1
|
Ji M, Qiang Y, Li S, Tian C, Zhuang X, Qi S, Luan F. Study of the interaction between green Si quantum dots and bovine serum albumin via spectroscopic methods and its effects on antioxidant capacity and esterase activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125633. [PMID: 39709861 DOI: 10.1016/j.saa.2024.125633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
In this study, the interaction mechanism between Si quantum dots (SiQDs) and bovine serum albumin (BSA), as well as the conformational and functional alterations of BSA, were rigorously investigated via multispectral techniques and dynamic light scattering analysis. van der Waals forces and hydrogen bonding, as well as an exothermic reaction and a decrease in entropy, were the primary forces involved in the binding of SiQDs to BSA. In the binding process, SiQDs exhibit preferential proximity to Site I over other potential binding sites. Furthermore, the incorporation of SiQDs into BSA causes a reduction in the α-helix and β-sheet contents of the protein. This, in turn, leads to an increased degree of stretching and an increase in the hydrophilicity of BSA. Furthermore, the increase in the antioxidant capacity and esterase activity of BSA upon the addition of SiQDs was positively correlated with the concentration. These findings elucidate the underlying interaction mechanism between green fluorescence-emitting SiQDs and BSA and provide fundamental insights into both the biological and toxicological implications of SiQDs.
Collapse
Affiliation(s)
- Meng Ji
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yanan Qiang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Si Li
- Yunnan Institute of Measuring and Testing Technology, Kunming, Yunnan 650100, China
| | - Chunyuan Tian
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Xuming Zhuang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Shengda Qi
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730030, China
| | - Feng Luan
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| |
Collapse
|
2
|
Li Z, Chen L, Dou Y, Wang H, Chen C, Wang X. Innovative detection mechanism for deltamethrin based on a dual-emitting Fluoroprobe and its application in a smartphone-based photoelectric conversion device. Food Chem 2024; 449:139231. [PMID: 38579654 DOI: 10.1016/j.foodchem.2024.139231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
Pyrethroids are widely used insecticides worldwide, while their on-site and rapid detection still faces technological challenges. Herein, an innovative detection mechanism was designed for deltamethrin, a typical kind of type II pyrethroids, based on a dual-emitting fluoroprobe consisting of NH2-SiQDs and Eu3+. Deltamethrin can rapidly hydrolyze into 3-phenoxybenzaldehyde (3-PBD) and react specifically with fluoroprobe, causing fluorescence quenching of SiQDs while maintaining the fluorescent stability of Eu3+. Building upon the above fluorescence-responsive principle, SiQDs@Eu3+ provided satisfactorily dual-emitting signals, realizing the highly-selective and sensitive detection of deltamethrin. Correlation between the surface structure of SiQDs and their absorption spectra was in-depth unraveled by TD-DFT calculation and FT-IR analysis. As for the analytical performance, the recovery and LOD of deltamethrin in lettuce, provided by SiQDs@Eu3+, were comparable or even superior over conventional chromatographic analysis. Meanwhile, an innovative smartphone-based optical device was developed, which greatly decreased errors caused by the previously reported smartphone-based fluorescence detection.
Collapse
Affiliation(s)
- Zhongjie Li
- Jiangsu Key Laboratory of Environmental Science and engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Longtian Chen
- Jiangsu Key Laboratory of Environmental Science and engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yuemao Dou
- Jiangsu Key Laboratory of Environmental Science and engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- Jiangsu Key Laboratory of Environmental Science and engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chunyang Chen
- Jiangsu Key Laboratory of Environmental Science and engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xuedong Wang
- Jiangsu Key Laboratory of Environmental Science and engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
3
|
Nsanzamahoro S, Nan F, Shen L, Iradukunda Y, Li B, Yu WW. Designing a Hypoxia-Activated Sensing Platform Using an Azo Group-Triggered Reaction with the Formation of Silicon Nanoparticles. Anal Chem 2024; 96:11977-11984. [PMID: 38975827 DOI: 10.1021/acs.analchem.4c01857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Hypoxia is known as a specific signal of various diseases, such as liver fibrosis. We designed a hypoxia-sensitive fluorometric approach that cleaved the azo bond (N═N) in the presence of hypoxia-controlled agents (sodium dithionite and azoreductase). 4-(2-Pyridylazo) resorcinol (Py-N═N-RC) bears a desirable hypoxia-responsive linker (N═N), and its azo bond breakup can only occur in the presence of sodium dithionite and azoreductase and leads to the release of 2,4-dihydroxyaniline, which can react with 3-[2-(2-aminoethylamino)ethylamino]propyltrimethoxysilane to generate yellow fluorescent silicon nanoparticles. This approach exhibited high selectivity and sensitivity toward both sodium dithionite and azoreductase over other potential interferences. The mouse liver microsome, which is known to contain azoreductase, was applied and confirmed the feasibility of the designed platform. Py-N═N-RC is expected to be a practical substrate for hypoxia-related biological analyses. Furthermore, silicon nanoparticles were successfully applied for Hela cell imaging owing to their negligible cytotoxicity and superb biocompatibility.
