1
|
Zang W, Peng M, Yang Y, Zhang C, Liu Z, Wang L, Wang C, Lin J, Chen T, Zhang Y, Li J, Wu A. Colorimetric detection of neomycin sulfate in serum based on ultra-small gold nanoparticles with peroxidase-like activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124686. [PMID: 38950479 DOI: 10.1016/j.saa.2024.124686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/26/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024]
Abstract
Neomycin sulfate (NEO) is a kind of aminoglycoside antibiotics. Because of its strong ototoxicity, nephrotoxicity and other side effects, its content in the body should be strictly monitored during use. In this paper, a rapid colorimetric detection method for NEO based on ultrasmall polyvinylpyrrolidone modified gold nanoparticles (PVP/Au NPs) with peroxidase-like activity was developed. Firstly, ultra small PVP/Au NPs with weak peroxidase-like activity were synthetized. When they were mixed with NEO, strong hydrogen bonds were formed between NEO and PVP, resulting in the aggregation of PVP/Au NPs, and the aggregated PVP/Au NPs showed stronger peroxidase-like activity. Therefore, rapid colorimetric detection of NEO was achieved by utilizing the enhanced peroxidase-like activity mechanism caused by the aggregation of ultra small PVP/Au NPs. The naked eye detection limit of this method is 50 nM. Within the range of 1 nM-300 nM, there was a good linear relationship between NEO concentration and the change in absorbance intensity of PVP/Au NPs-H2O2-TMB solution at 652 nm, with the regression curve of y = 0.0045x + 0.0525 (R2 = 0.998), and the detection limit is 1 nM. In addition, this method was successfully applied to the detection of NEO in mouse serum. The recoveries were 104.4 % -107.6 % compared with HPLC assay results, indicating that this method for NEO detection based on PVP/Au NPs has great potential in actual detection of NEO in serum.
Collapse
Affiliation(s)
- Wen Zang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China; Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Minjie Peng
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China; Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yiyu Yang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China; Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Chenguang Zhang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China; Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhusheng Liu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China; Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Le Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China; Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Chaozhen Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Lin
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China; Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianxiang Chen
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China; Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujie Zhang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China; Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Juan Li
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China; Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Aiguo Wu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China; Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Swain S, Lin TY, Chou IH, Liu SC, Mallick BC, Lin HY, Huang CH. Photoactive nanocatalysts as DTT-assisted BSA-AuNCs with enhanced oxidase-mimicking ability for sensitive fluorometric detection of antioxidants. J Nanobiotechnology 2024; 22:585. [PMID: 39342215 PMCID: PMC11438146 DOI: 10.1186/s12951-024-02850-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
Redox imbalance and oxidative stress are increasingly recognized as significant factors in health disorders such as neurodegenerative disorders, premature aging and cancer. However, detecting antioxidant levels that is crucial for managing oxidative stress, can be challenging due to existing assays' limitations, such as insensitivity to thiol-containing antioxidants. This study presents a simple fluorescence-based assay for antioxidant detection employing the enhanced photocatalytic oxidase-like activity of dithiothreitol (DTT)-assisted bovine serum albumin (BSA)-stabilized gold nanoclusters (DTT@BSA-AuNCs). The reported nanozyme exhibits remarkable stability, versatility, and catalytic activity. Under LED irradiation, DTT@BSA-AuNCs generate singlet oxygen, which converts non-fluorescent thiamine to fluorescent thiochrome, utilizing dissolved oxygen for catalysis. Antioxidants inhibit thiochrome formation, leading to fluorescence quenching. This method enables sensitive detection of antioxidants such as ascorbic acid and glutathione with limits of detection of 0.08 µM and 0.32 µM, respectively, under neutral pH, outperforming previous studies. The assay successfully detects antioxidants in human saliva and cancer cell models. The DTT@BSA-AuNCs-based assay offers a cost-effective, sensitive, and straightforward approach for detecting antioxidants in biological samples, facilitating improved monitoring of oxidative stress in various diseases.
