| | - Vladimir Frankevich
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Jianhua Ding
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, People's Republic of China
| | - Yuanyuan Ma
- Department of GCP, Shanghai Public Health Clinical Center, Shanghai, China
| | - Konstantin Chingin
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, People's Republic of China
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| |
Collapse
|
3
|
Zhang X, Hu P, Duan M, Chingin K, Balabin R, Zhang X, Chen H. Ambient catalyst-free oxidation reactions of aromatic amines using water radical cations. Chem Sci 2024:d4sc04519j. [PMID: 39290584 PMCID: PMC11403581 DOI: 10.1039/d4sc04519j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Water radical cations play a pivotal role in various scientific and industrial fields due to their unique reactivity and capacity to drive complex chemical transformations. Here we explored the formation of quaternary ammonium cations through the direct oxidation reaction of aromatic amines, facilitated by water radical cations within water microdroplets. This process was monitored via in situ mass spectrometry and occurs under ambient conditions, negating the need for traditional chemical catalysts or oxidants and achieving an impressive yield of approximately 80%. Additionally, we employed a multi-channel spray system and enhanced both the reactant concentration and flow rate, thereby enabling gram-scale synthesis. These findings not only demonstrate the effectiveness and eco-friendliness of microdroplet chemistry but also provide a new understanding of heterogeneous ˙OH generation channels, thereby boosting the synthetic efficiency and sustainability of chemical processes.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology Nanchang 330013 P. R. China
| | - Pinghua Hu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology Nanchang 330013 P. R. China
| | - Minmin Duan
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology Nanchang 330013 P. R. China
| | - Konstantin Chingin
- School of Pharmacy, Jiangxi University of Chinese Medicine Nanchang 330004 P. R. China
| | - Roman Balabin
- School of Pharmacy, Jiangxi University of Chinese Medicine Nanchang 330004 P. R. China
| | - Xinglei Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology Nanchang 330013 P. R. China
| | - Huanwen Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine Nanchang 330004 P. R. China
| |
Collapse
|
4
|
Schieweck A, Schulz N, Amendt J, Birngruber C, Holz F. Catch me if you can-emission patterns of human bodies in relation to postmortem changes. Int J Legal Med 2024; 138:1603-1620. [PMID: 38456958 PMCID: PMC11164720 DOI: 10.1007/s00414-024-03194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/13/2024] [Indexed: 03/09/2024]
Abstract
The present study examines for the first time the emission patterns and olfactory signatures of 9 complete human corpses of different stages of decomposition. Air sampling was performed inside the body bags with solid sorbents and analysed by coupled gas chromatography-mass spectrometry after thermal desorption (TD-GC-MS). Furthermore, odour-related substances were detected by gas chromatography-olfactometry (GC-O). Sulfurous compounds (mainly dimethyl di- and trisulfide) were identified as most important to the odour perception. Around 350 individual organic substances were detected by TD-GC-MS, notably sulfurous and nitrogenous substances as well as branched alkanes, aldehydes, ketones, alcohols, carboxylic acids, carboxylic acid esters and ethers. A range of terpenes was detected for the first time in a characteristic emission pattern over all decomposition stages. Concentrations of the substances varied greatly, and no correlation between the emission patterns, the stage of decomposition and the cause of death could be found. While previous studies often analysed pig cadavers or only parts of human tissue, the present study shows the importance of analysing complete human corpses over a range of decomposition stages. Moreover, it is shown that using body bags as a kind of "emission test chamber" is a very promising approach, also because it is a realistic application considering the usual transport and store of a body before autopsy.
Collapse
Affiliation(s)
- Alexandra Schieweck
- Department of Material Analysis and Indoor Chemistry, Fraunhofer WKI, Riedenkamp 3, 38108, Braunschweig, Germany.