Collapse
Affiliation(s)
- Stanislas Nsanzamahoro
- School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan 250100, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, Qingdao 266237, China
| | - Fuchun Nan
- School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan 250100, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, Qingdao 266237, China
| | - Lanbo Shen
- Jinan Central Hospital, Shandong First Medical University, Jinan 250013, China
| | - Yves Iradukunda
- Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Bin Li
- Jinan Central Hospital, Shandong First Medical University, Jinan 250013, China
| | - William W Yu
- School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan 250100, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, Qingdao 266237, China
| |
Collapse
|
4
|
Lv Y, Zhou C, Li M, Huo Z, Wei Z, Wang N, Wang G, Su X. A dual-mode sensing system based on carbon quantum dots and Fe nanozymes for the detection of α-glucosidase and its inhibitors. Talanta 2024; 268:125328. [PMID: 37890370 DOI: 10.1016/j.talanta.2023.125328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
In this research, a sensitive fluorometric and colorimetric dual-mode sensing platform based on nitrogen-doped carbon quantum dots (NCDs) and magnetic Fe nanoparticles with peroxidase-like activity (Fe nanozymes, Fe NZs) was established, and was further applied for the detection of α-glucosidase (α-glu) and its inhibitors. The ⋅OH that produced by H2O2 catalyzed by Fe NZs can oxidize the colorless diammonium 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) to green oxABTS, and a noticeable absorption peak at 417 nm appeared. Simultaneously, oxABTS can quench the fluorescence of NCDs at 402 nm via fluorescence resonance energy transfer (FRET). 2-O-α-D-glucopyranosyl-L-ascorbic acid (AAG) can be decomposed by α-glu to glucose and ascorbic acid (AA), AA can prevent the oxidation of ABTS, resulting in the absorption at 417 nm decreased. Moreover, the quenching effect of oxABTS on NCDs is weakened, and the fluorescence at 402 nm is restored. Therefore, based on the change of absorption at 417 nm and fluorescence at 402 nm, the fluorometric and colorimetric dual-mode sensing method can be used for the determination of acarbose and voglibose that are the inhibitors of α-glu.
Collapse
Affiliation(s)
- Yuntai Lv
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Chenyu Zhou
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Meini Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zejiao Huo
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhiyuan Wei
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Nan Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Guannan Wang
- School of Pharmacy, Shenyang Medical University, Shenyang,110034, China.
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
5
|
Liu Y, Gao R, Liu X, Zheng J, Wu X. High-efficiency fluorescent coordination polymer nanoparticles co-doped with Ce 3+/Tb 3+ ions for curcumin detection. Mikrochim Acta 2023; 190:354. [PMID: 37587349 DOI: 10.1007/s00604-023-05933-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/25/2023] [Indexed: 08/18/2023]
Abstract
Curcumin (Cur) possesses diverse biological and pharmacologic effects. It is widely used as a food additive and therapeutic medicine. A study to determine a sensitive detection method for Cur is necessary and meaningful. In this work, double rare earth ions co-doped fluorescent coordination polymer nanoparticles (CPNPs) were developed for the Cur detection. The CPNPs were synthesized by using adenosine monophosphate (AMP) as bridge ligands via coordination self-assembly with Ce3+ and Tb3+. The AMP-Ce/Tb CPNPs exhibited the characteristic green fluorescence of Tb3+ and had high luminescence efficiency. Under the optimal conditions, the fluorescence intensity of AMP-Ce/Tb CPNPs could be significantly quenched by Cur. The fluorescence quenching extent at λex/λem of 300 nm/544 nm showed a good linear relationship with the Cur concentration in the range of 10 to 1000 nM. The detection limit was as low as 8.0 nM (S/N = 3). This method was successfully applied to the determination of Cur in real samples with satisfactory results. The luminescence mechanism of AMP-Ce/Tb CPNPs and the fluorescence quenching mechanism of the CPNPs by Cur were both examined.