Collapse
Affiliation(s)
- Sanskruti Swain
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Ting-Yi Lin
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - I-Hsuan Chou
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Chen Liu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Bikash C Mallick
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Hsing-Ying Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chen-Han Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Liu G, Zeng B, Liu Y, Cui Q, Wang Y, Li Y, Chen L, Zhao J. A Lanthanide-Incorporated Phospho(III)tungstate Aggregate Constructed from [HP IIIW 8O 31] 10- and [W 11O 39] 12- Building Blocks and Its Nanocomposite with CdS for Ultrasensitive Photoelectrochemical Detection of Oxytetracycline. Inorg Chem 2024; 63:15348-15358. [PMID: 39106517 DOI: 10.1021/acs.inorgchem.4c02174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
A novel tartronic acid decorated hexa-CeIII-incorporated phospho(III)tungstate aggregate (C4H12NO)6Na18H2[(HPW8O31)2[W11O39]2(H2TAD)4(H2O)4W4Ce6H2P2O14]·84H2O (1, H3TAD = tartronic acid) was synthesized by a one-step assembly strategy. Its main skeleton is constructed from two [W11O39]12- fragments, two [HPIIIW8O31]10- segments and one H2TAD--ornamented dodecanuclear heterometallic [W4Ce6H2PIII2O14(H2TAD)4(H2O)4]18+ cluster. In the structure, the [HPIIIO3]2- groups not only work as the heteroatom template to induce the formation of lacunary [HPIIIW8O31]10- segments but also function as the connector to bridge Ce3+ cations. With the help of a reaction strategy of combining ultrasonication treatment with the continuous ion layer adsorption method, the 1/CdS composite was constructed and exhibits prominent photoelectrochemical activity. The 1/CdS composite was used as a photoelectrochemical sensor for oxytetracycline detection at 0 V (vs Ag/AgCl), which displays excellent properties with quick response and low limit of detection (0.042 nM). This work can provide some helpful references in the construction of novel PIII-induced polyoxometalates consisting of different building blocks and can extend the applications of polyoxometalate-based nanocomposites into photoelectrochemical detection for antibiotics as well as biomolecules.
Collapse
Affiliation(s)
- Guoping Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Baoxing Zeng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Qingqing Cui
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yanying Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yanzhou Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
4
|
Zhao X, Zhang Z, Liu J. Construction of colorimetric sensor arrays using steel slag-based composites for highly sensitive detection of tetracycline antibiotics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5555-5563. [PMID: 39069882 DOI: 10.1039/d4ay00754a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Sensor array methods have received much attention in recent years. In this study, a colorimetric sensor array consisting of three kinds of steel slag-based composites (including porphyrin-functionalized non-magnetic steel slag (NMSS-Por), alkali-excited steel slag (A-SS), and platinum modified steel slag (ALANH-Pt)) was developed for the detection and recognition of tetracycline antibiotics (TCs) such as tetracycline (TC), oxytetracycline (OTC) and doxycycline (DOX). Linear discriminant analysis (LDA) and hierarchical cluster analysis (HCA) showed that the colorimetric sensor array has excellent recognition ability for TCs. The detection limits of this sensor array for TC, OTC, and DOX were 0.059 μM, 0.111 μM and 0.118 μM, respectively, which provided higher sensitivity compared to the colorimetric sensors composed of a single steel slag-based composite material. At the same time, the array sensor has anti-interference ability, and this study provides a new application route for steel slag.