| | - Nicole Schulz
- Department of Material Analysis and Indoor Chemistry, Fraunhofer WKI, Riedenkamp 3, 38108, Braunschweig, Germany
| | - Jens Amendt
- Institute of Legal Medicine, University Hospital Frankfurt, Goethe University, Kennedyallee 104, 60596, Frankfurt am Main, Germany
| | - Christoph Birngruber
- Institute of Legal Medicine, University Hospital Frankfurt, Goethe University, Kennedyallee 104, 60596, Frankfurt am Main, Germany
| | - Franziska Holz
- Institute of Legal Medicine, University Hospital Frankfurt, Goethe University, Kennedyallee 104, 60596, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Qiu L, Cooks RG. Spontaneous Oxidation in Aqueous Microdroplets: Water Radical Cation as Primary Oxidizing Agent. Angew Chem Int Ed Engl 2024; 63:e202400118. [PMID: 38302696 DOI: 10.1002/anie.202400118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Exploration of the unique chemical properties of interfaces can unlock new understanding. A striking example is the finding of accelerated reactions, particularly spontaneous oxidation reactions, that occur without assistance of catalysts or external oxidants at the air interface of both aqueous and organic solutions (provided they contain some water). This finding opened a new area of interfacial chemistry but also caused heated debate regarding the primary chemical species responsible for the observed oxidation. An overview of the literature covering oxidation in microdroplets with air interfaces is provided, together with a critical examination of previous findings and hypotheses. The water radical cation/radical anion pair, formed spontaneously and responsible for the electric field at or near the droplet/air interface, is suggested to constitute the primary redox species. Mechanisms of accelerated microdroplet reactions are critically discussed and it is shown that hydroxyl radical/hydrogen peroxide formation in microdroplets does not require that these species be the primary oxidant. Instead, we suggest that hydroxyl radical and hydrogen peroxide are the products of water radical cation decay in water. The importance of microdroplet chemistry in the prebiotic environment is sketched briefly and the role of partial solvation in reaction acceleration is noted.
Collapse
Affiliation(s)
- Lingqi Qiu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, U.S
| | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, U.S
| |
Collapse
|
6
|
Zhang X, Su R, Li J, Huang L, Yang W, Chingin K, Balabin R, Wang J, Zhang X, Zhu W, Huang K, Feng S, Chen H. Efficient catalyst-free N 2 fixation by water radical cations under ambient conditions. Nat Commun 2024; 15:1535. [PMID: 38378822 PMCID: PMC10879522 DOI: 10.1038/s41467-024-45832-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
The growth and sustainable development of humanity is heavily dependent upon molecular nitrogen (N2) fixation. Herein we discover ambient catalyst-free disproportionation of N2 by water plasma which occurs via the distinctive HONH-HNOH+• intermediate to yield economically valuable nitroxyl (HNO) and hydroxylamine (NH2OH) products. Calculations suggest that the reaction is prompted by the coordination of electronically excited N2 with water dimer radical cation, (H2O)2+•, in its two-center-three-electron configuration. The reaction products are collected in a 76-needle array discharge reactor with product yields of 1.14 μg cm-2 h-1 for NH2OH and 0.37 μg cm-2 h-1 for HNO. Potential applications of these compounds are demonstrated to make ammonia (for NH2OH), as well as to chemically react and convert cysteine, and serve as a neuroprotective agent (for HNO). The conversion of N2 into HNO and NH2OH by water plasma could offer great profitability and reduction of polluting emissions, thus giving an entirely look and perspectives to the problem of green N2 fixation.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, P. R. China
| | - Rui Su
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jingling Li
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, P. R. China
| | - Liping Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Wenwen Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, P. R. China
| | - Konstantin Chingin
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Roman Balabin
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Jingjing Wang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Xinglei Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, P. R. China
| | - Weifeng Zhu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, P. R. China.
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China.
| |
Collapse
|
7
|
Yang W, Zhang X, Zhang J, Wang G, Liang H, Zhang X, Chingin K, Chen H. Determination of C═C Positions of Unsaturated Fatty Acids in Foods via Ambient Reactive Desorption Ionization with Water Dimer Radical Cations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:845-856. [PMID: 38131280 DOI: 10.1021/acs.jafc.3c05585] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The positions of C═C bonds in unsaturated fatty acids (FAs) are one of the main factors determining the quality of food flavor. Herein, we developed an approach for the determination of C═C bonds of FAs by online epoxidation reaction with water dimer radical cations. The limit of detection for octenoic acid isomers was ∼9 μg/L. The positions of C═C bonds in trans-2/3-hexenoic acid, trans-2/3-octenoic acid, oleic acid, linoleic acid, and linolenic acid in black tea or olive oil samples were directly determined by the established method. These results indicate that the established method allows the rapid determination of unsaturated FAs in black tea and olive oil. The advantages of this approach include the analysis speed (∼1 min per sample), simple device, and no need for complex pretreatment. This study not only provides a strategy for the determination of C═C positions but also offers new possibilities for applications in the field of food chemistry.
