1
|
Pont L, Vergara-Barberán M, Carrasco-Correa EJ. A Comprehensive Review on Capillary Electrophoresis-Mass Spectrometry in Advancing Biomolecular Research. Electrophoresis 2024. [PMID: 39508247 DOI: 10.1002/elps.202400122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024]
Abstract
This review provides an in-depth exploration of capillary electrophoresis-mass spectrometry (CE-MS) in biomolecular research from 2020 to 2024. CE-MS emerges as a versatile and powerful tool due to its numerous advantages, facilitating the analysis of various biomolecules, including proteins, peptides, oligonucleotides, and other metabolites, such as lipids, carbohydrates, or amines, among others. The review extends to various CE modes and interfaces for the CE-MS coupling, offering comprehensive insights into their applications within biomolecular research. Furthermore, it effectively summarizes the conditions employed in CE-MS while also addressing critical aspects such as sample preparation requirements. Despite its advantages, the review highlights a gap between discovery and practical implementation, underscoring the need for large-scale validation and method standardization to fully realize the potential of CE-MS in biomolecular research.
Collapse
Affiliation(s)
- Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
- Serra Húnter Program, Generalitat de Catalunya, Barcelona, Spain
| | - María Vergara-Barberán
- CLECEM Group, Department of Analytical Chemistry, University of Valencia, Valencia, Spain
| | | |
Collapse
|
2
|
Li Y, Miao S, Tan J, Zhang Q, Chen DDY. Capillary Electrophoresis: A Three-Year Literature Review. Anal Chem 2024; 96:7799-7816. [PMID: 38598751 DOI: 10.1021/acs.analchem.4c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Affiliation(s)
- Yueyang Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Siyu Miao
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jiahua Tan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Qi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - David Da Yong Chen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
3
|
Ren Y, Liu Y, Zhang W, Ran J, Li L, Zhang Z. Sheathless CESI-MS versus LC-MS: Results of qualitative and quantitative analyses of the primary and secondary metabolites of Pleioblastus amarus bamboo shoots. Electrophoresis 2024; 45:266-274. [PMID: 37817363 DOI: 10.1002/elps.202300030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023]
Abstract
The bamboo shoot of Pleioblastus amarus (Keng) Keng f. is a medicinal and edible resource in China. In this study, three separation techniques were applied to identify the primary and secondary metabolites component of P. amarus bamboo shoots, including sheathless capillary electrophoresis electrospray ionization-mass spectrometry (CESI-MS), reverse-phase liquid chromatography-MS (RPLC-MS), and hydrophilic interaction liquid chromatography-MS (HILIC-MS). A total of 201 metabolites were identified by the three methods. Among those metabolites, 146 were identified by RPLC-MS, 85 were identified by HILIC-MS, and 46 were identified by sheathless CESI-MS. These methods were complementary and had a linear coefficient. CESI-MS presented advantages in the identification of isomers, high sensitivity, very low sample usage, and good detection of polar and nonpolar metabolites, showing its unique applications in food analysis and prospects in metabolic research.