Collapse
Affiliation(s)
- Xin Zhao
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhaohui Zhang
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jiaxiang Liu
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
5
|
Qiu J, Ahmad F, Ma J, Sun Y, Liu Y, Xiao Y, Xu L, Shu T, Zhang X. From synthesis to applications of biomolecule-protected luminescent gold nanoclusters. Anal Bioanal Chem 2024; 416:3923-3944. [PMID: 38705905 DOI: 10.1007/s00216-024-05303-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Gold nanoclusters (AuNCs) are a class of novel luminescent nanomaterials that exhibit unique properties of ultra-small size, featuring strong anti-photo-bleaching ability, substantial Stokes shift, good biocompatibility, and low toxicity. Various biomolecules have been developed as templates or ligands to protect AuNCs with enhanced stability and luminescent properties for biomedical applications. In this review, the synthesis of AuNCs based on biomolecules including amino acids, peptides, proteins and DNA are summarized. Owing to the advantages of biomolecule-protected AuNCs, they have been employed extensively for diverse applications. The biological applications, particularly in bioimaging, biosensing, disease therapy and biocatalysis have been described in detail herein. Finally, current challenges and future potential prospects of bio-templated AuNCs in biological research are briefly discussed.
Collapse
Affiliation(s)
- Jiafeng Qiu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Faisal Ahmad
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jianxin Ma
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yanping Sun
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ying Liu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yelan Xiao
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Long Xu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, China
| | - Tong Shu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Xueji Zhang
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
6
|
Ma J, Yang M, Zhang B, Niu M. The roles of templates consisting of amino acids in the synthesis and application of gold nanoclusters. NANOSCALE 2024; 16:7287-7306. [PMID: 38529817 DOI: 10.1039/d3nr06042j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Gold nanoclusters (AuNCs) with low toxicity, high photostability, and facile synthesis have attracted great attention. The ligand is of great significance in stabilizing AuNCs and regulating their properties. Ligands consisting of amino acids (proteins and peptides) are an ideal template for synthesizing applicative AuNCs due to their inherent bioactivity, biocompatibility, and accessibility. In this review, we summarize the correlation of the template consisting of amino acids with the properties of AuNCs by analyzing different peptide sequences. The selection of amino acids can regulate the fluorescence excitation/emission and intensity, size, cell uptake, and light absorption. By analyzing the role played by AuNCs stabilized by proteins and peptides in the application, universal rules and detailed performances of sensors, antibacterial agents, therapeutic reagents, and light absorbers are reviewed. This review can guide the template design and application of AuNCs when selecting proteins and peptides as ligands.
Collapse
Affiliation(s)
- Jinliang Ma
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Mengmeng Yang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Bin Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Mingfu Niu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| |
Collapse
|
7
|
Liu Y, Zhao W, Gao Y, Zhuo Q, Chu T, Zhou C, Huang W, Zheng Y, Li Y. Colorimetric and electrochemical dual-mode uric acid determination utilizing peroxidase-mimicking activity of CoCu bimetallic nanoclusters. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1102-1110. [PMID: 38289093 DOI: 10.1039/d3ay02026f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
We present the preparation of CoCu bimetallic nanoclusters (Co@Cu-BNCs) by a hydrothermal and one-step pyrolysis method to build a colorimetric and electrochemical dual-mode sensing platform for uric acid (UA) detection. In the presence of H2O2, Co@Cu-BNCs with peroxidase-mimicking activity may convert colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue-colored oxidized TMB (oxTMB). However, due to the inhibitory effect of uric acid (UA) on the oxidation process of TMB, the characteristic absorption peak intensity of oxTMB decreased when UA was added into a mixed solution. In this approach, a colorimetric assay platform for the detection of UA was demonstrated, with a linear range of 0.1-195 μM and a low limit of detection of 0.06 μM (S/N ratio of 3). In addition, an even wider detection range is achieved in the electrochemical method, due to the pronounced electrocatalytic activity of Co@Cu-BNCs. The surface of the glassy carbon electrode was modified with Co@Cu-BNCs to build an electrochemical sensor for detecting UA. The sensor achieves a wider linear range from 2 to 1000 μM and a limit of detection of 0.61 μM (S/N ratio of 3). Moreover, the detection of UA in a human serum sample showed satisfactory results. The results proved that the colorimetric and electrochemical dual-mode detection platform was sensitive, convenient and accurate.