Collapse
Affiliation(s)
- Wenwen Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, China
| | - Xiaoping Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, China
| | - Jun Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, China
| | - Guoshuan Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, China
| | - Hailong Liang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, China
| | - Xinglei Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, China
| | - Konstantin Chingin
- School of Pharmacy, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, China
- School of Pharmacy, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| |
Collapse
|
8
|
Li L, Wu Q, Xiang SK, Mu S, Zhao R, Xiao M, Long C, Zheng X, Cui C. Electron Paramagnetic Resonance Tracks Condition-Sensitive Water Radical Cation. J Phys Chem Lett 2023; 14:9183-9191. [PMID: 37800664 DOI: 10.1021/acs.jpclett.3c02268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Oxidizing species or radicals generated in water are of vital importance in catalysis, the environment, and biology. In addition to several related reactive oxygen species, using electron paramagnetic resonance (EPR), we present a nontrapping chemical transformation pathway to track water radical cation (H2O+•) species, whose formation is very sensitive to the conditioning environments, such as light irradiation, mechanical action, and gas/chemical introduction. We reveal that H2O+• can oxidize the 5,5-dimethyl-1-pyrroline N-oxide (DMPO) to the crucial epoxy hydroxylamine (HDMP=O) intermediate, which further reacts with the hydroxyl radical (•OH) for the formation of the EPR-active sextet radical (DMPO=O•). Interestingly, we uncover that H2O+• can react with dimethyl methylphosphonate (DMMP), 2-methyl-2-nitrosopropane (MNP), 5-tert-butoxycarbonyl-5-methyl-1-pyrroline N-oxide (BMPO), and α-phenyl-N-tert-butylnitrone (PBN) which contain a double-bond structure to produce corresponding derivatives as well. It is thus expected that both H2O+• and •OH are ubiquitous in nature and in various water-containing experimental systems. These findings provide a novel perspective on radicals for water redox chemistry.
Collapse
Affiliation(s)
- Lei Li
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qianbao Wu
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shi-Kai Xiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Shijia Mu
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ruijuan Zhao
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Mengjun Xiao
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chang Long
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xia Zheng
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chunhua Cui
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
9
|
Qin M, Qian Y, Huang L, Zhong C, Li M, Yu J, Chen H. Extractive electrospray ionization mass spectrometry for analytical evaluation and synthetic preparation of pharmaceutical chemicals. Front Pharmacol 2023; 14:1110900. [PMID: 36713836 PMCID: PMC9880169 DOI: 10.3389/fphar.2023.1110900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Extraction electrospray ionization mass spectrometry (EESI-MS), due to the unique configuration of its ionization module, enables the effective ionization of trace molecules of interest in samples containing complex matrices with high sensitivity, high selectivity and high responding speed without requiring sample pretreatment, and allows high-energy molecular species to undergo specially designed reactions for advanced functionalization. The typical effects of operating conditions on the analytical performance of extraction electrospray ionization mass spectrometry for various pharmaceutical compounds, pharmaceutical preparations and herbal materials were systematically reviewed. The application prospect of extraction electrospray ionization in molecular functionalization for advanced drug discovery is also briefly introduced.