Collapse
Affiliation(s)
- Yan Ren
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, P. R. China
| | - Ying Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Wenming Zhang
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, P. R. China
| | - Junfeng Ran
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, P. R. China
| | - Li Li
- The Sixth People's Hospital of Hengshui, Hengshui, Hebei, P. R. China
| | - Zhidan Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Systems Biology Centre, Technical Support Core Facilities, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, P. R. China
| |
Collapse
|
4
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2021-mid-2023). Electrophoresis 2024; 45:165-198. [PMID: 37670208 DOI: 10.1002/elps.202300152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023]
Abstract
This review article brings a comprehensive survey of developments and applications of high-performance capillary and microchip electromigration methods (zone electrophoresis in a free solution or in sieving media, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, micropreparation, and physicochemical characterization of peptides in the period from 2021 up to ca. the middle of 2023. Progress in the study of electromigration properties of peptides and various aspects of their analysis, such as sample preparation, adsorption suppression, electroosmotic flow regulation, and detection, are presented. New developments in the particular capillary electromigration methods are demonstrated, and several types of their applications are reported. They cover qualitative and quantitative analysis of synthetic or isolated peptides and determination of peptides in complex biomatrices, peptide profiling of biofluids and tissues, and monitoring of chemical and enzymatic reactions and physicochemical changes of peptides. They include also amino acid and sequence analysis of peptides, peptide mapping of proteins, separation of stereoisomers of peptides, and their chiral analyses. In addition, micropreparative separations and physicochemical characterization of peptides and their interactions with other (bio)molecules by the above CE methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
5
|
Seyfinejad B, Jouyban A. Capillary electrophoresis-mass spectrometry in pharmaceutical and biomedical analyses. J Pharm Biomed Anal 2022; 221:115059. [DOI: 10.1016/j.jpba.2022.115059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
|
6
|
Liu B, Huang L, Xu R, Fan H, Wang Y. An Improved Isotope Labelling Method for Quantifying Deamidated Cobratide Using High-Resolution Quadrupole-Orbitrap Mass Spectrometry. Molecules 2022; 27:molecules27196154. [PMID: 36234709 PMCID: PMC9572859 DOI: 10.3390/molecules27196154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Protein deamidation can severely alter the physicochemical characteristics and biological functions of protein therapeutics. Cobratide is a non-addictive analgesic with wide clinical acceptance. However, the Asn residue at position 48 from the N-terminus of the cobratide amino acid sequence (N48) tends to degrade during purification, storage, and transport. This characteristic could severely affect the drug safety and clinical efficacy of cobratide. Traditional methods for quantitating deamidation reported in previous research are characterised by low efficiency and accuracy; the quality control of cobratide via this method is limited. Herein, we developed an improved 18O-labelling method based on the detection of a unique peptide (i.e., the protein fragment of cobratide containing the N48 deamidation hotspot after enzymolysis) using an Orbitrap high-resolution mass spectrometer to quantify deamidated cobratide. The limits of detection and quantification of this method reached 0.02 and 0.025 μM, respectively, and inter- and intra-day precision values of the method were <3%. The accuracy of the 18O-labelling strategy was validated by using samples containing synthesised peptides with a known ratio of deamidation impurities and also by comparing the final total deamidation results with our previously developed capillary electrophoresis method. The recoveries for deamidation (Asp), deamidation isomerisation (iso-Asp), and total deamidation were 101.52 ± 1.17, 102.42 ± 1.82, and 103.55 ± 1.07, respectively. The robustness of the method was confirmed by verifying the chromatographic parameters. Our results demonstrate the applicability of the 18O-labelling strategy for detecting protein deamidation and lay a robust foundation for protein therapeutics studies and drug quality consistency evaluations.