Collapse
Affiliation(s)
- Yaopeng Liu
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Wei Zhao
- College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Key Laboratory of Green Manufacturing of Super-light Elastomer Materials of State Ethnic Affairs Commission, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Yi Gao
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Qing Zhuo
- College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Key Laboratory of Green Manufacturing of Super-light Elastomer Materials of State Ethnic Affairs Commission, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Tingting Chu
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Chengyu Zhou
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Wensheng Huang
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Yin Zheng
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Yingru Li
- College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Key Laboratory of Green Manufacturing of Super-light Elastomer Materials of State Ethnic Affairs Commission, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| |
Collapse
|
8
|
Shi Y, Wu Z, Qi M, Liu C, Dong W, Sun W, Wang X, Jiang F, Zhong Y, Nan D, Zhang Y, Li C, Wang L, Bai X. Multiscale Bioresponses of Metal Nanoclusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310529. [PMID: 38145555 DOI: 10.1002/adma.202310529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/21/2023] [Indexed: 12/27/2023]
Abstract
Metal nanoclusters (NCs) are well-recognized novel nano-agents that hold great promise for applications in nanomedicine because of their ultrafine size, low toxicity, and high renal clearance. As foreign substances, however, an in-depth understanding of the bioresponses to metal NCs is necessary but is still far from being realized. Herein, this review is deployed to summarize the biofates of metal NCs at various biological levels, emphasizing their multiscale bioresponses at the molecular, cellular, and organismal levels. In the parts-to-whole schema, the interactions between biomolecules and metal NCs are discussed, presenting typical protein-dictated nano-bio interfaces, hierarchical structures, and in vivo trajectories. Then, the accumulation, internalization, and metabolic evolution of metal NCs in the cellular environment and as-imparted theranostic functionalization are demonstrated. The organismal metabolism and transportation processes of the metal NCs are subsequently distilled. Finally, this review ends with the conclusions and perspectives on the outstanding issues of metal NC-mediated bioresponses in the near future. This review is expected to provide inspiration for tailoring the customization of metal NC-based nano-agents to meet practical requirements in different sectors of nanomedicine.
Collapse
Affiliation(s)
- Yujia Shi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Manlin Qi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Chengyu Liu
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Weinan Dong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Wenyue Sun
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Feng Jiang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yuan Zhong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Di Nan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Chunyan Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Lin Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
9
|
Liu Y, Zhao W, Gao Y, Zhuo Q, Chu T, Huang W, Zheng Y, Li Y. In situ green synthesis of the nanocomposites of MnO 2/graphene as an oxidase mimic for sensitive colorimetric and electrochemical dual-mode biosensing. RSC Adv 2023; 13:31067-31076. [PMID: 37881765 PMCID: PMC10594154 DOI: 10.1039/d3ra05879d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023] Open
Abstract
Herein we report the colorimetry and an electrochemical for the determination of dopamine (DA) by using MnO2 nanoparticles and graphene nanosheets composite (MnO2@G) that display oxidase mimicking property. MnO2@G could directly oxidize colorless 3,3',5,5'-tetramethylbenzidine (TMB) into a blue product (oxTMB) without extra oxidants such as H2O2. Nevertheless, the presence of DA will inhibit the TMB oxidation due to the presence of the competitive reaction of MnO2@G and DA, giving a product color change from blue to colorless. A colorimetric assay for detect the concentration of DA was worked out according to this finding. Response is linear in the 0.1 to 15 μM DA concentration range, and the detection limit is 0.14 μM. Wider detection range is achieved in an electrochemical method which is due to the pronounced electrocatalytic activity of MnO2@G. The MnO2@G was modified on the surface of the glassy carbon electrode in order to fabricate one type electrochemical sensor. The sensor achieves a wide detection two linear ranges from 0.4 to 70 μM, with the detection limit of 1.16 μM. The detection of DA in real serum sample proved that the nanozyme based on MnO2@G could be developed into a colorimetry and electrochemical dual-readout sensing platform.