Collapse
Affiliation(s)
- Manman Qin
- Mass Spectrometry Laboratory for BioSample Analysis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China,Key Laboratory for Pharmacology and Translational Research of Traditional Chinese Medicine of Nanchang, Centre for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China,Jiangxi Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Vascular Remodeling Diseases, Nanchang, Jiangxi, China
| | - Yuqing Qian
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Lu Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Chao Zhong
- Key Laboratory for Pharmacology and Translational Research of Traditional Chinese Medicine of Nanchang, Centre for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China,Jiangxi Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Vascular Remodeling Diseases, Nanchang, Jiangxi, China
| | - Mingdong Li
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Jun Yu
- Department of Cardiovascular Sciences and Centre for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Huanwen Chen
- Mass Spectrometry Laboratory for BioSample Analysis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China,*Correspondence: Huanwen Chen,
| |
Collapse
|
10
|
Qiu L, Psimos MD, Cooks RG. Spontaneous Oxidation of Aromatic Sulfones to Sulfonic Acids in Microdroplets. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1362-1367. [PMID: 35312307 DOI: 10.1021/jasms.2c00029] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Reactions in microdroplets can be accelerated and can present unique chemistry compared to reactions in bulk solution. Here, we report the accelerated oxidation of aromatic sulfones to sulfonic acids in microdroplets under ambient conditions without the addition of acid, base, or catalyst. The experimental data suggest that the water radical cation, (H2O)+•, derived from traces of water in the solvent, is the oxidant. The substrate scope of the reaction indicates the need for a strong electron-donating group (e.g., p-hydroxyl) in the aromatic ring. An analogous oxidation is observed in an aromatic ketone with benzoic acid production. The shared mechanism is suggested to involve field-assisted ionization of water at the droplet/air interface, its reaction with the sulfone (M) to form the radical cation adduct, (M + H2O)+•, followed by 1,2-aryl migration and C-O cleavage. A remarkably high reaction rate acceleration (∼103) and regioselectivity (∼100-fold) characterize the reaction.
Collapse
Affiliation(s)
- Lingqi Qiu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael D Psimos
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
11
|
Jakšić M, Mihajlović A, Vujić D, Giannoukos S, Brkić B. Membrane inlet mass spectrometry method for food intake impact assessment on specific volatile organic compounds in exhaled breath. Anal Bioanal Chem 2022; 414:6077-6091. [PMID: 35727330 PMCID: PMC9314300 DOI: 10.1007/s00216-022-04168-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
This research work describes the development of a novel bioanalytical method for the assessment of food impact on selected exhaled breath volatile organic compounds (VOCs) using a fast and portable screening VOC prototype sensor based on membrane inlet mass spectrometry (MIMS). Method and sensor prototype functionality was verified by obtaining good response times, linearity in the examined concentration ranges, and sensitivity and repeatability for several breath VOCs—acetone, ethanol, n-pentane, and isoprene. A new VOC sensor prototype was also proven to be sensitive enough for selected breath VOC quantification with limits of detection at low part per billion (ppb) levels—5 ppb for n-pentane, 10 ppb for acetone and ethanol, and 25 ppb for isoprene. Food impact assessment was accomplished by tracking the levels of acetone, ethanol, n-pentane, and isoprene in exhaled breath samples collected from 50 healthy participants before the meal and 60 min and 120 min after the meal. For acetone, isoprene, and n-pentane, a larger impact was noticed 120 min after the meal, while for ethanol, it was after 60 min. Obtained VOC levels were in the expected concentration ranges. Mean values at all time points were ~ 500–900 ppb for acetone and ~ 400–600 ppb for ethanol. Most of the results for n-pentane were below 5 ppb, but the mean value for those which were detected was ~ 30 ppb. Along with samples, data about participants’ lifestyle were collected via a short questionnaire, which were compared against obtained VOC levels in order to reveal some significant correlations between habits of participants and their breath VOC levels.
Collapse
Affiliation(s)
- Milena Jakšić
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjića 1, 21000, Novi Sad, Serbia.
| | - Andrea Mihajlović
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjića 1, 21000, Novi Sad, Serbia
| | - Djordje Vujić
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjića 1, 21000, Novi Sad, Serbia
| | - Stamatios Giannoukos
- Department of Chemistry and Applied Biosciences, ETH Zurich, HCI D 317, Vladimir-Prelog-Weg 3, CH-8093, Zurich, Switzerland
| | - Boris Brkić
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjića 1, 21000, Novi Sad, Serbia.