Collapse
Affiliation(s)
- Yujie Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Ran Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Xingcen Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Jinhua Zheng
- Tai'an Center for Disease Control and Prevention, Tai'an, 271000, People's Republic of China
| | - Xia Wu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China.
| |
Collapse
|
6
|
Chi Y, Sun W, Zhou L, Pei S, Zeng H, Cheng Y, Chai S. The preparation of hybrid silicon quantum dots by one-step synthesis for tetracycline detection and antibacterial applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1145-1156. [PMID: 36787098 DOI: 10.1039/d2ay02102a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, we prepared three different silicon quantum dots (SiQDs-1, SiQDs-2 and SiQDs-3) by hydrothermal synthesis with rose Bengal as the reducing agent and triacetoxy(methyl)silane and allyloxytrimethylsilane as silicon sources. The as-prepared SiQDs not only exhibited potent antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) but also showed specific responses to tetracycline (TC). The minimum inhibitory concentrations (MICs) of SiQDs-1, SiQDs-2 and SiQDs-3 were 0.55 mg mL-1, 0.47 mg mL-1 and 0.39 mg mL-1 against E. coli, respectively, and 0.45 mg mL-1, 0.34 mg mL-1 and 0.34 mg mL-1 against S. aureus, respectively. By examining the morphologies of bacteria and generation of reactive oxygen species (ROS), we speculated that these SiQDs shrink the bacteria and even directly destroy the bacterial structural integrity through the production of singlet oxygen. In addition, the fluorescence quenching effectiveness of SiQDs-3 also showed a strong linear relationship with TC concentration in the range of 0-1.2 μM with a detection limit of 0.318 μM, as a result of the internal filtering effect. Together, SiQDs not only can be a candidate to treat resistant bacterial infections, but also may be applied in practical detection of TC.
Collapse
Affiliation(s)
- Yuting Chi
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology, Chongqing 401331, P. R. China.
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Wanlin Sun
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology, Chongqing 401331, P. R. China.
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Lijia Zhou
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology, Chongqing 401331, P. R. China.
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Shuchen Pei
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology, Chongqing 401331, P. R. China.
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Haichun Zeng
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology, Chongqing 401331, P. R. China.
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Yunying Cheng
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, P. R. China.
| | - Shuiqin Chai
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology, Chongqing 401331, P. R. China.
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| |
Collapse
|
7
|
The preparation, optical properties and applications of carbon dots derived from phenylenediamine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Pan C, Qin X, Lu M, Ma Q. Water Soluble Silicon Nanoparticles as a Fluorescent Probe for Highly Sensitive Detection of Rutin. ACS OMEGA 2022; 7:28588-28596. [PMID: 35990497 PMCID: PMC9386801 DOI: 10.1021/acsomega.2c03463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/26/2022] [Indexed: 05/17/2023]
Abstract
In this work, water-soluble fluorescent silicon nanoparticles (SiNPs) were prepared by one-pot hydrothermal method using 3-(2-aminoethylamino)propyldimethoxymethylsilane (AEAPDMMS) as a silicon source and amidol as a reducing agent. The prepared SiNPs showed bright green fluorescence, excellent stability against photobleaching, salt tolerance, temperature stability, and good water solubility. Due to the internal filtration effect (IFE), rutin could selectively quench the fluorescence of the SiNPs. Based on such phenomena, a highly sensitive fluorescence method was established for rutin detection. The linear range and limit of detection (LOD) were 0.05-400 μM and 15.2 nM, respectively. This method was successfully applied to detect rutin in the samples of rutin tablets, Sophora japonica, fry Sophora japonica, and S. japonica carbon with satisfactory recovery.
Collapse
|
9
|
Qin XZ, Pan CJ, Ma LF, Wen QQ, Ma QJ. Water dispersible green fluorescent silicon nanoparticles for high sensitive detection of curcumin and cell imaging. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Pan C, Wen Q, Ma L, Qin X, Feng S. Green-emitting silicon nanoparticles as a fluorescent probe for highly-sensitive crocin detection and pH sensing. NEW J CHEM 2022. [DOI: 10.1039/d2nj00690a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel green fluorescent silicon nanoparticles were synthesized via a one-pot hydrothermal method and utilized as a fluorescent probe for highly sensitive and accurate detection of crocin and pH sensing.
Collapse
Affiliation(s)
- Congjie Pan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, P. R. China
| | - Qiaoqiao Wen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, P. R. China
| | - Longfei Ma
- Henan Police College, Zhengzhou, 450046, China
| | - Xuezhen Qin
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, P. R. China
| | - Suxiang Feng
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P. R. China, Zhengzhou, 450046, Henan, China
| |
Collapse
|