Collapse
Affiliation(s)
- Yaopeng Liu
- College of Chemical and Environmental Engineering, Hubei Minzu University Enshi 445000 Hubei China
| | - Wei Zhao
- College of Intelligent Systems Science and Engineering, Hubei Minzu University Enshi 445000 China
- Key Laboratory of Green Manufacturing of Super-light Elastomer Materials of State Ethnic Affairs Commission, Hubei Minzu University Enshi 445000 China
| | - Yi Gao
- College of Chemical and Environmental Engineering, Hubei Minzu University Enshi 445000 Hubei China
| | - Qing Zhuo
- College of Intelligent Systems Science and Engineering, Hubei Minzu University Enshi 445000 China
- Key Laboratory of Green Manufacturing of Super-light Elastomer Materials of State Ethnic Affairs Commission, Hubei Minzu University Enshi 445000 China
| | - Tingting Chu
- College of Chemical and Environmental Engineering, Hubei Minzu University Enshi 445000 Hubei China
| | - Wensheng Huang
- College of Chemical and Environmental Engineering, Hubei Minzu University Enshi 445000 Hubei China
| | - Yin Zheng
- College of Chemical and Environmental Engineering, Hubei Minzu University Enshi 445000 Hubei China
| | - Yingru Li
- College of Intelligent Systems Science and Engineering, Hubei Minzu University Enshi 445000 China
- Key Laboratory of Green Manufacturing of Super-light Elastomer Materials of State Ethnic Affairs Commission, Hubei Minzu University Enshi 445000 China
| |
Collapse
|
10
|
Ma J, Jin X, Yang M, Zhao X, Ding S, Wang B, Li X. Fabrication of 2D/1D Bi 2WO 6/halloysite nanotubes photocatalyst towards water purification: a support effect on in situconstruction and electron-hole separation. NANOTECHNOLOGY 2023; 34:475701. [PMID: 37591213 DOI: 10.1088/1361-6528/acf139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
In this research work, a reusable and efficient 2D/1D heterogeneous structured photocatalyst based on amine-functionalized halloysite nanotubes (MHNTs) and Bi2WO6nanosheet (BWO) was prepared using a facile hydrothermal method for decomposing PPCPs under simulated sunlight. On the degradation of tetracycline hydrochloride (TCH), the effects of composite catalysts prepared under various conditions were discussed. The results showed that over BWO/MHNTs with a mass ratio was 3:1, the synthesizing temperature was 120 °C and the precursor pH value was 1, the TCH (10 mg l-1) degradation efficiency reached 100% after 1 h irradiation of simulated sunlight. Moreover, BWO/MHNTs composites kept good recovery and stable photocatalytic activity after 5 cycles. The excellent dispersion of Bi2WO6on the surface of clay minerals and the oxygen vacancy enhanced electron-hole separation may be responsible for the its high activity and stability. Futhermore, the radical capture test demonstrated that ·O-2was primarily responsible for the photodegradation of TCH. Thus, BWO/MHNTs composites exhibit a good application prospect in the field of sunlight-driven photocatalytic degradation towards PPCPs pollutants in water.
Collapse
Affiliation(s)
- Jiayu Ma
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| | - Xu Jin
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| | - Mengjuan Yang
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| | - Ximeng Zhao
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| | - Shanshan Ding
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| | - Bin Wang
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
- Beijing Key Laboratory of Clothing Materials R and D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| | - Xiuyan Li
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
11
|
Salmani-Zarchi H, Borghei YS, Nikkhah M. A turn-off fluorimetric -aptasensor for early detection of apoptosis inside the cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122933. [PMID: 37267835 DOI: 10.1016/j.saa.2023.122933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/05/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
To detect cytochrome c (Cyt c) as an important biomarker of apoptosis inside the cells, a simple, label-free, fluorometric detection method has been presented. For this purpose, an aptamer/gold nanocluster probe (Aptamer@AuNCs) was produced which could specifically bind to Cyt c leading to fluorescence quenching of AuNCs. The developed aptasensor showed two linear ranges of 1-80 μM and 100-1000 μM and a detection limit of 0.77 μM and 297.5 μM, respectively. This platform was successfully used to assay Cyt c release inside the apoptotic cells and their cell lysate. Aptamer@AuNC due to its enzyme-like properties could replace antibodies in Cyt c detection by conventional blotting techniques.