Collapse
Affiliation(s)
- Bo Liu
- National Institutes for Food and Drug Control, 31st Huatuo Rd., Daxing Dist., Beijing 102629, China
- NMPA Key Laboratory for Quality Research and Evaluation of Chemical Drugs, Beijing 102629, China
| | - Lu Huang
- National Institutes for Food and Drug Control, 31st Huatuo Rd., Daxing Dist., Beijing 102629, China
- NMPA Key Laboratory for Quality Research and Evaluation of Chemical Drugs, Beijing 102629, China
| | - Rongrong Xu
- National Institutes for Food and Drug Control, 31st Huatuo Rd., Daxing Dist., Beijing 102629, China
- NMPA Key Laboratory for Quality Research and Evaluation of Chemical Drugs, Beijing 102629, China
| | - Huihong Fan
- National Institutes for Food and Drug Control, 31st Huatuo Rd., Daxing Dist., Beijing 102629, China
- NMPA Key Laboratory for Quality Research and Evaluation of Chemical Drugs, Beijing 102629, China
- Correspondence:
| | - Yue Wang
- National Institutes for Food and Drug Control, 31st Huatuo Rd., Daxing Dist., Beijing 102629, China
- NMPA Key Laboratory for Quality Research and Evaluation of Chemical Drugs, Beijing 102629, China
| |
Collapse
|
7
|
Hamidli N, Pajaziti B, Andrási M, Nagy C, Gáspár A. Determination of human insulin and its six therapeutic analogues by capillary electrophoresis - mass spectrometry. J Chromatogr A 2022; 1678:463351. [PMID: 35905683 DOI: 10.1016/j.chroma.2022.463351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/12/2022] [Accepted: 07/17/2022] [Indexed: 11/18/2022]
Abstract
In this work, human insulin and its 6 analogues were separated and determined using CZE-MS. Three different capillaries (bare fused silica, successive multiple ionic-polymer layer (SMIL) and static linear polyacrylamide (LPA) coated) were compared based on their separation performances in their optimal operating conditions. Coated capillaries demonstrated slightly better separation of the components, although some components showed wide, distorted peaks. The highest plate number could be obtained in the SMIL capillary (192 000/m). For UV and ESI-MS detection relatively similar LOD values were obtained (0.3-1.2 mg/L and 1.0-3.4 mg/L, respectively). The application of MS detection provided useful structural information and unambiguous identification for insulins having similar or the same molecular mass. This work is considered to be important not only for the investigation of insulins but also for its potential contribution to the top-down analysis of proteins using CE-MS.
Collapse
Affiliation(s)
- Narmin Hamidli
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Blerta Pajaziti
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Melinda Andrási
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Cynthia Nagy
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Attila Gáspár
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary.
| |
Collapse
|
8
|
Wang M, Gong Q, Liu W, Tan S, Xiao J, Chen C. Applications of capillary electrophoresis in the fields of environmental, pharmaceutical, clinical and food analysis (2019-2021). J Sep Sci 2022; 45:1918-1941. [PMID: 35325510 DOI: 10.1002/jssc.202100727] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022]
Abstract
So far, the potential of capillary electrophoresis (CE) in the application fields has been increasingly excavated due to the advantages of simple operation, short analysis time, high-resolution, less sample consumption and low cost. This review examines the implementations and advancements of CE in different application fields (environmental, pharmaceutical, clinical and food analysis) covering the literature from 2019 to 2021. In addition, ultrasmall sample injection volume (nanoliter range) and short optical path lead to relatively low concentration sensitivity of the most frequently used UV-absorption spectrophotometric detection, so the pretreatment technology being developed has been gradually utilized to overcome this problem. Despite the review is focused on the development of CE in the fields of environmental, pharmaceutical, clinical and food analysis, the new sample pretreatment techniques of microextraction and enrichment which fit excellently to CE in recent three years are also described briefly. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengyao Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Qian Gong
- Department of Pharmacy, Hunan Cancer Hospital/ The Affiliated Cancer Hospital of School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Wenfang Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
9
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2019-mid 2021). Electrophoresis 2021; 43:82-108. [PMID: 34632606 DOI: 10.1002/elps.202100243] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
The review provides a comprehensive overview of developments and applications of high performance capillary and microchip electroseparation methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, microscale isolation, and physicochemical characterization of peptides from 2019 up to approximately the middle of 2021. Advances in the investigation of electromigration properties of peptides and in the methodology of their analysis, such as sample preparation, sorption suppression, EOF control, and detection, are presented. New developments in the individual CE and CEC methods are demonstrated and several types of their applications are shown. They include qualitative and quantitative analysis, determination in complex biomatrices, monitoring of chemical and enzymatic reactions and physicochemical changes, amino acid, sequence, and chiral analyses, and peptide mapping of proteins. In addition, micropreparative separations and determination of significant physicochemical parameters of peptides by CE and CEC methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague 6, Czechia
| |
Collapse
|