1
|
Zhang W, Lang X, Liu X, Li G, Singh R, Zhang B, Kumar S. Advances in Tapered Optical Fiber Sensor Structures: From Conventional to Novel and Emerging. BIOSENSORS 2023; 13:644. [PMID: 37367009 DOI: 10.3390/bios13060644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Optical fiber sensors based on tapered optical fiber (TOF) structure have attracted a considerable amount of attention from researchers due to the advantages of simple fabrication, high stability, and diverse structures, and have great potential for applications in many fields such as physics, chemistry, and biology. Compared with conventional optical fibers, TOF with their unique structural characteristics significantly improves the sensitivity and response speed of fiber-optic sensors and broadens the application range. This review presents an overview of the latest research status and characteristics of fiber-optic sensors and TOF sensors. Then, the working principle of TOF sensors, fabrication schemes of TOF structures, novel TOF structures in recent years, and the growing emerging application areas are described. Finally, the development trends and challenges of TOF sensors are prospected. The objective of this review is to convey novel perspectives and strategies for the performance optimization and design of TOF sensors based on fiber-optic sensing technologies.
Collapse
Affiliation(s)
- Wen Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Xianzheng Lang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Xuecheng Liu
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Guoru Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng 252059, China
| | - Bingyuan Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
2
|
Wang R, Yan M, Jiang M, Li Y, Kang X, Hu M, Liu B, He Z, Kong D. Label-free and selective cholesterol detection based on multilayer functional structure coated fiber fabry-perot interferometer probe. Anal Chim Acta 2023; 1252:341051. [PMID: 36935139 DOI: 10.1016/j.aca.2023.341051] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
A reflective fiber-optic Fabry-Perot cavity probe sensor is proposed to selectively measure cholesterol concentration by insert single mode fiber into ceramic tube and immobilize epoxy resin (ER)/graphene oxide (GO)/beta-cyclodextrin (β-CD) multi-layer film onto end face of ceramic tube. EDC/NHS activated GO is selected to form chemical binding with β-CD, and β-CD is the sensitive materials to bind with cholesterol molecules. With multi-layer film assisted, the sensitivity of sensor to cholesterol concentration can reach 3.92 nm/mM and the limit of detection reaches 3.48 μ M. In addition, 4 mM hemoglobin, glucose and ascorbic acid are doped into a set cholesterol sample and verified the highly selectivity of sensing cholesterol. Furthermore, the reproducibility was proved by measure the spectrum of four sensors with same fabrication process, and the reusability was also proved by repeated measurements. Overall, the sensor features with high mechanical strength, ease of fabrication, real-time monitoring, low cost and ease for measurement that given by probe structure. Therefore, the sensor provides a remarkable analytical platform for biosensing applications.
Collapse
Affiliation(s)
- Ruiduo Wang
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, People's Republic of China; State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, School of Physics, Institute of Photonics&Photon Technology, Northwest University, Xi'an, 710069, People's Republic of China
| | - Minglu Yan
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, School of Physics, Institute of Photonics&Photon Technology, Northwest University, Xi'an, 710069, People's Republic of China
| | - Man Jiang
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, School of Physics, Institute of Photonics&Photon Technology, Northwest University, Xi'an, 710069, People's Republic of China.
| | - Yang Li
- Key Laboratory of Aperture Array and Space Application, 38th Research Institute of China Electronics Technology Group Corporation, HeFei, 230000, China
| | - Xin Kang
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Mingxuan Hu
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, School of Physics, Institute of Photonics&Photon Technology, Northwest University, Xi'an, 710069, People's Republic of China
| | - Beibei Liu
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, School of Physics, Institute of Photonics&Photon Technology, Northwest University, Xi'an, 710069, People's Republic of China
| | - Zhengquan He
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, People's Republic of China
| | - Depeng Kong
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, People's Republic of China.
| |
Collapse
|
3
|
Yan M, Wang R, Li Y, Kang X, Zhang Z, Li Y, Jiang M. Reflective epoxy resin/chitosan/PAA composite-functionalized fiber-optic interferometric probe sensor for sensitive heavy metal ion detection. Analyst 2023; 148:1075-1084. [PMID: 36723170 DOI: 10.1039/d2an01740g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A highly sensitive label-free chemical sensing platform for the detection of various metal ions is demonstrated. The chemical sensor was derived from a single-mode fiber that is inserted into the ceramic tube with epoxy resin (ER) on the end face for reflecting light and forms the Fabry-Perot (F-P) interferometric cavity. Multilayer chitosan (CS)/polyacrylic acid (PAA) were coated on the surface of the epoxy resin and act as the sensitive film. Based on the analysis of the sensing principle and the F-P cavity structure, the parameters were numerically simulated and experimentally evaluated, which enables ease of fabrication and real-time modulation of the cavity length. The sensitivity of sensing Ni2+, Zn2+, and Na+ reached 9.95 × 10-4 nm ppb-1, 2.31 × 10-4 nm ppb-1, and 4 × 10-4 nm ppb-1, respectively, and the sensing results were theoretically analyzed by the Langmuir adsorption model, which corresponds to the surface atom percentage results obtained by SEM and EDS measurements for sensing three types of metal ions. The proposed ER/CS/PAA multilayer film-coated F-P sensor can be employed as a probe, which features label-free, highly sensitivity, real-time monitoring, ease of measurement, stability, and therefore provides a remarkable analytical platform for chemical applications.