Collapse
Affiliation(s)
- Hamed Salmani-Zarchi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-175, Tehran, Iran
| | - Yasaman-Sadat Borghei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-175, Tehran, Iran; Center for Bioscience & Technology, Institute for Convergence Science & Technology, Sharif University of Technology, Iran.
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-175, Tehran, Iran; Department of Sensor and Biosensor, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, P.O. Box: 14115-336, Tehran, Iran.
| |
Collapse
|
12
|
Chen L, Klemeyer L, Ruan M, Liu X, Werner S, Xu W, Koeppen A, Bücker R, Gonzalez MG, Koziej D, Parak WJ, Chakraborty I. Structural Analysis and Intrinsic Enzyme Mimicking Activities of Ligand-Free PtAg Nanoalloys. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206772. [PMID: 36755199 DOI: 10.1002/smll.202206772] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/16/2023] [Indexed: 05/11/2023]
Abstract
Nanozymes are nanomaterials with biocatalytic properties under physiological conditions and are one class of artificial enzymes to overcome the high cost and low stability of natural enzymes. However, surface ligands on nanomaterials will decrease the catalytic activity of the nanozymes by blocking the active sites. To address this limitation, ligand-free PtAg nanoclusters (NCs) are synthesized and applied as nanozymes for various enzyme-mimicking reactions. By taking advantage of the mutual interaction of zeolitic imidazolate frameworks (ZIF-8) and Pt precursors, a good dispersion of PtAg bimetal NCs with a diameter of 1.78 ± 0.1 nm is achieved with ZIF-8 as a template. The incorporation of PtAgNCs in the voids of ZIF-8 is confirmed with structural analysis using the atomic pair-distribution function and powder X-ray diffraction. Importantly, the PtAgNCs present good catalytic activity for various enzyme-mimicking reactions, including peroxidase-/catalase- and oxidase-like reactions. Further, this work compares the catalytic activity between PtAg NCs and PtAg nanoparticles with different compositions and finds that these two nanozymes present a converse dependency of Ag-loading on their activity. This study contributes to the field of nanozymes and presents a potential option to prepare ligand-free bimetal biocatalysts with sizes in the nanocluster regime.
Collapse
Affiliation(s)
- Lizhen Chen
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22761, Hamburg, Germany
| | - Lars Klemeyer
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22761, Hamburg, Germany
| | - Mingbo Ruan
- State Key Laboratory of Electroanalytical Chemistry, and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Xin Liu
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22761, Hamburg, Germany
| | - Stefan Werner
- Fachbereich Chemie, Universität Hamburg, 20146, Hamburg, Germany
| | - Weilin Xu
- State Key Laboratory of Electroanalytical Chemistry, and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Andrea Koeppen
- Fachbereich Chemie, Universität Hamburg, 20146, Hamburg, Germany
| | - Robert Bücker
- Centre for Structural Systems Biology (CSSB), Department of Chemistry, University of Hamburg, 22761, Hamburg, Germany
- Rigaku Europe SE, 63263, Neu-Isenburg, Germany
| | | | - Dorota Koziej
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22761, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, 22761, Hamburg, Germany
| | - Wolfgang J Parak
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22761, Hamburg, Germany
| | - Indranath Chakraborty
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22761, Hamburg, Germany
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
13
|