| |
Collapse
|
12
|
Qiu L, Morato NM, Huang KH, Cooks RG. Spontaneous Water Radical Cation Oxidation at Double Bonds in Microdroplets. Front Chem 2022; 10:903774. [PMID: 35559217 PMCID: PMC9086510 DOI: 10.3389/fchem.2022.903774] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Spontaneous oxidation of compounds containing diverse X=Y moieties (e.g., sulfonamides, ketones, esters, sulfones) occurs readily in organic-solvent microdroplets. This surprising phenomenon is proposed to be driven by the generation of an intermediate species [M+H2O]+·: a covalent adduct of water radical cation (H2O+·) with the reactant molecule (M). The adduct is observed in the positive ion mass spectrum while its formation in the interfacial region of the microdroplet (i.e., at the air-droplet interface) is indicated by the strong dependence of the oxidation product formation on the spray distance (which reflects the droplet size and consequently the surface-to-volume ratio) and the solvent composition. Importantly, based on the screening of a ca. 21,000-compound library and the detailed consideration of six functional groups, the formation of a molecular adduct with the water radical cation is a significant route to ionization in positive ion mode electrospray, where it is favored in those compounds with X=Y moieties which lack basic groups. A set of model monofunctional systems was studied and in one case, benzyl benzoate, evidence was found for oxidation driven by hydroxyl radical adduct formation followed by protonation in addition to the dominant water radical cation addition process. Significant implications of molecular ionization by water radical cations for oxidation processes in atmospheric aerosols, analytical mass spectrometry and small-scale synthesis are noted.
Collapse
|
13
|
Mi D, Xu J, Zhang Y, Zhu T, Ouyang J, Dong X, Chingin K. Formation of protonated water-hydrogen clusters in an ion trap mass spectrometer at room temperature. Phys Chem Chem Phys 2022; 24:7180-7184. [PMID: 35128554 DOI: 10.1039/d1cp04516d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protonated water-hydrogen clusters [H+(H2O)n·m(H2)] present an interesting model for fundamental water research, but their formation and isolation presents considerable experimental challenges. Here, we report the detection of [H+(H2O)n·m(H2)] (2 ≤ n ≤ 3, m ≤ 2) clusters alongside protonated water clusters H+(H2O)n (2 ≤ n ≤ 3) in a linear ion trap mass spectrometer under two different experimental conditions: (1) when water vapor was ionized by +5.5 kV ambient corona discharge in front of the mass spectrometer inlet; (2) when isolated H+(H2O)n clusters were exposed to H2 gas inside the linear trap. Chemical assignment of [H+(H2O)n·m(H2)] clusters was confirmed using reference experiments with isotopically labeled water and deuterium. Also, the formation of H2 gas in the corona discharge area was indicated by a flame test. Overall, our findings clearly indicate that [H+(H2O)n·m(H2)] clusters can be produced at room temperature through the association of protonated water clusters H+(H2O)n with H2 gas, without any cooling necessary. A mechanism for the formation of the protonated water-hydrogen complexes was proposed. Our results also suggest that the association of water ions with H2 gas may play a notable role in corona discharge ionization processes, such as atmospheric pressure chemical ionization, and may be partially responsible for the stabilization of reactive radical species occasionally reported in corona discharge ionization experiments.
Collapse
Affiliation(s)
- Dongbo Mi
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China.
| | - Junqiang Xu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China.
| | - Yunpeng Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China.
| | - Tenggao Zhu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China.
| | - Jiewen Ouyang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China.
| | - Xiaofeng Dong
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China.
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China.
| |
Collapse
|
14
|
Mi D, Mao Y, Wei B, Li YC, Dong X, Chingin K. Generation of Phenol and Molecular Hydrogen through Catalyst-Free C-H Activation of Benzene by Water Radical Cations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:68-73. [PMID: 34936361 DOI: 10.1021/jasms.1c00268] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Here, we report on the abundant formation of phenol and molecular hydrogen when benzene vapor was exposed to gas plasma generated by +5.5 kV corona discharge of water vapor in argon in the absence of oxygen. Systematic analysis using a series of isotopic standards (d6-benzene, D2O, and H218O) and benzene derivatives (mono-, di-, trichlorobenzene, and N,N-dimethylaniline) indicated that the formation of phenol occurred through the reaction between neutral benzene and the radical cation of water dimer, (H2O)2+•. A two-step reaction mechanism was proposed based on the results of experiments and DFT calculations: (1) the formation of (C6H6...H2O)+• intermediate through electrophilic addition; (2) the formation of C6H5OH+• through the release of H2 from the (C6H6...H2O)+• intermediate. Our findings offer a novel catalyst-free method to prepare phenol from benzene with phenol selectivity >90%.
Collapse
Affiliation(s)
- Dongbo Mi
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| | - Yixuan Mao
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| | - Bingqing Wei
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| | - Yan-Chun Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130012, China
| | - Xiaofeng Dong
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| |
Collapse
|