Collapse
Affiliation(s)
- Minglu Yan
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, School of Physics, Institute of Photonics & Photon Technology, Northwest University, Xi'an 710069, People's Republic of China.
| | - Ruiduo Wang
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, School of Physics, Institute of Photonics & Photon Technology, Northwest University, Xi'an 710069, People's Republic of China. .,State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, People's Republic of China
| | - Yang Li
- Key Laboratory of Aperture Array and Space Application, 38th Research Institute of China Electronics Technology Group Corporation, HeFei 230000, China
| | - Xin Kang
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, School of Physics, Institute of Photonics & Photon Technology, Northwest University, Xi'an 710069, People's Republic of China.
| | - Zaikun Zhang
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, People's Republic of China
| | - Yangyang Li
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, School of Physics, Institute of Photonics & Photon Technology, Northwest University, Xi'an 710069, People's Republic of China.
| | - Man Jiang
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, School of Physics, Institute of Photonics & Photon Technology, Northwest University, Xi'an 710069, People's Republic of China.
| |
Collapse
|
4
|
Yuan Y, Jia H, Xu D, Wang J. Novel method in emerging environmental contaminants detection: Fiber optic sensors based on microfluidic chips. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159563. [PMID: 36265627 DOI: 10.1016/j.scitotenv.2022.159563] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Recently, human industrial practices and certain activities have caused the widespread spread of emerging contaminants throughout the environmental matrix, even in trace amounts, which constitute a serious threat to human health and environmental ecology, and have therefore attracted the attention of research scholars. Different traditional techniques are used to monitor water pollutants, However, they still have some disadvantages such as high costs, ecological problems and treatment times, and require technicians and researchers to operate them effectively. There is therefore an urgent need to develop simple, inexpensive and highly sensitive methods to sense and detect these toxic environmental contaminants. Optical fiber microfluidic coupled sensors offer different advantages over other detection technologies, allowing manipulation of light through controlled microfluidics, precise detection results and good stability, and have therefore become a logical device for screening and identifying environmental contaminants. This paper reviews the application of fiber optic microfluidic sensors in emerging environmental contaminant detection, focusing on the characteristics of different emerging contaminant types, different types of fiber optic microfluidic sensors, methodological principles of detection, and specific emerging contaminant detection applications. The optical detection methods in fiber optic microfluidic chips and their respective advantages and disadvantages are analyzed in the discussion. The applications of fiber optic biochemical sensors in microfluidic chips, especially for the detection of emerging contaminants in the aqueous environment, such as personal care products, endocrine disruptors, and perfluorinated compounds, are reviewed. Finally, the prospects of fiber optic microfluidic coupled sensors in environmental detection and related fields are foreseen.
Collapse
Affiliation(s)
- Yang Yuan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hui Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - DanYu Xu
- Tianjin Academy of Eco-enviromental Sciences, Tianjin 300191, China
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
5
|
Cai J, Liu Y, Shu X. Long-Period Fiber Grating Sensors for Chemical and Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:542. [PMID: 36617140 PMCID: PMC9823881 DOI: 10.3390/s23010542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Optical fiber biosensors (OFBS) are being increasingly proposed due to their intrinsic advantages over conventional sensors, including their compactness, potential remote control and immunity to electromagnetic interference. This review systematically introduces the advances of OFBS based on long-period fiber gratings (LPFGs) for chemical and biomedical applications from the perspective of design and functionalization. The sensitivity of such a sensor can be enhanced by designing the device working at or near the dispersion turning point, or working around the mode transition, or their combination. In addition, several common functionalization methods are summarized in detail, such as the covalent immobilization of 3-aminopropyltriethoxysilane (APTES) silanization and graphene oxide (GO) functionalization, and the noncovalent immobilization of the layer-by-layer assembly method. Moreover, reflective LPFG-based sensors with different configurations have also been introduced. This work aims to provide a comprehensive understanding of LPFG-based biosensors and to suggest some future directions for exploration.
Collapse
Affiliation(s)
| | | | - Xuewen Shu
- Wuhan National Laboratory for Optoelectronics & School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|