Zhao D, Huang X, Tian Y, Zou J, Wang F, Chen X. Fluorescence Imaging-Incorporated Transcriptome Study of Glutathione Depletion-Enhanced Ferroptosis Therapy via Targeting Gold Nanoclusters. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6385-6396. [PMID: 36704920 DOI: 10.1021/acsami.2c18289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ferroptosis plays an important role in tumor inhibition and is a new type of programmed cell death. Recent studies have shown that glutathione (GSH) depletion is an effective method to enhance the therapeutic efficacy of ferroptosis; however, a systematic investigation of the phenomenon is limited. Herein, we provide a facile fluorescence imaging-incorporated transcriptome strategy to visualize the process and explore the mechanism of GSH depletion-enhanced ferroptosis. The proposed multifunctional nanoplatform is achieved using simple transferrin receptor aptamer-functionalized fluorescent gold nanoclusters (termed TfRA-AuNCs), which exhibit efficient hydroxyl radical generation and GSH-depleting capabilities. Live cell fluorescence imaging results revealed that TfRA-AuNCs were endocytosed into 4T1 cells and were mostly distributed in lysosomes. In vitro results indicated that TfRA-AuNCs enhanced the ferroptosis effect in 4T1 cells. Importantly, transcriptome analysis indicated that 4T1 cells treated with TfRA-AuNCs regulated the expression change of ferroptosis-related genes, and the Kyoto Encyclopedia of Genes and Genomes pathway identified the GSH metabolism pathway involved in ferroptosis, thus revealing the exact molecular mechanism of ferroptosis induced by TfRA-AuNCs at the RNA level. Furthermore, in vivo results confirmed the tumor inhibition effect, tumor-targeted fluorescence imaging, and long-term biocompatibility after TfRA-AuNC treatment. This study introduces a new possibility for the mechanistic study of nanoagent-induced ferroptosis in tumor treatment.
Collapse
Affiliation(s)
- Dan Zhao
- School of Environmental Science and Engineering, State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xiaoyu Huang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yanan Tian
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Fu Wang
- School of Environmental Science and Engineering, State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
14
|
Mahmood Khan I, Niazi S, Akhtar W, Yue L, Pasha I, Khan MKI, Mohsin A, Waheed Iqbal M, Zhang Y, Wang Z. Surface functionalized AuNCs optical biosensor as an emerging food safety indicator: Fundamental mechanism to future prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Khan IM, Niazi S, Yue L, Zhang Y, Pasha I, Iqbal Khan MK, Akhtar W, Mohsin A, Chughati MFJ, Wang Z. Research update of emergent gold nanoclusters: A reinforced approach towards evolution, synthesis mechanism and application. Talanta 2022; 241:123228. [DOI: 10.1016/j.talanta.2022.123228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
|
16
|
Niu X, Liu B, Hu P, Zhu H, Wang M. Nanozymes with Multiple Activities: Prospects in Analytical Sensing. BIOSENSORS 2022; 12:bios12040251. [PMID: 35448311 PMCID: PMC9030423 DOI: 10.3390/bios12040251] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 05/17/2023]
Abstract
Given the superiorities in catalytic stability, production cost and performance tunability over natural bio-enzymes, artificial nanomaterials featuring enzyme-like characteristics (nanozymes) have drawn extensive attention from the academic community in the past decade. With these merits, they are intensively tested for sensing, biomedicine and environmental engineering. Especially in the analytical sensing field, enzyme mimics have found wide use for biochemical detection, environmental monitoring and food analysis. More fascinatingly, rational design enables one fabrication of enzyme-like materials with versatile activities, which show great promise for further advancement of the nanozyme-involved biochemical sensing field. To understand the progress in such an exciting field, here we offer a review of nanozymes with multiple catalytic activities and their analytical application prospects. The main types of enzyme-mimetic activities are first introduced, followed by a summary of current strategies that can be employed to design multi-activity nanozymes. In particular, typical materials with at least two enzyme-like activities are reviewed. Finally, opportunities for multi-activity nanozymes applied in the sensing field are discussed, and potential challenges are also presented, to better guide the development of analytical methods and sensors using nanozymes with different catalytic features.
Collapse
Affiliation(s)
- Xiangheng Niu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.L.); (P.H.); (H.Z.); (M.W.)
