1
|
Jiang XJ, Ma Y, Zhou Y, Xiao RD, Meng YJ, Ye-Hou, Xie BT, Wu LH, Zhao DH. Green one-step synthesis of N-doped carbon quantum dots for fluorescent detection of lemon yellow in soft drinks. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124305. [PMID: 38657331 DOI: 10.1016/j.saa.2024.124305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
A new fluorescent sensor for the determination of lemon yellow was developed based on nitrogen-doped carbon quantum dots (N-CQDs), which were prepared via a hydrothermal method with dried pomelo peel and L-tyrosine. The N-CQDs exhibited the blue fluorescence with a quantum yield of 28 %. The sensing principle of N-CQDs was quenched by lemon yellow via static quenching. The potential interfering substances showed no influence on the detection of lemon yellow. The limit of detection was 0.023 mg/L and lower than that of national standard. Furthermore, the synthesized N-CQDs have been successfully applied to the measurement of lemon yellow in real samples. Hence, the N-CQDs would be a promising sensor in food analysis.
Collapse
Affiliation(s)
- Xiu-Juan Jiang
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China; Jia Sixie College of Agriculture, Weifang University of Science and Technology, Shouguang, PR China.
| | - Yuan Ma
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China.
| | - You Zhou
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Rong-Dan Xiao
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Yi-Jie Meng
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Ye-Hou
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Ben-Ting Xie
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Lin-Hong Wu
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - De-Hong Zhao
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| |
Collapse
|
2
|
Zhao W, Yang S, Zhang D, Zhou T, Huang J, Gao M, Zhang X, Liu Y, Yang J. Multi-dimensional plasmonic coupling system for efficient enrichment and ultrasensitive label-free SERS detection of bilirubin based on graphene oxide-Au nanostars and Au@Ag nanoparticles. J Colloid Interface Sci 2023; 646:872-882. [PMID: 37235933 DOI: 10.1016/j.jcis.2023.05.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/06/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Rapid and sensitive detection of free bilirubin (BR) is essential for early diagnosis of jaundice and other hepatobiliary diseases. Inspired by sandwich immunoassay strategy, a multi-dimensional plasmonic coupling SERS platform composed of graphene oxide-Au nanostars nanocomposites (GANS NCs) and Au@Ag nanoparticles (NPs) was designed for label-free detection of BR. Specifically, GANS NCs were first prepared, and their excellent SERS activity was ascribed to synergistic enhancement effect of electromagnetic enhancement and chemical enhancement. Furthermore, SERS spectroscopy was used to monitor the adsorption process of BR. Subsequently, secondary reinforcing Au@Ag NPs were directly added, ultimately resulting in a multi-dimensional plasmonic coupling effect. The SERS enhancing mechanism of coupled system was discussed through electromagnetic field simulations. Interestingly, the high-density hotspots generated by strong plasmonic coupling in GANS-Au@Ag substrate could lead to more extraordinary SERS enhancing behavior compared to GANS NCs. Sensing efficiency of the SERS platform was examined by BR with a detection limit down to 10-11 M. Besides, GANS-Au@Ag NCs performed high uniformity and reproducibility. This work not only opens up a new avenue for construction of multi-dimensional plasmonic coupling system, but also offers a new biosensing technology for label-free diagnosis of BR-related diseases, thereby expecting to be applied in clinical diagnosis.
Collapse
Affiliation(s)
- Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuo Yang
- College of Science, Changchun University, Changchun 130022, PR China
| | - Daxin Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tianxiang Zhou
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Jie Huang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Ming Gao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Xiaolong Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China.
| | - Jinghai Yang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China.
| |
Collapse
|
3
|
Zhou T, Huang J, Zhao W, Guo R, Cui S, Li Y, Zhang X, Liu Y, Zhang Q. Multifunctional Plasmon-Tunable Au Nanostars and Their Applications in Highly Efficient Photothermal Inactivation and Ultra-Sensitive SERS Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4232. [PMID: 36500854 PMCID: PMC9738658 DOI: 10.3390/nano12234232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The development and application in different fields of multifunctional plasmonic nanoparticles (NPs) have always been research hotspots. Herein, multi-tip Au nanostars (NSs) with an anisotropic structure were fabricated for the photothermal therapy (PTT) of bacteria and surface-enhanced Raman scattering (SERS) detection of pollutants. The size and localized surface plasmon resonance (LSPR) characteristics of Au NSs were adjusted by varying Au seed additions. In addition, photothermal conversion performance of Au NSs with various Au seed additions was evaluated. Photothermal conversion efficiency of Au NSs with optimal Au seed additions (50 μL) was as high as 28.75% under 808 nm laser irradiation, and the heat generated was sufficient to kill Staphylococcus aureus (S. aureus). Importantly, Au NSs also exhibited excellent SERS activity for the 4-mercaptobenzoic acid (4-MBA) probe molecule, and the local electromagnetic field distribution of Au NSs was explored through finite-difference time-domain (FDTD) simulation. As verified by experiments, Au NSs' SERS substrate could achieve a highly sensitive detection of a low concentration of potentially toxic pollutants such as methylene blue (MB) and bilirubin (BR). This work demonstrates a promising multifunctional nanoplatform with great potential for efficient photothermal inactivation and ultra-sensitive SERS detection.
Collapse
Affiliation(s)
- Tianxiang Zhou
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Jie Huang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Guo
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Sicheng Cui
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Yuqing Li
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Xiaolong Zhang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Qi Zhang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| |
Collapse
|
4
|
Kheilkordi Z, Mohammadi Ziarani G, Badiei A, Mohajer F, Luque R. Fe3O4@SiO2@Pr-Oxime-(BuSO3H)3 synthesis and its application as magnetic nanocatalyst in the synthesis of heterocyclic [3.3.3]propellanes. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|