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Correspondence:
| | - Bangxiang Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.L.); (P.H.); (H.Z.); (M.W.)
| | - Panwang Hu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.L.); (P.H.); (H.Z.); (M.W.)
| | - Hengjia Zhu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.L.); (P.H.); (H.Z.); (M.W.)
| | - Mengzhu Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.L.); (P.H.); (H.Z.); (M.W.)
| |
Collapse
|
17
|
Li T, Wang Y, Zhang Y, Zhou G, Li L. An entropy-driven signal-off DNA circuit for label-free, visual detection of small molecules with enhanced accuracy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1140-1147. [PMID: 35224592 DOI: 10.1039/d1ay01939b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An entropy-driven DNA circuit offers an efficient means of sensitive analyte detection with signal amplification. In this article, we rationally engineered an aptamer-based entropy-driven signal-off DNA circuit for colorimetric detection of small molecules. The proposed signal-off DNA circuit is activated by target small molecule binding to drive the collapse of G-quadruplex DNAzyme, accompanied by the colour change of the detection solution from dark blue to light blue. Entropy-driven recycling hybridization significantly magnified the input signal of the target small molecule. Such an assay enables naked-eye detection of adenosine triphosphate and oxytetracycline at concentrations as low as 0.5 μM and 1 μM respectively. Moreover, when compared with the signal-on DNA circuit, the entropy-driven signal-off DNA circuit for colorimetric detection has two advantages. Firstly, unlike in the signal-on DNA circuit, the unavoidable formation of waste complexes in the absence of a target in the signal-off DNA circuit has no influence on target detection performance as its background signal is only determined by the substrate complex. Secondly, the signal-on DNA circuit cannot distinguish false-positive signals generated by invasive catalysts (e.g., HRP, serum, Fe3O4), while the signal-off DNA circuit can distinguish those signals as undesired signals. Overall, the signal-off DNA circuit affords a novel strategy for sensitive and accurate detection of small molecules.
Collapse
Affiliation(s)
- Tuqiang Li
- School of Petrochemical Engineering, Changzhou University, Changzhou 213016, China.
| | - Yulan Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yanan Zhang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Guobao Zhou
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
18
|
Wen W, Li Z, Wang X, Du X, Wen G, Li L. Fluorescent PEI@Pd nanoclusters: facile synthesis and application. RSC Adv 2021; 11:33202-33207. [PMID: 35497538 PMCID: PMC9042264 DOI: 10.1039/d1ra06307c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/26/2021] [Indexed: 12/20/2022] Open
Abstract
Metal nanoclusters (NCs) have recently emerged as a novel class of luminescent nanomaterials and held significant potential in analytical chemistry. In this work, novel polyethyleneimine stabilized palladium nanoclusters (PEI-Pd NCs) were synthesized by chemical reduction at 60 °C for 6 h, and used as a fluorescent nanosensor for the detection of oxytetracycline (OTC). The spectral characteristics, surface structure and morphology of the Pd NCs were studied. The selectivity and stability of the nanosensor were also investigated. The experimental results showed that the Pd NCs had good biocompatibility, stability and photobleaching resistance in aqueous solution. The fluorescence quenching effect showed a good linear relationship with the degree of fluorescence quenching of Pd NCs and OTC in the range of 25-440 nM, with a correlation coefficient of 0.99. The limit of detection (LOD) of the proposed nanosensor for OTC was calculated to be 22 nM. The mechanism of determination was thought to be an inner filter effect (IFE) between OTC and Pd NCs. Based on this, we have established a new nanosensing analysis method for detecting OTC.
Collapse
Affiliation(s)
- Wen Wen
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
| | - Zhongping Li
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
| | - Xu Wang
- Shanxi Research Center for Information and Strategy of Science and Technology Taiyuan 030024 China
| | - Xiaoyan Du
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
| | - Guangming Wen
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
- School of Chemistry and Chemical Engineering, Jinzhong University Jinzhong 030619 China
| | - Li Li
- First Hospital of Shanxi Medical University Taiyuan 030001 China
| |
Collapse
|